Spectral properties for bounded operators on locally convex spaces*

Sorin Mirel Stoian
University of Petroșani

Abstract
We introduce the spectral radius \(r_P(T) \) for a quotient bounded operator on a locally convex space \(X \). Similarly to the case of bounded operators on a Banach space we prove that the Neumann series \(\sum_{n=0}^{\infty} \frac{T^n}{\lambda+n} \) converges to \(R(\lambda, T) \), whenever \(\lambda > r_P(T) \), and \(|\sigma(Q_P, T)| = r_P(T) \). Also we study the universally bounded operators on locally convex spaces.

AMS 2000 Subject Classification: 47A25, 46A03
Key Words: spectral set, locally convex space

1 Introduction
It is known that if \(T \) is a linear operator on a Banach space \(X \) then the spectral radius of \(T \) is defined by the Gelfand formula \(r(T) = \lim_{n \to \infty} \sqrt[|\lambda|]{\|T^n\|} \), \(|\sigma(Q, T)| = r(T) \) and the resolvent \(R(\lambda, T) \) is given by the Newmann series \(\sum_{n=0}^{\infty} \frac{T^n}{\lambda+n} \), whenever \(\lambda > r(T) \).

If we want to generalize this theory on locally convex space \(X \) one major difficulty is that is not clear which class of operators we can use, because there are several non-equivalent ways of defining bounded operators on \(X \). The concept of bounded element of a locally convex algebra was introduced by Allan [1]. An element is said to be bounded if some scalar multiple of it generates a bounded semi group.

Definition 1 Let \(X \) be a locally convex algebra. The radius of boundness of an element \(x \in X \) is the number

\[
\beta(x) = \inf \left\{ \alpha > 0 \mid \text{the set } \left\{ (\alpha^{-1}x)^n \right\}_{n \geq 1} \text{ is bounded} \right\}
\]

*This work is supported by the MEEdC-ANCS CEEX grant ET65/2005 contract no. 2987/11.10.2005.
Through this paper all locally convex spaces will be assumed Hausdorff, over complex field \mathbb{C}, and all operators will be linear. If X and Y are topological vector spaces we denote by $\mathcal{L}(X, Y)$ (or $L(X, Y)$) the algebra of linear operators (continuous operators) from X to Y.

Any family \mathcal{P} of seminorms who generate the topology of locally convex space X (in the sense that the topology of X is the coarsest with respect to which all seminorms of \mathcal{P} are continuous) will be called a calibration on X. A calibration is characterized by the property that for every seminorms $p \in \mathcal{P}$ and every constant $\epsilon > 0$ the sets

$$S(p, \epsilon) = \{x \in X | p(x) < \epsilon\},$$

constitute a neighborhood sub-base at 0. A calibration on X will be principal if it is directed. The set of calibrations for X is denoted by $\mathcal{C}(X)$ and the set of principal calibration is denoted by $\mathcal{C}_0(X)$.

A family of seminorms on a linear space is partially ordered by relation \leq, where

$$p \leq q \iff p(x) \leq q(x), \forall x \in X.$$

A family of seminorms is preordered by the relation \prec, where

$$p \prec q \iff \text{there exists some } r > 0 \text{ such that } p(x) \leq rq(x), \forall x \in X.$$

If $p \prec q$ and $q \prec p$, we write $p \approx q$.

Definition 2 Two families \mathcal{P}_1 and \mathcal{P}_2 of seminorms on a linear space are called Q-equivalent (denoted $\mathcal{P}_1 \approx \mathcal{P}_2$) provided:

1. for each $p_1 \in \mathcal{P}_1$ there exists $p_2 \in \mathcal{P}_2$ such that $p_1 \approx p_2$;
2. For each $p_2 \in \mathcal{P}_2$ there exists $p_1 \in \mathcal{P}_1$ such that $p_2 \approx p_1$.

It is obviously that two Q-equivalent and separating families of seminorms on a linear space generate the same locally convex topology.

Similarly to the norm of a linear operator on a normed space V, Troitsky [19] define the mixed operator seminorm of an operator between locally convex spaces. If $(X, \mathcal{P}), (Y, \mathcal{Q})$ are locally convex spaces, then for all seminorms $p, q \in \mathcal{P}$ the application $m_{pq} : L(X, Y) \to \mathbb{R} \cup \{\infty\}$, defined by

$$m_{pq}(T) = \sup_{p(x) \neq 0} \frac{q(Tx)}{p(x)},$$

is called the mixed operator seminorm of T associated with p and q. When $X = Y$ and $p = q$ we use notation $\hat{p} = m_{pp}$.

Lemma 3 ([19]) If $(X, \mathcal{P}), (Y, \mathcal{Q})$ are locally convex spaces and $T \in L(X, Y)$, then:

1. $m_{pq}(T) = \sup_{p(x) = 1} q(Tx) = \sup_{p(x) \leq 1} q(Tx), \forall p \in \mathcal{P}, \forall q \in \mathcal{Q};$
2. \(q(Tx) \leq m_{pq}(T)p(x), (\forall) x \in X, \) whenever \(m_{pq}(T) < \infty \)

Corollary 4 If \((X, \mathcal{P}), (Y, \mathcal{Q})\) are locally convex spaces and \(T \in L(X, Y)\), then

\[
m_{pq}(T) = \inf \{ M > 0 \mid q(Tx) \leq Mp(x), (\forall) x \in X \},
\]

whenever \(m_{pq}(T) < \infty \).

Proof. If \(p, q \in \mathcal{P} \) then from the previous lemma we have

\[
q(Tx) \leq m_{pq}(T)p(x), (\forall) x \in X.
\]

If \(M > 0 \) such that

\[
q(Tx) \leq Mp(x), (\forall) x \in X,
\]

then using (1) we obtain

\[
m_{pq}(T) = \sup_{p(x) = 1} q(Tx) \leq M.
\]

Definition 5 An operator \(T \) on a locally convex space \(X \) is quotient bounded with respect to a calibration \(\mathcal{P} \in \mathcal{C}(X) \) if for every seminorm \(p \in \mathcal{P} \) there exists some \(c_p > 0 \) such that

\[
p(Tx) \leq c_p p(x), (\forall) x \in X.
\]

The class of quotient bounded operators with respect to a calibration \(\mathcal{P} \in \mathcal{C}(X) \) is denoted by \(Q_\mathcal{P}(X) \).

Lemma 6 ([10]) If \(X \) is a locally convex space and \(\mathcal{P} \in \mathcal{C}(X) \), then for every \(p \in \mathcal{P} \) the application \(\hat{p} : Q_\mathcal{P}(X) \to \mathbb{R} \) defined by

\[
\hat{p}(T) = \inf \{ r > 0 \mid p(Tx) \leq rp(x), (\forall) x \in X \},
\]

is a submultiplicative seminorm on \(Q_\mathcal{P}(X) \), satisfying the relation \(\hat{p}(I) = 1 \).

We denote by \(\hat{\mathcal{P}} \) the family \(\{ \hat{p} \mid p \in \mathcal{P} \} \).

Proposition 7 ([10]) Let \(X \) be a locally convex space and \(\mathcal{P} \in \mathcal{C}(X) \).

1. \(Q_\mathcal{P}(X) \) is a unital subalgebra of the algebra of continuous linear operators on \(X \);
2. \(Q_\mathcal{P}(X) \) is a unital local multiplicative convex algebra with respect to the topology determined by \(\hat{\mathcal{P}} \);
3. If \(\mathcal{P}' \in \mathcal{C}(X) \) such that \(\mathcal{P} \approx \mathcal{P}' \), then \(Q_{\mathcal{P}'}(X) = Q_\mathcal{P}(X) \) and \(\hat{\mathcal{P}} = \hat{\mathcal{P}}' \);
4. The topology generated by \(\hat{\mathcal{P}} \) on \(Q_\mathcal{P}(X) \) is finer than the topology of uniform convergence on bounded subsets of \(X \).

Lemma 8 If \(X \) is a sequentially complete locally convex space, then \(Q_\mathcal{P}(X) \) is a sequentially complete \(m \)-convex algebra for all \(\mathcal{P} \in \mathcal{C}(X) \).

Proof. Let \(\mathcal{P} \in \mathcal{C}(X) \) and \((T_n)_n \subseteq Q_\mathcal{P}(X) \) be a Cauchy sequence. Then, for each \(\epsilon > 0 \) and each \(\hat{p} \in \mathcal{P} \) there exists some index \(n_{p,\epsilon} \in \mathbb{N} \) such that

\[
| \hat{p}(T_n) - \hat{p}(T_m) | \leq \hat{p}(T_n - T_m) < \epsilon, \quad (\forall) \ n, m \geq n_{p,\epsilon} \tag{1}
\]

so, it follows that \((\hat{p}(T_n))_n \) is convergent sequence of real numbers, for each \(\hat{p} \in \mathcal{P} \). If \(x \in X \), then

\[
p(T_n(x) - T_m(x)) \leq \hat{p}(T_n - T_m)p(x), \quad (\forall) \ p \in \mathcal{P}, \tag{2}
\]

so \((T_n(x))_n \subseteq X \) is a Cauchy sequence. But, since \(X \) is sequentially complete and separated, there exists an unique element \(y \in X \) such that

\[
\lim_{n \to \infty} T_n x = y.
\]

Therefore, the operator \(T : X \to X \) defined by

\[
T(x) = \lim_{n \to \infty} T_n x, \quad (\forall) \ x \in X,
\]

is well defined. It is obvious that \(T \) is a linear operator. Using the continuity of seminorms \(\hat{p} \in \mathcal{P} \) we have

\[
p(Tx) = p\left(\lim_{n \to \infty} T_n x \right) = \lim_{n \to \infty} p(T_n x) \leq \lim_{n \to \infty} \hat{p}(T_n)p(x) = c_\mathcal{P}p(x),
\]

for all \(x \in X \) and for each \(p \in \mathcal{P} \) (where \(c_\mathcal{P} = \lim_{n \to \infty} \hat{p}(T_n) \)). This implies that \(T \in Q_\mathcal{P}(X) \). Now we prove that \(T_n \to T \) in \(Q_\mathcal{P}(X) \). From relations (1) and (2) it follows that for each \(\epsilon > 0 \) and each \(p \in \mathcal{P} \) there exists \(n_{p,\epsilon} \in \mathbb{N} \) such that

\[
p(T_n(x) - T_m(x)) \leq c_p(x), \quad (\forall) \ n, m \geq n_{p,\epsilon}.
\]

so

\[
p(T_n(x) - T(x)) \leq c_p(x), \quad (\forall) \ n \geq n_{p,\epsilon}.
\]

This implies that

\[
\hat{p}(T_n - T) < \epsilon, \quad (\forall) \ n \geq n_{p,\epsilon}.
\]

which prove that \(T_n \to T \) in \(Q_\mathcal{P}(X) \) and \(Q_\mathcal{P}(X) \) is a sequentially complete \(m \)-convex algebra.

Given \((X, \mathcal{P})\), for each \(p \in \mathcal{P} \) denote by \(N^p \) the null space and by \(X_p \) the quotient space \(X/N^p \). For each \(p \in \mathcal{P} \) consider the natural mapping

\[
x \to x_p \equiv x + N^p
\]
It is obvious that X_p is a normed space, for each $p \in \mathcal{P}$, with norm $\| \cdot \|_p$ defined by

$$\| x_p \|_p = p(x), \forall x \in X.$$

Consider the algebra homomorphism $T \rightarrow T^p$ of $Q_{\mathcal{P}}(X)$ into $\mathcal{L}(X_p)$ defined by

$$T^p(x_p) = (Tx)_p, \forall x \in X.$$

This operators are well defined because $T(N^p) \subset N^p$. Moreover, for each $p \in \mathcal{P}$, $\mathcal{L}(X_p)$ is a unital normed algebra and we have

$$\| T^p \|_p = \sup \{ \| T^p x_p \|_p \mid \| x_p \|_p \leq 1 \text{ for } x_p \in X_p \}$$

= $\sup \{ p(Tx) \mid p(x) \leq 1 \text{ for } x \in X \}$

For $p \in \mathcal{P}$ consider the normed space $(\hat{X}_p, \| \cdot \|_p)$ the completion of $(X_p, \| \cdot \|_p)$. If $T \in Q_{\mathcal{P}}(X)$, then the operator T^p has a unique continuous linear extension \hat{T}^p on $(\hat{X}_p, \| \cdot \|_p)$.

Definition 9 Let (X, \mathcal{P}) a locally convex space and $T \in Q_{\mathcal{P}}(X)$. We say that $\lambda \in \rho(Q_{\mathcal{P}}, T)$ if the inverse of $\lambda I - T$ exists and $(\lambda I - T)^{-1} \in Q_{\mathcal{P}}(X)$. Spectral sets $\sigma(Q_{\mathcal{P}}, T)$ are defined to be complements of resolvent sets $\rho(Q_{\mathcal{P}}, T)$.

For each $p \in \mathcal{P}$ we denote by $\sigma(X_p, T^p)$ (respectively the spectral set of \hat{T}^p in $\mathcal{L}(\hat{X}_p)$) the spectral set of the operator T^p in $\mathcal{L}(X_p)$ (respectively the spectral set of \hat{T}^p in $\mathcal{L}(\hat{X}_p)$). The resolvent set of the operator T^p in $\mathcal{L}(X_p)$ (respectively the spectral set of \hat{T}^p in $\mathcal{L}(\hat{X}_p)$) is denoted by $\rho(X_p, T^p)(\rho(\hat{X}_p, \hat{T}^p))$.

Lemma 10 ([9]) Let (X, \mathcal{P}) be a sequentially complete locally convex space and $T \in Q_{\mathcal{P}}(X)$. Then, T is invertible in $Q_{\mathcal{P}}(X)$ if and only if T^p is invertible in $\mathcal{L}(X_p)$ for all $p \in \mathcal{P}$.

Corollary 11 ([9]) If (X, \mathcal{P}) is a sequentially complete convex space and $T \in Q_{\mathcal{P}}(X)$, then

$$\sigma(Q_{\mathcal{P}}, T) = \bigcup \{ \sigma(X_p, T^p) \mid p \in \mathcal{P} \} = \bigcup \{ \sigma(\hat{X}_p, \hat{T}^p) \mid p \in \mathcal{P} \}.$$

2 Spectral radius of quotient bounded operators

Let (X, \mathcal{P}) be a locally convex space and $T \in Q_{\mathcal{P}}(X)$. We said that T is **bounded element** of the algebra $Q_{\mathcal{P}}(X)$ if it is a bounded element of $Q_{\mathcal{P}}(X)$ in the sense of G.R.Allan [1]. The class of bounded elements of $Q_{\mathcal{P}}(X)$ is denoted by $(Q_{\mathcal{P}}(X))_0$.

Definition 12 If (X, \mathcal{P}) is a locally convex space and $T \in Q_{\mathcal{P}}(X)$ we denote by $r_{\mathcal{P}}(T)$ the radius of boundedness of operator T in $Q_{\mathcal{P}}(X)$, i.e.

\[r_{\mathcal{P}}(T) = \inf \{ \alpha > 0 \mid \alpha^{-1}T \text{ generates a bounded semigroup in } Q_{\mathcal{P}}(X) \}. \]

We said that $r_{\mathcal{P}}(T)$ is the \mathcal{P}-spectral radius of the operator T.

Remark 13 Proposition 1.7 (3) implies that for each $\mathcal{P}_0 \in \mathcal{C}(X)$, $\mathcal{P} \approx \mathcal{P}_0$, we have $Q_{\mathcal{P}}(X) = Q_{\mathcal{P}_0}(X)$, so if H is a Q-equivalence class in $\mathcal{C}(X)$, then

\[r_{\mathcal{P}}(T) = r_{\mathcal{P}_0}(T), \forall \mathcal{P}, \mathcal{P}_0 \in H. \]

Proposition 14 ([1]) If X is a locally convex space and $\mathcal{P} \in \mathcal{C}(X)$, then for each $T \in Q_{\mathcal{P}}(X)$ we have

\[r_{\mathcal{P}}(T) = \sup \{ \limsup_{n \to \infty} (p(T^n))^{1/n} \mid p \in \mathcal{P} \}. \]

From real analysis we have the following lemma.

Lemma 15 If $(t_n)_n$ is a sequence in $R^+ \cup \{ \infty \}$ then

\[\limsup_{n \to \infty} \sqrt[n]{t_n} = \inf \left\{ \nu > 0 \mid \lim_{n \to \infty} \frac{t_n}{\nu^n} = 0 \right\}. \]

Proposition 16 If X is a locally convex space and $\mathcal{P} \in \mathcal{C}(X)$, then for each $T \in Q_{\mathcal{P}}(X)$ we have:

1. $r_{\mathcal{P}}(T) \geq 0$ and $r_{\mathcal{P}}(\lambda T) = | \lambda | \cdot r_{\mathcal{P}}(T), (\forall) \lambda \in C$, where by convention $0^\infty = \infty$;
2. $r_{\mathcal{P}}(T) < +\infty$ if and only if $T \in (Q_{\mathcal{P}}(X))_0$;
3. $r_{\mathcal{P}}(T) = \inf \{ \lambda > 0 \mid \lim_{n \to \infty} \frac{T^n}{\lambda^n} = 0 \}$.

Proof. 1) From proposition 13 results that for each $\lambda \in N^*$, $\lambda \neq 0$, we have

\[r_{\mathcal{P}}(\lambda T) = \sup \{ \limsup_{n \to \infty} (\lambda t^n)^{1/n} \mid p \in \mathcal{P} \} = \sup \{ \limsup_{n \to \infty} (|\lambda| t^n)^{1/n} \mid p \in \mathcal{P} \} = |\lambda| \sup \{ \limsup_{n \to \infty} (t^n)^{1/n} \mid p \in \mathcal{P} \} = |\lambda| \cdot r_{\mathcal{P}}(T). \]

The case $\lambda = 0$ is obvious.

2) This equivalence results from definition of \mathcal{P}-spectral radius of the operator T.

3) The equality results directly from proposition 14 and lemma 15.

\[\blacksquare \]
Lemma 15 implies that for a bounded operator on Banach space we have

\[r(T) = \lim_{n \to \infty} \sqrt[n]{\|T^n\|} = \inf \left\{ \nu > 0 \mid \left(\frac{T^n}{\nu^n} \right)_n \text{ converges to zero in operator norm topology} \right\}. \]

If we consider this relation as an alternative definition of the spectral radius, then proposition 16 implies that \(\mathcal{P} \)-spectral radius of a quotient bounded operator can be considered to be natural generalization of the spectral radius of a bounded operator on a Banach space.

Proposition 17 If \(X \) is a locally convex space and \(\mathcal{P} \in \mathcal{C}(X) \), then for each \(T \in Q_{\mathcal{P}}(X) \) and each \(p \in \mathcal{P} \) the sequence \((\hat{p}_n)_n \) is convergent and

\[\lim_{n \to \infty} (\hat{p}(T^n))^{1/n} = \inf_{n \geq 1} (\hat{p}(T^n))^{1/n}. \]

Proof. If there exists some \(n_0 \in \mathbb{N}^* \) such that \(\hat{p}(T^{n_0}) = 0 \), then

\[\hat{p}(T^{n+n_0}) \leq \hat{p}(T^n) \hat{p}(T^{n_0}) = 0, \forall n > 0. \]

Therefore,

\[\lim_{n \to \infty} (\hat{p}(T^n))^{1/n} = \inf_{n \geq 1} (\hat{p}(T^n))^{1/n}. \]

Assume that \(\hat{p}(T^n) > 0 \) for each \(n \in \mathbb{N}^* \) and let \(m \in \mathbb{N}^* \) be arbitrary fixed. For each \(n \in \mathbb{N}^* \) we consider the relations \(n = m \cdot q(n) + r(n) \), where \(0 \leq r(n) < m \). Using this notations we have

\[(\hat{p}(T^n))^{1/n} = \left(\hat{p} \left(T^{mq(n)+r(n)} \right) \right)^{1/n} \leq \left[\hat{p} \left(T^{mq(n)} \right) \hat{p} \left(T^r(n) \right) \right]^{1/n} \leq \hat{p}(T^m)^{q(n)/n} \hat{p}(T)^{r(n)/n} \]

so

\[\limsup_{n \to \infty} (\hat{p}(T^n))^{1/n} \leq (\hat{p}(T^m))^{1/m}. \]

Since \(m \in \mathbb{N}^* \) is arbitrary fixed, from previous inequality results that

\[\limsup_{n \to \infty} (\hat{p}(T^n))^{1/n} \leq \inf_{m \geq 1} (\hat{p}(T^m))^{1/m} \leq \liminf_{n \to \infty} (\hat{p}(T^n))^{1/n}. \]

Therefore, the sequence \((\hat{p}(T_n)_n \) is convergent and

\[\lim_{n \to \infty} (\hat{p}(T^n))^{1/n} = \inf_{n \geq 1} (\hat{p}(T^n))^{1/n}. \]

Corollary 18 If \(X \) is a locally convex space and \(\mathcal{P} \in \mathcal{C}(X) \), then for each \(T \in Q_{\mathcal{P}}(X) \) we have:
1. \(r_P(T) = \sup \{ \limsup_{n \to \infty} (p(T^n))^{1/n} \mid p \in P \} = \sup \{ \limsup_{n \to \infty} (\hat{p}(T^n))^{1/n} \mid p \in P \} = \sup \{ \inf_{n \geq 1} (\hat{p}(T^n))^{1/n} \mid p \in P \}; \)

2. \(r_P(T) \leq \hat{p}(T), (\forall) p \in P. \)

Lemma 19 Let \((X, P)\) be a locally convex space and \(T, S \in Q_P(X)\). If \(TS = ST\), then for each \(p \in P\) we have

\[
\limsup_{n \to \infty} (\hat{p}((TS)^n))^{1/n} \leq \limsup_{n \to \infty} (\hat{p}(T^n))^{1/n} \limsup_{n \to \infty} (\hat{p}(S^n))^{1/n}.
\]

Proof. From inequality

\[
\hat{p}(TS) \leq \hat{p}(T) \hat{p}(S),
\]

we have

\[
\hat{p}((TS)^n) \leq \hat{p}(T^n) \hat{p}(S^n), (\forall) n \in N^*.
\]

Therefore,

\[
\limsup_{n \to \infty} (\hat{p}((TS)^n))^{1/n} \leq \limsup_{n \to \infty} (\hat{p}(T^n))^{1/n} \limsup_{n \to \infty} (\hat{p}(S^n))^{1/n}.
\]

Corollary 20 Let \(X\) be a locally convex space and \(P \in C(X)\). If \(T, S \in Q_P(X)\) such that \(TS = ST\), then

\[
r_P(TS) \leq r_P(T)r_P(S).
\]

Lemma 21 Let \((X, P)\) be a locally convex space and \(T, S \in Q_P(X)\). If \(TS = ST\), then we have

\[
\limsup_{n \to \infty} (\hat{p}((T + S)^n))^{1/n} \leq \limsup_{n \to \infty} (\hat{p}(T^n))^{1/n} + \limsup_{n \to \infty} (\hat{p}(S^n))^{1/n}.
\]

Proof. For each \(\varepsilon > 0\) there exists some seminorm index \(n_\varepsilon \in \mathbb{N}\) such that

\[
(\hat{p}(T^n)^{1/m} < \limsup_{n \to \infty} (\hat{p}(T^n))^{1/n} + \varepsilon,
\]

\[
(\hat{p}(S^n)^{1/m} < \limsup_{n \to \infty} (\hat{p}(S^n))^{1/n} + \varepsilon,
\]

for every \(m \geq n_\varepsilon\). Therefore, there exists \(M \geq 1\) such that

\[
\hat{p}(T) < M \left(\limsup_{n \to \infty} (\hat{p}(T^n))^{1/n} + \varepsilon \right)^m,
\]

\[
\hat{p}(S^n) < M \left(\limsup_{n \to \infty} (\hat{p}(S^n))^{1/n} + \varepsilon \right)^m,
\]
for every $m \in \mathbb{N}$. Moreover, p is a submultiplicative seminorm, so we have

$$
\hat{p}((T + S)^m) \leq \sum_{k=1}^{m} C_k^m \hat{p}(T^k) \hat{p}(S^{m-k}) \\
\leq M^2 \sum_{k=1}^{m} C_k^m \left(\limsup_{n \to \infty} (\hat{p}(T^n))^{1/n} + \varepsilon \right)^k \left(\limsup_{n \to \infty} (\hat{p}(S^n))^{1/n} + \varepsilon \right)^{m-k} = \\
= M^2 \left(\limsup_{n \to \infty} (\hat{p}(T^n))^{1/n} + \limsup_{n \to \infty} (\hat{p}(S^n))^{1/n} + 2\varepsilon \right)^m.
$$

for every $n \geq n_\varepsilon$. Therefore

$$
\limsup_{n \to \infty} (\hat{p}((T + S)^n))^{1/n} \leq \limsup_{n \to \infty} (\hat{p}(T^n))^{1/n} + \limsup_{n \to \infty} (\hat{p}(S^n))^{1/n} + 2\varepsilon.
$$

Since $\varepsilon > 0$ is arbitrary chosen from previous relation results that

$$
\limsup_{n \to \infty} (\hat{p}((T + S)^n))^{1/n} \leq \limsup_{n \to \infty} (\hat{p}(T^n))^{1/n} + \limsup_{n \to \infty} (\hat{p}(S^n))^{1/n}.
$$

Corollary 22 Let X be a locally convex space and $\mathcal{P} \in \mathcal{C}(X)$. If $T, S \in Q_\mathcal{P}(X)$ such that $TS = ST$, then

$$
r_\mathcal{P}(T + S) \leq r_\mathcal{P}(T) + r_\mathcal{P}(S).
$$

From the definition of the \mathcal{P}-spectral radius of a quotient bounded operator and the properties we proved above result the following proposition.

Proposition 23 Let X be a locally convex space and $\mathcal{P} \in \mathcal{C}(X)$.

1. If $T \in (Q_\mathcal{P}(X))_0$, then

$$
\lim_{n \to \infty} \frac{T^n}{\lambda^n} = 0, (\forall) | \lambda | > r_\mathcal{P}(T);
$$

2. If $T \in (Q_\mathcal{P}(X))_0$ and $0 < | \lambda | < r_\mathcal{P}(T)$, then the set $\{ \frac{T^n}{\lambda^n} \}_{n \geq 1}$ is unbounded.

3. For each $T \in Q_\mathcal{P}(X)$ and every $n > 0$ we have $r_\mathcal{P}(T^n) = r_\mathcal{P}(T)^n$.

Proposition 24 Let X be a sequentially complete locally convex space and $\mathcal{P} \in \mathcal{C}(X)$. If $T \in (Q_\mathcal{P}(X))_0$ and $| \lambda | > r_\mathcal{P}(T)$, then the Neumann series $\sum_{n=0}^{\infty} \frac{T^n}{\lambda^n}$ converges to $R(\lambda, T)$ (in $Q_\mathcal{P}(X)$) and $R(\lambda, T) \in Q_\mathcal{P}(X)$.

9
Proof. If $|\lambda| > r_{P}(T)$ then there exists $\beta \in \mathbb{C}$, such that $0 < |\beta| < 1$ and $r_{P}(T) < \beta \lambda$. From proposition 23(1) we obtain that for each $\epsilon > 0$ and every $p \in \mathcal{P}$, there exists some index $n_{p,\epsilon} \in \mathbb{N}$ with the property

$$\hat{p}\left(\frac{T^{n}}{(\beta\lambda)^{n}}\right) < \epsilon, (\forall) n \geq n_{p,\epsilon}.$$

therefore, using corollary 4 we obtain

$$p\left(\frac{T^{n}}{(\beta\lambda)^{n}}x\right) \leq \hat{p}\left(\frac{T^{n}}{(\beta\lambda)^{n}}\right) p(x) < \epsilon p(x), (\forall) n \geq n_{p,\epsilon}, (\forall) x \in X.$$

Since $0 < |\beta| < 1$, there exists $n_{0} \in \mathbb{N}$, such that

$$\sum_{k=n}^{m} |\beta|^{k} < 1, (\forall) m > n \geq n_{0}.$$

From previous relations result that for each $\epsilon > 0$ and every $p \in \mathcal{P}$ there exists an index $m_{p,\epsilon} = \max\{n_{p,\epsilon}, n_{0}\} \in \mathbb{N}$, for which we have

$$p\left(\sum_{k=n}^{m} \frac{T^{k}}{\lambda^{k}}x\right) \leq \epsilon \left(\sum_{k=n}^{m} |\beta|^{k}\right) p(x) < \epsilon p(x), \quad (3)$$

for every $m > n \geq m_{p,\epsilon}$ and every $x \in X$. Therefore, $\left(\sum_{k=0}^{m} \frac{T^{k}}{\lambda^{k+1}}x\right)_{m \geq 0}$ is a Cauchy sequence, for each $x \in X$. But X is sequentially complete, so for every $x \in X$ there exists an unique element $y \in X$ such that

$$y = \lim_{m \to \infty} \sum_{k=0}^{m} \frac{T^{k}}{\lambda^{k+1}}x.$$

We consider the operator $S: X \to X$ given by

$$S(x) = \lim_{m \to \infty} \sum_{k=0}^{m} \frac{T^{k}}{\lambda^{k+1}}x, (\forall) x \in X.$$

It is obvious that S is linear operator. Moreover, from equality

$$\sum_{k=0}^{m} \frac{T^{k}}{\lambda^{k+1}}(\lambda x - Tx) = x - \frac{T^{m+1}}{\lambda^{m+1}}x, (\forall) x \in X,$$

result that if $m \to \infty$ then

$$S(\lambda x - Tx) = x, (\forall) x \in X,$$

so $S(\lambda I - T) = I$. From continuity of the operator T result that

$$STx = \lim_{m \to \infty} \sum_{k=0}^{m} \frac{T^{k}}{\lambda^{k+1}}Tx = \lim_{m \to \infty} T \left(\sum_{k=0}^{m} \frac{T^{k}}{\lambda^{k+1}}x\right) = \text{10}.$$
\[
\lim_{m \to \infty} \sum_{k=0}^{m} \frac{T^k}{\lambda^{k+1}} x = TSx,
\]
for all \(x \in X \), therefore \(S(\lambda I - T) = (\lambda I - T)S = I \).

The definition of \(\mathcal{P} \)-spectral radius implies that the family \(\left(\frac{T^n}{(\beta \lambda)^n} \right) \) is bounded in \(Q_\mathcal{P}(X) \), therefore for every \(p \in \mathcal{P} \) there exists a constant \(\epsilon_p > 0 \) such that
\[
\hat{\rho} \left(\frac{T^n}{(\beta \lambda)^n} \right) < \epsilon_p, \forall n \geq 1.
\]

Using again the corollary 4 we have
\[
p \left(\frac{T^n}{\lambda^n} \right) < \epsilon_p \left(\sum_{k=0}^{m} \left(\frac{\beta}{\lambda} \right)^k \right) p(x) < \epsilon_p \frac{1}{\lambda(1 - |\beta|)} p(x),
\]
and if \(m \to \infty \) then
\[
p(Sx) < \epsilon_p \frac{1}{\lambda(1 - |\beta|)} p(x),
\]
for every \(m \geq 1 \) and every \(x \in X \), which implies that \(S = R(\lambda, T) \in Q_\mathcal{P}(X) \).

If we write the relation (3) under the form
\[
p \left(\sum_{k=0}^{m} \frac{T^k}{\lambda^{k+1}} x - \sum_{k=0}^{n} \frac{T^k}{\lambda^{k+1}} x \right) < \epsilon \frac{1}{\lambda} p(x),
\]
then for \(m \to \infty \) result that for every \(\epsilon > 0 \) and every \(p \in \mathcal{P} \) there exists some index \(n_{p, \epsilon} \in \mathbb{N} \), such that
\[
p \left(Sx - \sum_{k=0}^{n} \frac{T^k}{\lambda^{k+1}} x \right) \leq \epsilon \frac{1}{\lambda} p(x), \forall n \geq n_{p, \epsilon}, \forall x \in X
\]

Corollary 4 implies that for each \(p \in \mathcal{P} \) there exists some index \(n_{p, \epsilon} \in \mathbb{N} \), such that
\[
\hat{\rho} \left(S - \sum_{k=0}^{n} \frac{T^k}{\lambda^{k+1}} \right) \leq \epsilon \frac{1}{\lambda}, \forall n \geq n_{p, \epsilon}, \forall x \in X,
\]
which prove that the Neumann series \(\sum_{n=0}^{\infty} \frac{T^n}{\lambda^n} \) converges to \(R(\lambda, T) \) in \(Q_\mathcal{P}(X) \).

\[\blacksquare\]

Proposition 25 Let \(X \) be a sequentially complete locally convex space and \(\mathcal{P} \in \mathcal{C}(X) \). If \(T \in Q_\mathcal{P}(X) \), then \(|\sigma(Q_\mathcal{P}, T)| = r_\mathcal{P}(T) \).
Proof. Inequality $|\sigma(Q, T)| \leq r_{\mathcal{P}}(T)$ is implied by previous proposition. We prove now the reverse inequality. From corollary 11 we have

$$\sigma(Q, T) = \cup \{\sigma(X, T) \mid p \in \mathcal{P}\} = \cup \{\sigma(\tilde{X}, T) \mid p \in \mathcal{P}\}.$$

so, if $|\lambda| > |\sigma(Q, T)|$, then

$$|\lambda| > |\sigma(\tilde{X}, T)|, (\forall) p \in \mathcal{P}.$$

But, \tilde{X} is Banach space for each $p \in \mathcal{P}$, therefore

$$|\sigma(\tilde{X}, T)| = r(\tilde{X}, T),$$

where $r(\tilde{X}, T)$ is spectral radius of bounded operator \tilde{T} in \tilde{X}.

This observation implies that for each $p \in \mathcal{P}$ we have

$$(\forall) p \in \mathcal{P},$$

which means that for every $p \in \mathcal{P}$ and every $\epsilon > 0$ there exists $n_{\epsilon,p} \in \mathbb{N}$, such that

$$\hat{p} \left(\frac{T^n}{\lambda^n} \right) = \left\| \frac{T^n}{\lambda^n} \right\|_{\mathcal{P}} < \epsilon, (\forall) n \geq n_{\epsilon,p}.$$

Using proposition 16(3) and previous relation we have $r_{\mathcal{P}}(T) \leq |\lambda|$. But $|\lambda| > |\sigma(Q, T)|$ is arbitrary chosen, so $r_{\mathcal{P}}(T) \leq |\sigma(Q, T)|$.

Definition 26 If X is a locally convex space and $T \in Q_{\mathcal{P}}(X)$, we denote by $
abla(X)$ the set

$$\cap \{\sigma(Q, T) \mid p \in \mathcal{P} \in C(X) \text{ such that } T \in Q_{\mathcal{P}}(X)\}.$$

Lemma 27 If X is a locally convex space and $T \in Q_{\mathcal{P}}(X)$ then

$$|\sigma(Q, T)| \leq \inf \{r_{\mathcal{P}}(T) \mid p \in \mathcal{C}(X) \text{ such that } T \in Q_{\mathcal{P}}(X)\}.$$

Proof. This is a direct consequence of the proposition 25.

Definition 28 An operator T is quotient bounded operator on a locally convex space X if there exists some calibration \mathcal{P} on X such that $T \in Q_{\mathcal{P}}(X)$.

Remark 29 An operator T is quotient bounded on a locally convex space X if and only if there exists some calibration $\mathcal{P} \in C(X)$ such that $\hat{p}(T)$ is finit for each $p \in \mathcal{P}$.

Lemma 30 If T is a quotient bounded operator on a locally convex space X, then there exists some principal calibration $\mathcal{P}' \in C_0(X)$ such that $T \in Q_{\mathcal{P}'}(X)$.

Proof. Let \mathcal{P} be a calibration on X such that $T \in Q_{\mathcal{P}}(X)$ and denote by \mathcal{P}' the set of all seminorms given by the relations

$$\hat{p}'(x) = \max_{i=1,n} p_i(x), (\forall) x \in X,$$
where \(p_i \in \mathcal{P}', i = \overline{1,n} \), and \(n \in \mathbb{N} \).

Let \(p' \in \mathcal{P}' \) be arbitrary chosen. Since \(T \in Q_{\mathcal{P}}(X) \), from previous remark and lemma 3(2) results that

\[
p_i(Tx) \leq \hat{p}_i(T)(x), (\forall) x \in X, i = \overline{1,n},
\]

If \(c_{p'} = \max_{i=\overline{1,n}} \hat{p}_i(T) \), then

\[
p_i(Tx) \leq c_{p'} p_i(x) \leq c_{p'} p'(x), (\forall) x \in X, i = \overline{1,n},
\]

so

\[
p'(Tx) \leq c_{p'} p'(x), (\forall) x \in X,
\]

Therefore, \(T \in Q_{\mathcal{P}'}(X) \).

\[\Box\]

Lemma 31 If \(X \) is a locally convex space and \(T \in Q_{\mathcal{P}}(X) \) then

\[
\inf\{r_{\mathcal{P}}(T) \mid \mathcal{P} \in C_0(X) \text{ such that } T \in Q_{\mathcal{P}}(X)\} =
\]

\[
= \inf\{r_{\mathcal{P}}(T) \mid \mathcal{P} \in C(X) \text{ such that } T \in Q_{\mathcal{P}}(X)\}.
\]

Proof. Assume that \(\mathcal{P} \in C(X) \) such that \(T \in Q_{\mathcal{P}}(X) \).

If \(|\lambda| > r_{\mathcal{P}}(T) \), then the family \(\left(\frac{T^n}{\lambda^n} \right)_{n \geq 0} \) is bounded in \(Q_{\mathcal{P}}(X) \), i.e. for every \(p \in \mathcal{P} \) there exists \(\epsilon_p > 0 \) such that

\[
\hat{p} \left(\frac{T^n}{\lambda^n} \right) \leq \epsilon_p, (\forall) n \geq 0.
\]

Let \(\mathcal{P}' \) be the principal calibration associated with the calibration \(\mathcal{P} \), i.e. for each \(p' \in \mathcal{P}' \) there exists \(p_1, p_2, \ldots, p_n \in \mathcal{P} \) such that \(p' = \max\{p_1, p_2, \ldots, p_n\} \).

If \(\epsilon_{p'} = \max\{\epsilon_{p_1}, \ldots, \epsilon_{p_n}\} \), then

\[
\hat{p}' \left(\frac{T^n}{\lambda^n} \right) \leq \epsilon_{p'}, (\forall) n \geq 0.
\]

so \(|\lambda| > r_{\mathcal{P}'}(T) \). Since \(\lambda \) is arbitrary chosen results \(r_{\mathcal{P}'}(T) \leq r_{\mathcal{P}}(T) \).

Therefore,

\[
\inf\{r_{\mathcal{P}}(T) \mid \mathcal{P} \in C_0(X) \text{ such that } T \in Q_{\mathcal{P}}(X)\} \leq
\]

\[
\leq \inf\{r_{\mathcal{P}}(T) \mid \mathcal{P} \in C(X) \text{ such that } T \in Q_{\mathcal{P}}(X)\}.
\]

The reverse inequality is obvious.

\[\Box\]

Lemma 32 If \(X \) is a locally convex space and \(T \in Q_{\mathcal{P}}(X) \) then

\[
\sigma(Q, T) = \cap\{\sigma(Q_{\mathcal{P}}, T) \mid \mathcal{P} \in C_0(X) \text{ such that } T \in Q_{\mathcal{P}}(X)\}.
\]
Proof. From definition of the set $\sigma(Q, T)$ results the inclusion

$$\sigma(Q, T) \subset \cap \{ \sigma(Q_{\mathcal{P}}, T) \mid \mathcal{P} \in \mathcal{C}_0(X) \text{ such that } T \in Q_{\mathcal{P}}(X) \}.$$

If $\lambda \notin \sigma(Q, T)$, then there exists some calibration $\mathcal{P} \in \mathcal{C}(X)$ such that $\lambda \in \rho(Q_{\mathcal{P}}, T)$, so for every $p \in \mathcal{P}$ we have $\hat{p}(R(\lambda, T)) < \infty$.

Denote by \mathcal{P}' the principal calibration of all seminorms

$$p' = \max_{i=1,n} p_i(x), \forall x \in X,$$

where $p_i \in \mathcal{P}'$, $i = 1n$, and $n \in \mathbb{N}$.

Let $p' \in \mathcal{P}'$ be such seminorm. Since $R(\lambda, T) \in Q_{\mathcal{P}}(X)$, the lemma 3(2) implies that

$$p_i(R(\lambda, T) x) \leq \hat{p}_i(R(\lambda, T)) p_i(x), \forall x \in X, i = 1n,$$

If $c_{p'} = \max_{i=1,n} \hat{p}_i(R(\lambda, T))$, then

$$p_i(R(\lambda, T) x) \leq c_{p'} p_i(x) \leq c_{p'} p'(x), \forall x \in X, i = 1n,$$

so we have

$$p'(R(\lambda, T) x) \leq c_{p'} p'(x), \forall x \in X,$$

Therefore, $R(\lambda, T) \in Q_{\mathcal{P}'}(X)$ and $\lambda \notin \sigma(Q_{\mathcal{P}'}, T)$, which implies that

$$\cap \{ \sigma(Q_{\mathcal{P}}, T) \mid \mathcal{P} \in \mathcal{C}_0(X) \text{ such that } T \in Q_{\mathcal{P}}(X) \} \subset \sigma(Q, T).$$

\section{Universally bounded operators}

\textbf{Definition 33} Let \mathcal{P} be a calibration on a locally convex space X. An operator $T : X \rightarrow X$ is universally bounded with respect to the calibration \mathcal{P} if there exists $c_0 > 0$ such that

$$p(Tx) \leq c_0 p(x), \forall x \in X, \forall p \in \mathcal{P}.$$

We denote by $B_{\mathcal{P}}(X)$ the class of the universally bounded operators with respect to the calibration $\mathcal{P} \in \mathcal{C}(X)$.

\textbf{Remark 34} For each calibration $\mathcal{P} \in \mathcal{C}(X)$ we have $B_{\mathcal{P}}(X) \subset Q_{\mathcal{P}}(X) \subset \mathcal{L}(X)$.

\textbf{Definition 35} Let X be a locally convex space. For each $\mathcal{P} \in \mathcal{C}(X)$ we define the application $\| \bullet \|_{\mathcal{P}} : B_{\mathcal{P}}(X) \rightarrow \mathbb{R}$ by the formula

$$\| T \|_{\mathcal{P}} = \inf \{ c > 0 \mid p(Tx) \leq cp(x), \forall x \in X, \forall p \in \mathcal{P} \}.$$

\textbf{Proposition 36} ([10]) Let X be a locally convex space and $\mathcal{P} \in \mathcal{C}(X)$. Then:
1. $B_\mathcal{P}(X)$ is a subalgebra of $\mathcal{L}(X)$;

2. $(B_\mathcal{P}(X), \|\bullet\|_\mathcal{P})$ is unitary normed algebra;

3. for each $\mathcal{P}' \in \mathcal{C}(X)$ with the property $\mathcal{P} \approx \mathcal{P}'$, we have

 $$B_\mathcal{P}(X) = B_\mathcal{P}'(X) \text{ and } \|\bullet\|_\mathcal{P} = \|\bullet\|_{\mathcal{P}'}.$$

Proposition 37 ([4]) Let X be a locally convex space and $\mathcal{P} \in \mathcal{C}(X)$. Then:

1. the topology given by the norm $\|\bullet\|_\mathcal{P}$ on the algebra $B_\mathcal{P}(X)$ is finer than the topology of uniform convergence;

2. if $(T_n)_n$ is a Cauchy sequences in $(B_\mathcal{P}(X), \|\bullet\|_\mathcal{P})$ which converges to an operator T, we have $T \in B_\mathcal{P}(X)$;

3. the algebra $(B_\mathcal{P}(X), \|\bullet\|_\mathcal{P})$ is complete if X is sequentially complete.

Proposition 38 ([10]) Let (X, \mathcal{P}) be a locally convex space. An operator $T \in Q_\mathcal{P}(X)$ is bounded in the algebra $Q_\mathcal{P}(X)$ if and only if there exists some calibration $\mathcal{P}' \in \mathcal{C}(X)$ such that $\mathcal{P} \approx \mathcal{P}'$ and $T \in B_\mathcal{P'}(X)$.

Definition 39 Let (X, \mathcal{P}) be a locally convex space and $T \in B_\mathcal{P}(X)$. We said that $\alpha \in \mathbb{C}$ is in resolvent set $\rho(B_\mathcal{P}, T)$ if there exists $(\alpha I - T)^{-1} \in B_\mathcal{P}(X)$. The spectral set $\sigma(B_\mathcal{P}, T)$ will be the complementary set of $\rho(B_\mathcal{P}, T)$.

Remark 40 It is obvious that we have the following inclusions

$$\sigma(T) \subset \sigma(Q_\mathcal{P}, T) \subset \sigma(B_\mathcal{P}, T).$$

Proposition 41 ([4]) If (X, \mathcal{P}) is a locally convex space and $T \in B_\mathcal{P}(X)$, then the set $\sigma(B_\mathcal{P}, T)$ is compact.

Lemma 42 If \mathcal{P} is a calibration on a locally convex space X, then

$$\|T\|_\mathcal{P} = \sup\{\hat{p}(T) \mid p \in \mathcal{P}, \forall T \in B_\mathcal{P}(X)\}.$$

Proof. Let be $T \in B_\mathcal{P}(X)$ and $\alpha = \sup\{\hat{p}(T) \mid p \in \mathcal{P}\}$. From the definition of the norm $\|\bullet\|_\mathcal{P}$ and of the operatorial seminorm \hat{p}, $p \in \mathcal{P}$, results that $\|T\|_\mathcal{P} \leq \alpha$. If $\|T\|_\mathcal{P} < \alpha$, then there exists some seminorm $p \in \mathcal{P}$ such that

$$\|T\|_\mathcal{P} \leq \hat{p}(T) \leq \alpha.$$

which implies that there exists some element $x_0 \in X$ for which we have

$$p(Tx_0) > \|T\|_\mathcal{P} p(x_0).$$

Since, this relation contradicts the definition of the norm $\|T\|_\mathcal{P}$, results that $\alpha \leq \|T\|_\mathcal{P}$.

\[\blacksquare\]
Corollary 43 If X is a locally convex algebra $\mathcal{P} \in \mathcal{C}(X)$, then for each $T \in B_P(X)$ the inequality $r_P(T) \leq \|T\|_P$, holds for each calibration $\mathcal{P}' \in \mathcal{C}(X)$ such that $\mathcal{P} \approx \mathcal{P}'$ and $T \in B_P(X)$.

Proof. If $\mathcal{P}' \in \mathcal{C}(X)$ such that $\mathcal{P} \approx \mathcal{P}'$ and $T \in B_P(X)$, then from remark 13 results that the equality $r_P(T) = r_{\mathcal{P}'}(T)$ hold. From corollary 18(1) and the previous lemma results that

$$r_P(T) = r_{\mathcal{P}'}(T) = \sup \left\{ \lim_{n \to \infty} (\hat{p}(T^n))^{1/n} \mid p \in \mathcal{P}' \right\} \leq \sup \{ \hat{p}(T) \mid p \in \mathcal{P}' \} = \|T\|_{\mathcal{P}'}.$$

Corollary 44 If (X, \mathcal{P}) is a locally convex space, then for each operator $T \in (Q_{\mathcal{P}}(X))_0$ the spectral set $\sigma(Q_{\mathcal{P}}, T)$ is bounded.

Proof. If $T \in (Q_{\mathcal{P}}(X))_0$ then by proposition 38 there exists a calibration $\mathcal{P}' \in \mathcal{C}(X)$ such that $\mathcal{P} \approx \mathcal{P}'$ and $T \in B_{\mathcal{P}'}(X)$. Therefore, the proposition 24 the previous corollary implies that

$$|\sigma(Q_{\mathcal{P}}, T)| \leq r_P(T) \leq \|T\|_{\mathcal{P}'}$$

so, the set $\sigma(Q_{\mathcal{P}}, T)$ is bounded.

Definition 45 Let (X, \mathcal{P}) be a locally convex space and $T \in B_P(X)$. We denote by $r(B_P, T)$ the spectral radius of the operator T with respect to the algebra $B_P(X)$ given by the relation

$$r(B_P, T) = \limsup_{n \to \infty} \|T^n\|^{1/n}_P.$$

Proposition 46 Let (X, \mathcal{P}) be a sequentially complete convex space and $T \in B_P(X)$. If $\lambda > \|T\|_P$, then the Neumann series $\sum_{n=0}^{\infty} \frac{T^n}{\lambda^{n+1}}$ converges to $R(\lambda, T)(\text{in } B_P(X))$. Moreover, $|\sigma(B_P, T)| \leq \|T\|_P$.

Proof. Since $\|T\|_P \leq 1$ and $B_P(X)$ is a Banach space, the Neumann series $\sum_{n=0}^{\infty} \frac{T^n}{\lambda^{n+1}}$ is convergent in $B_P(X)$. Let denote $S = \sum_{n=0}^{\infty} \frac{T^n}{\lambda^{n+1}}$. From the equalities

$$(\lambda I - T)S = \sum_{n=0}^{\infty} \frac{T^n}{\lambda^n} - \sum_{n=0}^{\infty} \frac{T^{n+1}}{\lambda^{n+1}} = I$$

$$S(\lambda I - T) = \sum_{n=0}^{\infty} \frac{T^n}{\lambda^n} - \sum_{n=0}^{\infty} \frac{T^{n+1}}{\lambda^{n+1}} = I$$

results that $S = R(\lambda, T)$. The inequality $|\sigma(B_P, T)| \leq \|T\|_P$ results from the
proof of corollary 44 and proposition 36(3).

Corollary 47 Let X be a sequentially complete locally convex space and $P \in \mathcal{C}(X)$. Then, for each $T \in B_P(X)$ we have

$$|\sigma(B_P, T)| \leq \liminf_{n \to \infty} \|T^n\|^{1/n}_{B_P} \leq r(B_P, T)$$

Proof. From equalities

$$(\lambda^n I - T^n) = (\lambda I - T)(\lambda^{n-1} I + \lambda^{n-2} T + \ldots + \lambda T^{n-2} + T^{n-1}) =$$

$$= (\lambda^{n-1} I + \lambda^{n-2} T + \ldots + \lambda T^{n-2} + T^{n-1})(\lambda I - T),$$

results that if the operator $\lambda^n I - T^n \in B_P(X)$ is invertible in $B_P(X)$, then the operator $(\lambda I - T)$ has the same property.

Therefore, if $\lambda \in \sigma(B_P, T)$, then $\lambda^n \in \sigma(B_P, T^n)$. From the previous proposition we have

$$|\lambda|^n = |\lambda^n| \leq \|T^n\|_{B_P}, (\forall) n \geq 1,$$

which is equivalently with the inequality

$$|\lambda| \leq \|T^n\|^{1/n}_{B_P}, (\forall) n \geq 1,$$

Since $\lambda \in \sigma(B_P, T)$ is arbitrarily chosen results that

$$|\sigma(B_P, T)| \leq \|T^n\|^{1/n}_{B_P}, (\forall) n \geq 1,$$

so

$$|\sigma(B_P, T)| \leq \liminf_{n \to \infty} \|T^n\|^{1/n}_{B_P} \leq \limsup_{n \to \infty} \|T^n\|^{1/n}_{B_P} = r(B_P, T).$$

References

