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NORMAL ANTI-INVARIANT SUBMANIFOLDS OF
PARAQUATERNIONIC KÄHLER MANIFOLDS

Novac-Claudiu Chiriac

Abstract. We introduce normal anti-invariant submanifolds of paraquaternionic Kähler man-
ifolds and study the geometric structures induced on them. We obtain necessary and su¢ cient

conditions for the integrability of the distributions de�ned on a normal anti-invariant submanifold.

Also, we present characterizations of local (global) anti-invariant products.

1 Introduction

The paraquaternionic Kähler manifolds have been introduced and studied by Garcia-
Rio, Matsushita and Vazquez-Lorenzo [4]. We think of a paraquaternionic Kähler
manifold as a semi-Riemannian manifold endowed with two local almost product
structures and a local almost complex structure satisfying some compatibility con-
ditions. Several classes of submanifolds of a Kähler manifolds have been investigated
according to the behavior of the geometric structures of the ambient manifold on
a submanifold (see Bejancu [1]). The same idea we follow for the case when the
ambient manifold is a paraquaternionic Kähler manifold.

In the present paper we de�ne the normal anti-invariant submanifolds of a
paraquaternionic Kähler manifold and obtain some basic results on their di¤erential
geometry. First we show that the tangent bundle of a normal antiinvariant subman-
ifold N of a paraquaternionic Kähler manifold (M;V; g) admits the decomposition
(8) whereD and D? are complementary orthogonal distributions on N . Then we
obtain necessary and su¢ cient conditions for the integrability of D and D? (see
Theorems 4 and 7). We also prove that the foliations determined by D and D? are
totally geodesic (see Theorem 8). Finally, we study the existence of local (global)
normal anti-invariant products (Corollaries 9 and 12, Theorem 11). As examples,
we show that totally geodesic normal anti-invariant submanifolds are local normal
anti-invariant products (Corollary 10).
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2 Preliminaries

Throughout the paper all manifolds are smooth and paracompact. IfM is a smooth
manifold then we denote by F (M) the algebra of smooth functions on M and by
�(TM) the F (M)-module of smooth sections of the tangent bundleTM of M . Sim-
ilar notations will be used for any other manifold or vector bundle. If not stated
otherwise, we use indices: a; b; c; ::: 2 f1; 2; 3g and i; j; k; ::: 2 f1; :::; ng.

LetM be a manifold endowed with a paraquaternionic structure V, that is, V is
a rank-3 subbundle of End(TM) which has a local basis fJ1; J2; J3g on a coordinate
neighborhood U �M satisfying (see Garcia-Rio-Matsushita-Vazquez-Lorenzo [4])

(a) J2a = �aI, a 2 f1; 2; 3g , (1)

(b) J1J2 = �J2J1 = J3,
(c) �1 = �2 = ��3 = 1.

A semi-Riemannian metric g onM is said to be adapted to the paraquaternionic
structure V if it satis�es

g(X;Y ) + �ag(JaX; JaY ) = 0;8a 2 f1; 2; 3g; (2)

for any X;Y 2 �(TM) , and any local basis J1, J2, J3 of V. From relation1 and
relation2 it follows that

g(JaX;Y ) + g(X; JaY ) = 0;8X;Y 2 �(TM); a 2 f1; 2; 3g: (3)

Now, suppose f ~J1; ~J2; ~J3g is a local basis of V on ~U �M and U \ eU 6= ;. Then
we have

~Ja =
3X
b=1

AabJb, (4)

where the 3� 3 matrix [Aab] is an element of the pseudo-orthogonal group SO(2; 1).
From 1 and 2 it follows that M is of dimension 4m and g is of neutral signature
(2m; 2m).

Next, we denote by ~r the Levi-Civita connection on (M; g). Then the triple
(M;V; g)is called a paraquaternionic Kähler manifold if V is a parallel bundle with
respect to ~r. This means that for any local basis fJ1; J2; J3g of V on U �M there
exist the 1-forms p, q, r on U such that (cf. Garcia-Rio-Matsushita-Vazquez-Lorenzo
[4])

(a) ( ~rXJ1)Y = q(X)J2Y � r(X)J3Y; (5)

(b) ( ~rXJ2)Y = �q(X)J1Y � p(X)J3Y ,
(c) ( ~rXJ3)Y = �r(X)J1Y � p(X)J2Y ; 8X;Y 2 �(TU):
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Submanifolds of Paraquaternionic Kähler Manifolds 101

Now, we consider a non-degenerate submanifold N of (M;V; g) of codimension
n. Then we say that N is a normal anti-invariant submanifold of (M;V; g) if the
normal bundle TN? of N is anti-invariant with respect to any local basis fJ1; J2; J3g
of V on U , that is, we have

Ja(TxN
?) � TxN; 8a 2 f1; 2; 3g; x 2 U� = U \N: (6)

A large class of normal anti-invariant submanifolds is given in the next proposi-
tion.

Proposition 1. Any non-degenerate real hypersurface N of (M; g) is a normal
anti-invariant submanifold of (M; V; g).

Proof. From 3 we deduce that g(JaU;U) = 0, for any U 2 �(TN?) and a 2 f1; 2; 3g.
Hence JaU 2 �(TN) , which proves 6.

Next, we examine the structures that are induced on the tangent bundle of a
normal anti-invariant submanifold N of (M; V; g) . First, we put Dax = Ja

�
TxN

?�
and note thatD1x,D2x andD3x are mutually orthogonal nondegenerate n-dimensional
vector subspaces of TxN , for any x 2 N . Indeed, by using 3, (1b) and 6 we obtain

g (J1X; J2Y ) = �g (X; J1J2Y ) = �g (X; J3Y ) = 0;8X;Y 2 �(TN?),

which shows that D1x and D2x are orthogonal. By a similar reason we conclude that
Dax and Dbx are orthogonal for any a 6= b. Then we can state the following.

Proposition 2. Let N be a normal anti-invariant submanifold of (M; V; g) of
codimension n. Then we have the assertions:

(i) The subspaces Dax of TxN satisfy the following

Ja(Dax) = TxN? and Ja(Dbx) = Dcx,

for any x 2 U�, a 2 f1; 2; 3g, and any permutation (a; b; c) of (1; 2; 3).

(ii) The mapping
D? : x 2 N ! D?x = D1x �D2x �D3x;

de�nes a non-degenerate distribution of rank 3n on N .

(iii) The complementary orthogonal distribution D to D? in TN is invariant with
respect to the paraquaternionic structureV, that is, we have

Ja(Dx) = Dx;8x 2 U�; a 2 f1; 2; 3g :
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Proof. First, by using 1 we obtain the assertion (i). Next, by 4 and taking into
account that Ja, a 2 f1; 2; 3g, are automorphisms of � (TM) and Dax, a 2 f1; 2; 3g
are mutually orthogonal subspaces we get the assertion (ii). Now, we note that the
tangent bundle of M along N has the following orthogonal decompositions:

TM = TN � TN? = D �D? � TN?: (7)

Then we take Y 2 �
�
D?
�
and by the assertion (i) we deduce that

JaY 2 �
�
D? � TN?

�
;8a 2 f1; 2; 3g :

On the other hand, if Y 2 �
�
TN?�, by 6 and the assertion (ii) we infer that

JaY 2 �
�
D?
�
;8a 2 f1; 2; 3g

Thus by using 3 and the second equality in 7 we obtain

g (JaX;Y ) = �g (X; JaY ) = 0;8a 2 f1; 2; 3g ;

for any X 2 � (D) and Y 2 �
�
D? � TN?�. Hence JaX 2 � (D) for any a 2 f1; 2; 3g

andX 2 � (D) , that is, D is invariant with respect to the paraquaternionic structure
V. This completes the proof of the proposition.

By assertion (iii) of the above proposition we are entitled to callD the paraquater-
nionic distribution on N . Also, we note that the paraquaternionic distribution in
non-trivial, that is D 6=f0g, if and only if dimN > 3n.

3 Integrability of the Distributions on a Normal Anti-
Invariant Submanifold

Let N be a normal anti-invariant submanifold of codimension n of a 4m-dimensional
paraquaternionic Kähler manifold (M; V; g). Then according to the de�nitions of
D and D? we have the orthogonal decomposition

TN = D �D? (8)

Then we consider a local �eld of orthonormal frames fU1; :::; Ung of the normal
bundle TN? , and de�ne

Eai = JaUi; a 2 f1; 2; 3g ; i 2 f1; :::; ng : (9)

Taking into account 6 and the assertion (ii) of Proposition 2 we deduce that fEaig ; a 2
f1; 2; 3g ; i 2 f1; :::; ng, is a local �eld of orthonormal frames of D?. Thus we can
put

X = PX +

3X
b=1

nX
i=1

!bi(X)Ebi; 8X 2 �
�
TN?

�
; (10)
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Submanifolds of Paraquaternionic Kähler Manifolds 103

where P is the projection morphism of TN on D with respect to the decomposition
8, and !bi are 1-forms given by

!bi(X) = "big (X;Ebi) ; "bi = g (Ebi; Ebi) : (11)

Now, we apply Ja, a 2 f1; 2; 3g to 10 and by using 9 and 1 we obtain

(a) J1X = J1PX +
nX
i=1

f!2i(X)E3i + !3i(X)E2i + !1i(X)Uig ;

(b) J1X = J1PX �
nX
i=1

f!1i(X)E3i + !3i(X)E1i � !2i(X)Uig ; (12)

(c) J1X = J1PX �
nX
i=1

f!1i(X)E2i � !2i(X)E1i + !3i(X)Uig :

Next, we consider the Gauss equation (cf. Chen [3])

~rXY = rxY + h (X;Y ) ; 8X;Y 2 � (TN) , (13)

where ~r and r are the Levi-Civita connections on (M; g) and (N; g) respectively,
and h is the second fundamental form of N . Also, we have the Weingarten equation

~rXU = �AUX +r?XU; 8X 2 � (TN) ; U 2 �
�
TN?

�
, (14)

where AU is the shape operator of N with respect to the normal section U , and r?
is the normal connection on TN?. Moreover, h and AU are related by

g(h(X;Y ); U) = g(AUX;Y ); 8X;Y 2 � (TN) ; U 2 �
�
TN?

�
: (15)

Proposition 3. Let N be a normal anti-invariant submanifold of a paraquaternionic
Kähler manifold (M; V; g). Then we have

h (X; JaY ) = �a

nX
i=1

f!ai(rXY )Uig ; (16)

for any X;Y 2 � (D) and a 2 f1; 2; 3g .

Proof. By direct calculations using (13) and (12a) in (5a) we deduce that

rxJ1Y + h (X; J1Y ) = J1P (rxY )

+

nX
i=1

f!2i(rXY )E3i + !3i(rXY )E2i + !1i(rXY )Uig

+J1h (X;Y ) + q(X)J2Y � r(X)J3Y:
Then taking the normal parts in the above equality we obtain (16) for a = 1. In a
similar way follows (16) for a = 2 and a = 3.
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Now, we say that N is D-geodesic if its second fundamental form h satis�es (see
Bejancu [1])

h(X;Y ) = 0; 8X;Y 2 � (D) , (17)

Then by using (13) and (17) we deduce that N is D-geodesic if and only if any
geodesic of (N; g) passing through each x 2 N and tangent to Dx is a geodesic of
(M; g).

Theorem 4. Let N be a normal anti-invariant submanifold of a paraquaternionic
Kähler manifold(M; V; g). Then the following assertions are equivalent:

(i) The second fundamental form h of N satis�es

h (X; JaY ) = h (Y; JaX) ; 8X;Y 2 � (D) ; a 2 f1; 2; 3g (18)

(ii) N is D-geodesic.

(iii) The paraquaternionic distribution D is integrable.

Proof. (i) =) (ii). By using (18) and (1b) we deduce that

h (J3X;Y ) = h (X; J3Y ) = h (X; J1 (J2Y )) = h (J1X; J2Y )

= h (J2 (J1X) ; Y ) = �h (J3X;Y ) ; 8X;Y 2 � (D)
which implies h (J3X;Y ) = 0. Taking into account that J3 is an automorphism of
� (D) we obtain (17). Hence N is D-geodesic.

(ii) =) (iii). By using (17) and (11) in (16) we infer that

g (rxY;Eai) = 0; 8X;Y 2 � (D) ; a 2 f1; 2; 3g ; i 2 f1; :::; ng : (19)

Hence rxY 2 � (D), which implies

[X;Y ] = rxY �rYX 2 � (D)

Thus D is integrable.
(iii) =) (i). By using (16) and (11), and taking into account that r is a torsion-

free connection, we obtain

h (X; JaY )� h (Y; JaX) =
nX
i=1

fg ([X;Y ]; Eai)Uig = 0;

for any X;Y 2 � (D) and a 2 f1; 2; 3g . This completes the proof of the theorem.

Proposition 5. The shape operators Ai with respect to the normal sections Ui,
i 2 f1; :::; ng, satisfy the identities:

AiEaj = AjEai; 8a 2 f1; 2; 3g ; i; j 2 f1; :::; ng : (20)
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Proof. We take X 2 � (TN) and Y = E1i in (5a) and by using (13), (14), (9) and
(1) we obtain

�AiX +r?XUi = J1(rXE1i) + J1h(X;E1i)� q(X)E3i + r(X)E2i:

Then by using (15), (2), (9) and the above equality we deduce that

g (AjE1i; X) = g (h (X;E1i) ; Uj)

= �g (J1h (X;E1i) ; E1j)
= g (AiX + J1(rXE1i); E1j)
= g (AiX;E1j)� g (rXE1i; Uj)
= g (X;AiE1j) ; 8X 2 � (TN) ,

which proves (20) for a = 1. In a similar way we obtain (20) for a = 2 and a = 3.

Next, we de�ne on � (D) the 1-forms


aij (X) = g (rEaiEaj ; X) ; (21)

for any X 2 � (D) , a 2 f1; 2; 3g and i; j 2 f1; :::; ng . Then we state the following.
Proposition 6. Let N be a normal anti-invariant submanifold of a paraquaternionic
Kähler manifold (M; V; g). Then we have:


aij = 
aji; 8a 2 f1; 2; 3g ; i; j 2 f1; :::; ng ; (22)

and

(a) g (rE1iE2j ; X) = 
1ij (J3X) ; g
�
rE2jE1i; X

�
= �
2ij (J3X) ;

(b) g (rE2iE3j ; X) = �
2ij (J1X) ; g
�
rE3jE2i; X

�
= �
3ij (J1X) ;

(c) g (rE3iE1j ; X) = 
3ij (J2X) ; g
�
rE1jE3i; X

�
= 
1ij (J2X) ; (23)

for any X 2 � (D) .
Proof. By using (21), (9), (13), (5), (3) and (14) we obtain


aij (X) = g
�
~rEaiJaUj ; X

�
= g

�
Ja( ~rEaiUj); X

�
=

= �g
�
~rEaiUj ; JaX

�
= g (AjEai; JaX) ; (24)

for any a 2 f1; 2; 3g and i; j 2 f1; :::; ng. Then (22) follows by using (24) and (20).
Next, by using (13), (2), (5), (1), (9) and (21) we deduce that

g (rE1iE2j ; X) = g
�
~rE1iE2j ; X

�
= g

�
J3

�
~rE1iE2j

�
; J3X

�
= g

�
~rE1iE1j ; J3X

�
= 
1ij (J3X) ; 8X 2 � (D)

which proves the �rst equality in (23a). In a similar way are obtained all the other
equalities in (23).
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Theorem 7. Let N be a normal anti-invariant submanifold of a paraquaternionic
Kähler manifold (M; V; g). Then the following assertions are equivalent:

(i) The distribution D? is integrable.

(ii) 
aij = 0, 8a 2 f1; 2; 3g ; i; j 2 f1; :::; ng.

(iii) For any X 2 � (D) and Y 2 �
�
D?
�
we have

h(X;Y ) = 0: (25)

Proof. Taking into account that r is torsion-free, and by using (21) and (22) we
deduce that

g([Eai; Eaj ]; X) = 0; 8X 2 � (D) ; a 2 f1; 2; 3g ; i; j 2 f1; :::; ng : (26)

On the other hand, by using (23) we obtain

(a) g([E1i; E2j ]; X) = 
1ij (J3X) + 
2ij (J3X) ;

(b) g([E2i; E3j ]; X) = 
3ij (J1X)� 
2ij (J1X) ;
(c) g([E3i; E1j ]; X) = 
3ij (J2X)� 
1ij (J2X) ; (27)

for any X 2 � (D). Then from (26) and (27) we infer that (ii) implies (i), since
fEaig, a 2 f1; 2; 3g, i; j 2 f1; :::; ng is an orthonormal basis of �

�
D?
�
. Now, we

suppose that D? is integrable. Then taking into account that Ja, a 2 f1; 2; 3g, are
automorphisms of � (D) from (27) we deduce that 
aij satisfy the system


1ij +
2ij = 0; 
3ij � 
2ij = 0; 
3ij � 
1ij = 0:

Hence 
aij = 0, for all a 2 f1; 2; 3g , and i; j 2 f1; :::; ng. Thus we proved that (i)
implies (ii). Finally, by using (24) and (15) we obtain


aij (X) = g (h (JaX;Eai) ; Uj) ;

for any a 2 f1; 2; 3g , and i; j 2 f1; :::; ng, which implies the equivalence of (ii) and
(iii). This completes the proof of the theorem.

4 Foliations on a Normal Anti-Invariant Submanifold

Let F be a foliation on (N; g). Then we say that F is totally geodesic if each leaf of
F is totally geodesic immersed in (N; g). Denote by F(D) and F(D?) the foliations
determined by D and D? respectively, provided these distributions are integrable.

Theorem 8. Let N be a normal anti-invariant submanifold of a paraquaternionic
Kähler manifold (M; V; g). Then we have the assertions:
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(i) If D is integrable, then the foliation F(D) is totally geodesic.

(ii) If D? is integrable, then the foliation F(D?) is totally geodesic.

Proof. Suppose D is integrable. Then from (19) we deduce that for any . Thus F(D)
is a totally geodesic foliation. Next, we suppose that is integrable. Then by using
the assertion (ii) of Theorem 7 in (21) and (23) we obtain

g (rUV;X) = 0; 8U; V 2 �
�
D?
�
; X 2 � (D) ;

since fEaig, a 2 f1; 2; 3g, i 2 f1; :::; ng, is an orthonormal basis in �
�
D?
�
. Thus

rUV 2 �
�
D?
�
for any U; V 2 �

�
D?
�
, which means that F(D?) is a totally geodesic

foliation.

Next, we say that N is a local (global) normal anti-invariant product if both
distributions D and D? are integrable and N is locally (globally) a semi-Riemannian
product (S; h)� (S?; k), where S and S? are leaves of D and D? respectively.

Corollary 9. Let N be a normal anti-invariant submanifold of a paraquaternionic
Kähler manifold (M; V; g) such that D and D? are integrable. Then N is a local
normal anti-invariant product. If in particular, N is complete and simply connected,
then it is a global normal anti-invariant product.

Proof. From Theorem 8 we see that both foliations F(D) and F(D?) are totally
geodesic. Hence N is a local normal anti-invariant product. If moreover, N is
complete and simply connected then we apply the decomposition theorem for semi-
Riemannian manifolds (cf. Wu [8]) and obtain the last assertion of the corollary.

Corollary 10. A totally geodesic normal anti-invariant submanifold N of a paraquater-
nionic Kähler manifold (M; V; g) is a local normal semi-invariant product. If
moreover, N is complete and simply connected, then it is a global anti-invariant
product.

Proof. Taking into account that the second fundamental form h of N vanishes iden-
tically on N , from Theorems 4 and 7 we deduce that both distributions D and
D? are integrable. Then we apply Corollary 9 and obtain the assertions in this
corollary.

Foliations with bundle-like metric on Riemannian manifolds have been intro-
duced by Reinhart[5]. The main properties of these foliations can be found in Rein-
hart [6], Tondeur [7] and Bejancu-Farran [2]. Here we need the following characteri-
zation of such foliations. Let F be a non-degenerate foliation on a semi-Riemannian
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manifold (N; g). Denote by D and D? the tangent distribution and normal distri-
bution to F respectively. Then g is a bundle-like metric for F if and only if (cf.
Bejancu-Farran[2], p. 112)

g (rUV +rV U;X) = 0; 8U; V 2 �
�
D?
�
; X 2 � (D) : (28)

In general, the distribution D? is not necessarily integrable when (28) is satis�ed.
However, for normal anti-invariant submanifolds we prove the following.

Theorem 11. Let N be a normal anti-invariant submanifold of a paraquaternionic
Kähler manifold (M; V; g) such that the paraquaternionic distribution D is in-
tegrable. Then N is a local normal anti-invariant product if and only if g is a
bundle-like metric for the foliation F(D).

Proof. First, suppose that N is a local normal anti-invariant product. Then D?
is integrable and its leaves are totally geodesic immersed in (N; g). Thus rUV 2
�
�
D?
�
for any U; V 2 �

�
D?
�
and therefore (28) is satis�ed. Thus g is bundle-like

for F(D). Conversely, suppose that g is bundle-like for F(D). Then, by using (28),
(21) and (22) we deduce that 
aij = 0, for any a 2 f1; 2; 3g ; i; j 2 f1; :::; ng. Thus
by Theorem 7, D? is integrable. Moreover, by assertion (ii) of Theorem 8 we infer
that the foliation F(D?) is totally geodesic. As F(D) is also totally geodesic (by (i)
of Theorem 8), we conclude that N is a local normal anti-invariant product.

Finally, taking into account Theorem 11 and Corollary 9 we obtain the following.

Corollary 12. Let N be a complete and simply connected normal antiinvariant sub-
manifold of a paraquaternionic Kähler manifold (M; V; g) such that the paraquater-
nionic distribution D is integrable. Then N is a global normal anti-invariant product
if and only if g is a bundle-like metric for the foliation F(D).
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