Surveys in Mathematics and its Applications


ISSN 1842-6298
Volume 2 (2007), 29 - 41

PERTURBATION ANALYSIS FOR THE COMPLEX MATRIX EQUATION Q ± AHXpA - X = 0

Juliana K. Boneva, Mihail M. Konstantinov and Petko H. Petkov

Abstract. We study the sensitivity of the solution of a general type matrix equation Q ± AHXpA - X = 0. Local and nonlocal perturbation bounds are derived. The results are obtained using the technique of Lyapunov majorants and fixed point principles. A numerical example is given.

2000 Mathematics Subject Classification: 15A24.
Keywords: perturbation bounds, sensitivity analysis, nonlinear matrix equations.

Full text

References

  1. W. Anderson, T. Morley, E. Trapp, Positive solutions to X = A - BX -1B*, Linear Alg. Appl. 134 (1990), 53-62, MR1060009(91c:47031). Zbl 0702.15009.

  2. V. Angelova, Perturbation analysis for the matrix equation X = A1 + σA2HX -2A2, σ = ±1, Annual of the Univ. Arch., Civil Eng. and Geodesy, 41(2000-2001), fasc. II, 33-41, publ. 2005.

  3. R. Bhatia, D. Singh, K. Sinha, Differentiation of operator functions and perturbation bounds, Commun. Math. Phys. 191(1998), 603-611, MR1608543(99c:47017). Zbl 0918.47017.

  4. D. Bini, N. Higham, B. Meini, Algorithms for the matrix pth root, Numer. Algorithms 39(2005), 349-378. MR2134331(2005m:65094).

  5. J. Boneva, M. Konstantinov, P. Petkov, Frechét derivatives of rational power matrix functions, Proc. 35 Spring Conf. UBM, Borovetz, 2006, 169-174.

  6. J. Boneva, M. Konstantinov, V. Todorov, P. Petkov, Affine approximation of rational power matrix functions, Proc. 36 Int. Conf. ``Appl. of Math. in Economics and Technique, St. Konstantin & Elena resort, Varna, 2007, 149-153.

  7. J. Engwerda, A. Ran, A. Rijkeboer, Necessary and sufficient conditions for the existence of a positive definite solution of the matrix equation X+A*X -1A = Q, Linear Alg. Appl. 186(1993), 255-275. MR1217209(94j:15012). Zbl 0778.15008.

  8. C. Guo, Convergence rate of an iterative method for a nonlinear matrix equation, SIAM J. Matrix Anal. Appl. 23(2001), 295-302. MR1856611(2002g:15033). Zbl 0997.65069.

  9. V. Hasanov, I. Ivanov, Solutions and perturbation theory of a special matrix equation I: Properties of solutions, Proc. 32 Spring Conf. UBM, Sunny Beach, 2003, 244-248.

  10. V. Hasanov, I. Ivanov, Solutions and perturbation theory of a special matrix equation II: Perurbation theory, Proc. 32 Spring Conf. UBM, Sunny Beach, 2003, 258-264.

  11. V. Hasanov, S. El-Sayed, On the positive definite solutions of nonlinear matrix equation X+AHX- δA = Q, Linear Alg. Appl. 412(2-3)(2006), 154-160. MR2182958(2006g:15027). Zbl 1083.15018.

  12. I. Ivanov, N. Georgieva, On a special positive definite solution of a class of nonlinear matrix equations, Proc. 32 Spring Conf. UBM, Sunny Beach, 2003, 253-257.

  13. I. Ivanov, S. El-Sayed, Properties of positive definite solutions of the equation X+A*X -2A = I, Linear Alg. Appl.297(1998), 303-316. MR1637909(99c:15019). Zbl 0935.65041.

  14. M. Konstantinov, J. Boneva, V. Todorov, P. Petkov, Theory of differentiation of matrix power functions, Proc. 32 Int. Conf., Sozopol, 2006, 90-107.

  15. M. Konstantinov, D. Gu, V. Mehrmann, P. Petkov, Perturbation Theory for Matrix Equations, North Holland, Amsterdam, 2003, ISBN 0-444-51315-9. MR1991778(2004g:15019). Zbl 1025.15017.

  16. Z. Peng, S. El-Sayed, On positive definite solution of a nonlinear matrix equation, Numer. Linear Alg. Appl. 14(2)(2007), 99-113. MR2292298.

  17. Z. Peng, S. El-Sayed, X. Zhang, Iterative methods for the extremal positive definite solution of the matrix equation X+AHX - αA = Q, J.Comput. Appl. Math. 200(2)(2007), 520-527. MR2289231.

  18. A. Ran, M. Reurings, On the nonlinear matrix equation X+AHf(X)A = Q: solutions and perturbation theory, Linear Alg. Appl. 346(2002), 15-26. MR1897819(2003a:15014). Zbl 1086.15013.

  19. S. El-Sayed, A. Ran, On an iteration method for solving a class of nonlinear matrix equations SIAM J. Matrix Anal. Appl. 23(2001), 632-645. Zbl 1002.65061.

Juliana K. Boneva Mihail M. Konstantinov
University of Architecture, Civil Engineering and Geodesy, University of Architecture, Civil Engineering and Geodesy,
1 Hr. Smirnenski 1 Blvd., 1046 Sofia, 1 Hr. Smirnenski 1 Blvd., 1046 Sofia,
Bulgaria. Bulgaria.
e-mail: boneva_fte@uacg.bg e-mail: mmk_fte@uacg.bg


Petko H. Petkov
Technical University of Sofia,
1756 Sofia,
Bulgaria.
e-mail: php@tu-sofia.bg

http://www.utgjiu.ro/math/sma