Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 12 (2017), 7 -- 21

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

A NONCOMMUTATIVE CONVEXITY IN C*-BIMODULES

M. Kian and M. Dehghani

Abstract. Let A and B be C*-algebras. We consider a noncommutative convexity in Hilbert A-B-bimodules, called A-B-convexity, as a generalization of C*-convexity in C*-algebras. We show that if X is a Hilbert A-B-bimodule, then Mn(X) is a Hilbert Mn(A)-Mn(B)-bimodule and apply it to show that the closed unit ball of every Hilbert A-B-bimodule is A-B-convex. Some properties of this kind of convexity and various examples have been given.

2010 Mathematics Subject Classification: Primary 46L89; Secondary 52A01, 46L08.
Keywords: Matrix convex set; C*-algebra; Hilbert C*-bimodule; noncommutative convexity.

Full text

References

  1. R. Bhatia, Positive Definite Matrices, Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ, 2007. MR2284176(2007k:15005). Zbl 1125.15300.

  2. M. Dehghani, S. M. S. Modarres and M. S. Moslehian, Positive block matrices on Hilbert and Krein C*-modules, Surv. Math. Appl. 8 (2013), 23-34 MR3171618.

  3. E.G. Effros and S. Winkler, Matrix Convexity: Operator Analogues of the Bipolar and Hahn-Banach Theorems, J. Funct. Anal. 144 (1997), no. 1, 117-152. MR1430718. Zbl 0897.46046.

  4. D.R. Farenick and B.P. Morenz, C*-extreme points of some compact C*-convex sets, Proc. Amer. Math. Soc. 118 (1993), no. 3, 765-775. MR1139466. Zbl 0782.15017.

  5. T. Furuta, H. Micic, J. Peℑc and Y. Seo, Mond-Peℑc Method in Operator Inequalities. Inequalities for bounded selfadjoint operators on a Hilbert space, Monographs in Inequalities, 1. ELEMENT, Zagreb, 2005. MR3026316. Zbl 1135.47012.

  6. A. Hopenwasser, R.L. Moore, V.I. Paulsen, C*-extereme points, Trans. Amer. Math. Soc. 266 (1981), no. 1, 291-307. MR0613797. Zbl 0471.47024.

  7. T. Kajiwara and Y. Watatani, Jones index theory by Hilbert C*-bimodules and K-theory, Trans. Amer. Math. Soc. 352 (2000), no. 8, 3429-3472. MR1624182. Zbl 0954.46034.

  8. M. Kian, C*-convexity of norm unit balls, J. Math. Anal. Appl. 445 (2017), no. 2, 1417-1427. MR3545251. Zbl 06626211.

  9. M. Kian, Epigraph of operator functions, Quaest. Math. 39 (2016), no. 5, 587-594. MR3544211.

  10. R.I. Loebl and V.I. Paulsen, Some remarks on C*-convexity, Linear Algebra Appl. 35 (1981), 63-78. MR0599846. Zbl 0448.46038

  11. P.B. Morenz, The structure of C*-convex sets, Canad. J. Math. 46 (1994), no. 5, 1007-1026. MR1295129. Zbl 0805.47003

  12. B. Magajna, C*-convex sets and completely bounded bimodule homomorphisms, Proc. Roy. Soc. Edinburgh Sect. A 130 (2000), no. 2, 375-387. MR1750836. Zbl 0970.46041

  13. B. Magajna, On C*-extereme points, Proc. Amer. Math. Soc. 129 (2001), no. 3, 771-780. MR1802000. Zbl 0967.47042

  14. B. Magajna, C*-convex sets and completely positive maps, Integral Equations Operator Theory 85 (2016), no. 1, 37-62. MR3503178. Zbl 06601124

  15. V.M. Manuilov and E. V. Troitsky, Hilbert C*-Modules, Translations of Mathematical Monographs, 226, American Mathematical Society, Providence RI, 2005. MR2125398. Zbl 1074.46001.

  16. C. Webster and S. Winkler, The Krein-Milman Theorem in operator convexity, Trans. Amer. Math. Soc. 351 (1999), no. 1, 307-322. MR1615970. Zbl 0908.47042.



Mohsen Kian
Department of Mathematics,
Faculty of Basic Sciences,
University of Bojnord,
P. O. Box 1339, Bojnord 94531, Iran.
and
School of Mathematics,
Institute for Research in Fundamental Sciences (IPM),
P.O. Box: 19395-5746, Tehran, Iran.
email: kian@ub.ac.ir  and  kian@member.ams.org


Mahdi Dehghani (Corresponding author)
Department of Pure Mathematics,
Faculty of Mathematical Sciences,
University of Kashan,
P. O. Box 87317-53153, Kashan, Iran.
email: m.dehghani@kashanu.ac.ir

http://www.utgjiu.ro/math/sma