SOME STABILITY RESULTS FOR COUPLED FIXED POINT ITERATIVE PROCESS IN A COMPLETE METRIC SPACE

M. O. Olatinwo and K. R. Tijani

Abstract

In the paper [M. O. Olatinwo, Stability of coupled fixed point iterations and the continuous dependence of coupled fixed points, Communications on Applied Nonlinear Analysis 19 (2012), 71-83], the author has extended the notion of stability of fixed point iterative procedures contained in the paper [A. M. Harder and T. L. Hicks, Stability results for fixed point iteration procedures, Math. Japonica 33 (1988), 693-706], as well as the continuous dependence of fixed points to the coupled fixed point settings by employing the contractive conditions and the coupled fixed point iteration in the article [F. Sabetghadam, H. P. Masiha and A. H. Sanatpour, Some coupled fixed point theorems in cone metric spaces, Fixed Point Theory and Applications, Article ID 125426 (2009)]. In the present paper, we obtain some results on stability of coupled fixed point iterative procedures by using rational type contractive conditions.

1 Introduction

Let (X, d) be a complete metric space and $T: X \rightarrow X$. Ostrowski [20] gave a pioneering result on the stability of iterative procedure in metric space for Picard iteration.
Harder and Hicks [11] proved some stability theorems for the Picard, Mann and Kirk's iterative processes by employing some contractive-type conditions.
We now state the first formal definition of stability for general iterative scheme due to Harder and Hicks [11]:

Definition 1 (Harder and Hicks [11]). Let (X, d) be a complete metric space and $T: X \rightarrow X$. Let $F(T)=\{p \in X \mid T p=p\}$ denote the set of fixed points of T. Let $\left\{x_{n}\right\}_{n=0}^{\infty} \subset X$ be the sequence generated by an iterative procedure involving the

[^0]operator T, that is,
\[

$$
\begin{equation*}
x_{n+1}=f\left(T, x_{n}\right), n=0,1,2, \cdots, \tag{1.1}
\end{equation*}
$$

\]

where $x_{0} \in X$ is the initial approximation and f is some function. Suppose $\left\{x_{n}\right\}_{n=0}^{\infty}$ converges to a fixed point p of T. Let $\left\{y_{n}\right\}_{n=0}^{\infty} \subset X$ and set $\epsilon_{n}=d\left(y_{n+1}, f\left(T, y_{n}\right)\right)$, $(n=0,1,2, \cdots)$. Then, the iterative procedure (1.1) is said to be T-stable, or, stable with respect to T if and only if $\lim _{n \rightarrow \infty} \epsilon_{n}=0$ implies $\lim _{n \rightarrow \infty} y_{n}=p$.

The following contractive condition was employed by Harder and Hicks [11]: For $T: X \rightarrow X$, there exists $\alpha \in[0,1)$ such that, $\forall x, y \in X$, we have

$$
\begin{equation*}
d(T x, T y) \leq \alpha d(x, y) \tag{1.2}
\end{equation*}
$$

In addition, the following contractive definition was considered by Harder and Hicks [11]: For $T: X \rightarrow X$, there exist some real numbers $0 \leq \alpha<1,0 \leq \beta<\frac{1}{2}, 0 \leq \gamma<$ $\frac{1}{2}$, such that, $\forall x, y \in X$, then

$$
\left.\begin{array}{l}
d(T x, T y) \leq \alpha d(x, y) \tag{1.3}\\
d(T x, T y) \leq \beta[d(x, T x)+d(y, T y)] \\
d(T x, T y) \leq \gamma[d(x, T y)+d(y, T x)]
\end{array}\right\}
$$

The contractive conditions in (1.2) and (1.3) were both used by Harder and Hicks [11] to establish stability results for various iterative processes.

Rhoades [21] extended the results of Harder and Hicks [11] by employing the following contractive condition: For $T: X \rightarrow X$, there exists $c \in[0,1)$ such that, $\forall x, y \in X$, we have

$$
\begin{equation*}
d(T x, T y) \leq c \max \{d(x, y), d(x, T y), d(y, T x)\} . \tag{1.4}
\end{equation*}
$$

Also, Rhoades [22] obtained generalizations and extensions of the results of [21] by using the following contractive condition: For $T: X \rightarrow X$, there exists $c \in[0,1)$ such that, $\forall x, y \in X$,

$$
\begin{equation*}
d(T x, T y) \leq c \max \left\{d(x, y), \frac{d(x, T x)+d(y, T y)}{2}, d(x, T y), d(y, T x)\right\} . \tag{1.5}
\end{equation*}
$$

Furthermore, Osilike [18] generalized and extended some of the results of Rhoades [21, 22] for a larger class of contractive-type operators. In [18], he employed the following contractive condition: For $T: X \rightarrow X$, there exist $\lambda \in[0,1), L \geq 0$, such that,

$$
\begin{equation*}
d(T x, T y) \leq L d(x, T x)+\lambda d(x, y), \forall x, y \in X \tag{1.6}
\end{equation*}
$$

Harder and Hicks [11], Rhoades [21, 22] and Osilike [18] used the method of the summability theory of infinite matrices to prove various stability results for certain
contractive definitions. However, Osilike and Udomene [19] introduced a shorter method to prove stability results for various iterative processes using the condition (1.6).

However, using the same method of proof as in [19] and the same contractive conditions as in Harder and Hicks [11], Berinde [4] also established some stability results for the same iterative processes for which the authors of [11] had proved their results. Imoru and Olatinwo [12] extended some of the results of Harder and Hicks [11], Rhoades [21, 22], Berinde [4], Osilike [18], Osilike and Udomene [19] and others to a much more larger class of operators than those satisfying the contractive condition (1.6). In [12], the following contractive condition was used: For $T: X \rightarrow$ X, there exist $\lambda \in[0,1)$ and a monotone increasing function $\varphi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$with $\varphi(0)=0$, such that

$$
\begin{equation*}
d(T x, T y) \leq \varphi(d(x, T x))+\lambda d(x, y), \forall x, y \in X \tag{1.7}
\end{equation*}
$$

We give the following definition which will be considered in the sequel.
Definition 2 (Berinde [5, 6]). Consider a function $\psi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$satisfying
(i) ψ is monotone increasing;
(ii) $\psi^{n}(t) \rightarrow 0$, as $n \rightarrow \infty$;
(iii) $\sum_{n=0}^{\infty} \psi^{n}(t)$ converges for all $t>0$.

1. A function ψ satisfying (i) and (ii) above is called a comparison function.
2. A function ψ satisfying (i) and (iii) above is called a (c)-comparison function.

Remark 3. In [5, 6], we have the following:
(i) Any (c)-comparison function is a comparison function.
(ii) Every comparison function satisfies $\psi(0)=0$.

2 Preliminaries

In this section, we shall consider some basic definitions and results on coupled fixed point theorems:

Definition 4. [9, 10, 14, 23] Let (X, d) be a metric space. An element $(x, y) \in X \times X$ is said to be a coupled fixed point of the mapping $T: X \times X \rightarrow X$ if $T(x, y)=x$ and $T(y, x)=y$.

Interested readers can also see the articles of the author $[15,16,17]$ on the concept of coupled fixed points.

Let (X, d) be a metric space and $T: X \times X \rightarrow X$ a mapping. For $\left(x_{0}, y_{0}\right) \in X \times X$, the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}_{n=0}^{\infty} \subset X \times X$ defined iteratively by

$$
\begin{equation*}
x_{n+1}=T\left(x_{n}, y_{n}\right), \quad y_{n+1}=T\left(y_{n}, x_{n}\right), \quad n=0,1,2, \cdots, \tag{2.1}
\end{equation*}
$$

is said to be a coupled fixed point iterative procedure, according to [17].
Furthermore, to the best of our knowledge, the pioneering and formal definition of stability of coupled fixed point iteration is the following due to Olatinwo [17]:

Definition 5. [Olatinwo [17]] Let (X, d) be a complete metric space. Suppose that

$$
C_{f i x}(T)=\left\{\left(x^{*}, y^{*}\right) \in X \times X \mid T\left(x^{*}, y^{*}\right)=x^{*}, T\left(y^{*}, x^{*}\right)=y^{*}\right\}
$$

is the set of coupled fixed points of T. Let $\left\{\left(x_{n}, y_{n}\right)\right\}_{n=0}^{\infty} \subset X \times X$ be the sequence generated by an iterative procedure involving T defined by

$$
\begin{equation*}
x_{n+1}=f\left(T,\left(x_{n}, y_{n}\right)\right), \quad y_{n+1}=f\left(T,\left(y_{n}, x_{n}\right)\right), n=0,1,2, \cdots \tag{2.2}
\end{equation*}
$$

where $\left(x_{0}, y_{0}\right) \in X \times X$ is the initial approximation and f is some function. Suppose $\left\{\left(x_{n}, y_{n}\right)\right\}_{n=0}^{\infty} \subset X \times X$ converges to a coupled fixed point $\left(x^{*}, y^{*}\right)$ of T. Let $\left\{\left(u_{n}, v_{n}\right)\right\}_{n=0}^{\infty}$ be a sequence in $X \times X$ and set

$$
\epsilon_{n}=d\left(u_{n+1}, f\left(T,\left(u_{n}, v_{n}\right)\right), \delta_{n}=d\left(v_{n+1}, f\left(T,\left(v_{n}, u_{n}\right)\right),(n=0,1,2, \cdots)\right.\right.
$$

Then, the coupled fixed point iterative procedure (M) is said to be T-stable, or, stable with respect to T if and only if $\lim _{n \rightarrow \infty} \epsilon_{n}=\lim _{n \rightarrow \infty} \delta_{n}=0$ implies $\lim _{n \rightarrow \infty} u_{n}=x^{*}$ and $\lim _{n \rightarrow \infty} v_{n}=y^{*}$.

Remark 6. If in Eqn. $(M), f\left(T,\left(x_{n}, y_{n}\right)\right)=T\left(x_{n}, y_{n}\right)$ and
$f\left(T,\left(y_{n}, x_{n}\right)\right)=T\left(y_{n}, x_{n}\right)$. then we obtain the coupled fixed point iterative procedure of [23].

Bhaskar and Lakshmikantham [7] proved a coupled fixed point theorem in a metric space endowed with partial order by employing a weak contractive type condition. For excellent study on coupled fixed point theorems, we implore our interested readers to consult Abbas and Beg [1], Beg et al. [3], Chang and Ma [8], Ciric and Lakshmikantham [10], Lakshmikantham and Ciric [14] and Sabetghadam et al. [23], in addition to [7] earlier mentioned.

In Olatinwo [17], stability results have been proved for the following three contractive conditions for which the existence of a unique coupled fixed point has been established by Sabetghadam et al. [23]. Let (X, d) be a metric space. Then, we have the following:
(i) A mapping $T: X \times X \rightarrow X$ is said to be a (k, μ)-contraction if and only if there exist two constants $k \geq 0, \mu \geq 0, k+\mu<1$, such that, $\forall x, y, u, v \in X$, we have

$$
\begin{equation*}
d(T(x, y), T(u, v)) \leq k d(x, u)+\mu d(y, v) \tag{2.3}
\end{equation*}
$$

(ii) For a mapping $T: X \times X \rightarrow X$, there exist constants $k \geq 0, \mu \in\left[0, \frac{1}{2}\right), k+\mu<1$, such that

$$
\begin{equation*}
d(T(x, y), T(u, v)) \leq k d(T(x, y), x)+\mu d(T(u, v), u), \forall x, y, u, v \in X \tag{2.4}
\end{equation*}
$$

(iii) For a mapping $T: X \times X \rightarrow X$, there exist constants $k \geq 0, \mu \geq 0, k+\mu<1$, such that

$$
\begin{equation*}
d(T(x, y), T(u, v)) \leq k d(T(x, y), u)+\mu d(T(u, v), x), \forall x, y, u, v \in X \tag{2.5}
\end{equation*}
$$

We present the following lemmas which will be used in the sequel.
Lemma 7 (Berinde $[4,5,6]$). If γ is a real number such that $0 \leq \gamma<1$, and $\left\{b_{n}\right\}_{n=0}^{\infty}$ is a sequence of positive numbers such that $\lim _{n \rightarrow \infty} b_{n}=0$, then for any sequence of positive numbers $\left\{a_{n}\right\}_{n=0}^{\infty}$ satisfying

$$
a_{n+1} \leq \gamma a_{n}+b_{n},(n=0,1,2, \cdots)
$$

we have $\lim _{n \rightarrow \infty} a_{n}=0$.
Lemma 8 (Imoru et al. [13]). If $\psi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a subadditive comparison function and $\left\{\epsilon_{n}\right\}_{n=0}^{\infty}$ is a sequence of positive numbers such that $\lim _{n \rightarrow \infty} \epsilon_{n}=0$, then for any sequence of positive numbers $\left\{u_{n}\right\}_{n=0}^{\infty}$ satisfying

$$
u_{n+1} \leq \sum_{k=0}^{m} \delta_{k} \psi^{k}\left(u_{n}\right)+\epsilon_{n}, n=0,1,2, \cdots,
$$

where $\delta_{k} \in[0,1), k=0,1, \cdots, m, 0 \leq \sum_{k=0}^{m} \delta_{k} \leq 1$, we have $\lim _{n \rightarrow \infty} u_{n}=0$.
We now establish some stability results for certain contractive conditions.

3 Main Results

Theorem 9. Let (X, d) be a complete metric space and $T: X \times X \rightarrow X$ a mapping satisfying the rational type contractive condition

$$
\begin{equation*}
d(T(x, y), T(u, v)) \leq \frac{\alpha d(x, T(x, y)) \cdot d(u, T(u, v))}{d(x, u)}+\beta d(x, u), \tag{3.1}
\end{equation*}
$$

$\forall x, y, u, v, x \neq u, \alpha \geq 0, \beta \geq 0, \alpha+\beta<1$. Suppose T has a coupled fixed point $\left(x^{*}, y^{*}\right)$. For $\left(x_{0}, y_{0}\right) \in X \times X$, let $\left\{\left(x_{n}, y_{n}\right)\right\}_{n=0}^{\infty} \subset X \times X$ be the coupled fixed point iterative procedure defined by $(S 1)$. Then, the coupled fixed point iterative procedure is T-stable.
Proof. Let $\left\{x_{n}\right\}_{n=0}^{\infty},\left\{y_{n}\right\}_{n=0}^{\infty} \subset X, \epsilon_{n}=d\left(u_{n+1}, T\left(u_{n}, v_{n}\right)\right)$ and

$$
\delta_{n}=d\left(v_{n+1}, T\left(v_{n}, u_{n}\right)\right)
$$

Assume also that $\lim _{n \rightarrow \infty} \epsilon_{n}=\lim _{n \rightarrow \infty} \delta_{n}=\lim _{n \rightarrow \infty}\left(\epsilon_{n}+\delta_{n}\right)=0$.
Then, we shall establish that $\lim _{n \rightarrow \infty} u_{n}=x^{*}$ and $\lim _{n \rightarrow \infty} v_{n}=y^{*}$. Therefore, by using (3.1), we obtain

$$
\begin{align*}
d\left(u_{n+1}, x^{*}\right) & \leq d\left(u_{n+1}, T\left(u_{n}, v_{n}\right)\right)+d\left(T\left(u_{n}, v_{n}\right), x^{*}\right) \\
& =d\left(T\left(u_{n}, v_{n}\right), T\left(x^{*}, y^{*}\right)\right)+\epsilon_{n} \\
& \leq \frac{\alpha \cdot d\left(u_{n}, T\left(u_{n}, v_{n}\right)\right) \cdot d\left(x^{*}, T\left(x^{*}, y^{*}\right)\right)}{d\left(u_{n}, x^{*}\right)}+\beta d\left(u_{n}, x^{*}\right)+\epsilon_{n} \tag{3.2}\\
& =\frac{\alpha \cdot d\left(u_{n}, T\left(u_{n}, v_{n}\right)\right) \cdot d\left(x^{*}, x^{*}\right)}{d\left(u_{n}, x^{*}\right)}+\beta d\left(u_{n}, x^{*}\right)+\epsilon_{n} \\
& =\beta d\left(u_{n}, x^{*}\right)+\epsilon_{n} .
\end{align*}
$$

Similarly,

$$
\begin{align*}
d\left(v_{n+1}, y^{*}\right) & \leq d\left(v_{n+1}, T\left(v_{n}, u_{n}\right)\right)+d\left(T\left(v_{n}, u_{n}\right), y^{*}\right) \\
& =d\left(T\left(v_{n}, u_{n}\right), T\left(y^{*}, x^{*}\right)\right)+\delta_{n} \\
& \leq \frac{\alpha \cdot d\left(v_{n}, T\left(v_{n}, u_{n}\right)\right) \cdot d\left(y^{*}, T\left(y^{*}, x^{*}\right)\right)}{d\left(v_{n}, y^{*}\right)}+\beta d\left(v_{n}, y^{*}\right)+\delta_{n} \tag{3.3}\\
& =\frac{\alpha \cdot d\left(v_{n}, T\left(v_{n}, u_{n}\right)\right) \cdot d\left(y^{*}, y^{*}\right)}{d\left(v_{n}, y^{*}\right)}+\beta d\left(v_{n}, y^{*}\right)+\delta_{n} \\
& =\beta d\left(v_{n}, y^{*}\right)+\delta_{n} .
\end{align*}
$$

Adding (3.2) and (3.3) gives

$$
\begin{equation*}
d\left(u_{n+1}, x^{*}\right)+d\left(v_{n+1}, y^{*}\right) \leq \beta\left[d\left(u_{n}, x^{*}\right)+d\left(v_{n}, y^{*}\right)\right]+\epsilon_{n}+\delta_{n} \tag{3.4}
\end{equation*}
$$

In (3.4), letting $a_{n}=d\left(u_{n}, x^{*}\right)+d\left(v_{n}, y^{*}\right), b_{n}=\epsilon_{n}+\delta_{n}$, we have $\lim _{n \rightarrow \infty} b_{n}=$ $\lim _{n \rightarrow \infty}\left(\epsilon_{n}+\delta_{n}\right)=0,0 \leq \gamma=\beta<1$, then the conditions of Lemma 7 are satisfied. Therefore, using Lemma 7 in (3.4) yields $\lim _{n \rightarrow \infty}\left[d\left(u_{n}, x^{*}\right)+d\left(v_{n}, y^{*}\right)\right]=0$. That is, $\lim _{n \rightarrow \infty} d\left(u_{n}, x^{*}\right)=0$ and $\lim _{n \rightarrow \infty} d\left(v_{n}, y^{*}\right)=0$ (or, $\lim _{n \rightarrow \infty} u_{n}=x^{*}$ and $\left.\lim _{n \rightarrow \infty} v_{n}=y^{*}\right)$. Conversely, let $\lim _{n \rightarrow \infty} d\left(u_{n}, x^{*}\right)=\lim _{n \rightarrow \infty} d\left(v_{n}, y^{*}\right)=0$ and $\lim _{n \rightarrow \infty}\left(d\left(u_{n}, x^{*}\right)+d\left(v_{n}, y^{*}\right)\right)=$ 0 . Then, using (3.1) again, we have

$$
\begin{aligned}
\epsilon_{n}+\delta_{n} & =d\left(u_{n+1}, T\left(u_{n}, v_{n}\right)\right)+d\left(v_{n+1}, T\left(v_{n}, u_{n}\right)\right) \\
& \leq d\left(u_{n+1}, x^{*}\right)+d\left(x^{*}, T\left(u_{n}, v_{n}\right)\right) \\
& +d\left(v_{n+1}, y^{*}\right)+d\left(y^{*}, T\left(v_{n}, u_{n}\right)\right) \\
& =d\left(u_{n+1}, x^{*}\right)+d\left(v_{n+1}, y^{*}\right) \\
& +d\left(T\left(x^{*}, y^{*}\right), T\left(u_{n}, v_{n}\right)\right)+d\left(T\left(y^{*}, x^{*}\right), T\left(v_{n}, u_{n}\right)\right) \\
& \leq d\left(u_{n+1}, x^{*}\right)+d\left(v_{n+1}, y^{*}\right)+\frac{\alpha \cdot d\left(x^{*}, T\left(x^{*}, y^{*}\right)\right) \cdot d\left(u_{n}, T\left(u_{n}, v_{n}\right)\right)}{d\left(x^{*}, u_{n}\right)} \\
& +\beta d\left(x^{*}, u_{n}\right)+\frac{\alpha \cdot d\left(y^{*}, T\left(y^{*}, x^{*}\right)\right) \cdot d\left(v_{n}, T\left(v_{n}, u_{n}\right)\right)}{d\left(y^{*}, v_{n}\right)}+\beta d\left(y^{*}, v_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =d\left(u_{n+1}, x^{*}\right)+d\left(v_{n+1}, y^{*}\right)+\frac{\alpha . d\left(x^{*}, x^{*}\right) \cdot d\left(u_{n}, T\left(u_{n}, v_{n}\right)\right)}{d\left(x^{*}, u_{n}\right)} \\
& +\beta d\left(x^{*}, u_{n}\right)+\frac{\left.\alpha \cdot d\left(y^{*}, y^{*}\right)\right) d\left(v_{n}, T\left(v_{n}, u_{n}\right)\right)}{d\left(y^{*}, v_{n}\right)}+\beta d\left(y^{*}, v_{n}\right) \\
& =d\left(u_{n+1}, x^{*}\right)+d\left(v_{n+1}, y^{*}\right)+\beta d\left(x^{*}, u_{n}\right)+\beta d\left(y^{*}, v_{n}\right) \rightarrow 0 \text { as } n \rightarrow \infty,
\end{aligned}
$$

from which it follows that $\lim _{n \rightarrow \infty}\left(\epsilon_{n}+\delta_{n}\right)=0$, that is, $\lim _{n \rightarrow \infty} \epsilon_{n}=\lim _{n \rightarrow \infty} \delta_{n}=0$.
Theorem 10. Let (X, d) be a complete metric space and $T: X \times X \rightarrow X$ a mapping satisfying the rational type contractive condition

$$
\begin{equation*}
d(T(x, y), T(u, v)) \leq \alpha \frac{d(x, T(u, v) \cdot d(x, T(x, y)) \cdot d(u, T(u, v))}{d(x, u)+d(u, T(u, v))}+\beta d(x, u) \tag{3.5}
\end{equation*}
$$

$\forall x, y, u, v, \alpha \geq 0, \beta \in[0,1)$ and $d(x, u)+d(u, T(u, v)>0$. Suppose T has a coupled fixed point $\left(x^{*}, y^{*}\right)$. For $\left(x_{0}, y_{0}\right) \in X \times X$, let $\left\{\left(x_{n}, y_{n}\right)\right\}_{n=0}^{\infty} \subset X \times X$ be the coupled fixed point iterative procedure defined by (S1). Then, the coupled fixed point iterative procedure is T-stable.

Proof. Let $\left\{x_{n}\right\}_{n=0}^{\infty},\left\{y_{n}\right\}_{n=0}^{\infty} \subset X, \epsilon_{n}=d\left(u_{n+1}, T\left(u_{n}, v_{n}\right)\right)$ and

$$
\delta_{n}=d\left(v_{n+1}, T\left(v_{n}, u_{n}\right)\right) .
$$

Assume also that $\lim _{n \rightarrow \infty} \epsilon_{n}=\lim _{n \rightarrow \infty} \delta_{n}=\lim _{n \rightarrow \infty}\left(\epsilon_{n}+\delta_{n}\right)=0$. Then, we shall establish that $\lim _{n \rightarrow \infty} u_{n}=x^{*}$ and $\lim _{n \rightarrow \infty} v_{n}=y^{*}$.

Therefore, by using (3.5), we obtain

$$
\begin{align*}
& d\left(u_{n+1}, x^{*}\right) \leq d\left(u_{n+1}, T\left(u_{n}, v_{n}\right)\right)+d\left(T\left(u_{n}, v_{n}\right), x^{*}\right) \\
& =d\left(T\left(u_{n}, v_{n}\right), T\left(x^{*}, y^{*}\right)\right)+\epsilon_{n} \text {, } \\
& \leq \frac{\alpha . d\left(u_{n}, T\left(x^{*}, y^{*}\right)\right) . d\left(u_{n}, T\left(u_{n}, v_{n}\right)\right) \cdot d\left(x^{*}, T\left(x^{*}, y^{*}\right)\right)}{d\left(u_{n}, x^{*}\right)+d\left(x^{*}, T\left(x^{*}, y^{*}\right)\right)}+\beta d\left(u_{n}, x^{*}\right)+\epsilon_{n} \tag{3.6}\\
& =\frac{\alpha \cdot d\left(u_{n}, x^{*}\right) \cdot d\left(u_{n}, T\left(u_{n}, v_{n}\right)\right) \cdot d\left(x^{*}, x^{*}\right)}{d\left(u_{n}, x^{*}\right)+d\left(x^{*}, x^{*}\right)}+\beta d\left(u_{n}, x^{*}\right)+\epsilon_{n} \\
& =\beta d\left(u_{n}, x^{*}\right)+\epsilon_{n}
\end{align*}
$$

Similarly,

$$
\begin{align*}
& d\left(v_{n+1}, y^{*}\right) \leq d\left(v_{n+1}, T\left(v_{n}, u_{n}\right)\right)+d\left(T\left(v_{n}, u_{n}\right), y^{*}\right), \\
& =d\left(T\left(v_{n}, u_{n}\right), T\left(y^{*}, x^{*}\right)\right)+\delta_{n} \text {, } \\
& \leq \frac{\alpha . d\left(v_{n}, T\left(y^{*}, x^{*}\right)\right) \cdot d\left(v_{n}, T\left(v_{n}, u_{n}\right)\right) \cdot d\left(y^{*}, T\left(y^{*}, x^{*}\right)\right.}{d\left(v_{n}, y^{*}\right)+d\left(y^{*}, T\left(y^{*}, x^{*}\right)\right)}+\beta d\left(v_{n}, y^{*}\right)+\delta_{n} \tag{3.7}\\
& =\frac{\alpha . d\left(v_{n}, y^{*}\right) d\left(v_{n}, T\left(v_{n}, u_{n}\right)\right) . d\left(y^{*}, y^{*}\right)}{d\left(v_{n}, y^{*}\right)+d\left(y^{*}, y^{*}\right)}+\beta d\left(v_{n}, y^{*}\right)+\delta_{n} \\
& =\beta d\left(v_{n}, y^{*}\right)+\delta_{n}
\end{align*}
$$

Adding (3.6) and (3.7) gives

$$
\begin{align*}
d\left(u_{n+1}, x^{*}\right)+d\left(v_{n+1}, y^{*}\right) & \leq \beta d\left(u_{n}, x^{*}\right)+\beta d\left(v_{n}, y^{*}\right)+\epsilon_{n}+\delta_{n} \\
& =\beta\left[d\left(u_{n}, x^{*}\right)+d\left(v_{n}, y^{*}\right)\right]+\epsilon_{n}+\delta_{n} . \tag{3.8}
\end{align*}
$$

In (3.8), letting $a_{n}=d\left(u_{n}, x^{*}\right)+d\left(v_{n}, y^{*}\right), \quad b_{n}=\epsilon_{n}+\delta_{n}$, we have $\lim _{n \rightarrow \infty} b_{n}=$ $\lim _{n \rightarrow \infty}\left(\epsilon_{n}+\delta_{n}\right)=0,0 \leq \gamma=\beta<1$, then the hypotheses of Lemma 7 are satisfied. Therefore, using Lemma 7 in (3.8) yields $\lim _{n \rightarrow \infty}\left[d\left(u_{n}, x^{*}\right)+d\left(v_{n}, y^{*}\right)\right]=0$. That is, $\lim _{n \rightarrow \infty} d\left(u_{n}, x^{*}\right)=0$ and $\lim _{n \rightarrow \infty} d\left(v_{n}, y^{*}\right)=0\left(\right.$ or, $\lim _{n \rightarrow \infty} u_{n}=x^{*}$ and $\lim _{n \rightarrow \infty} v_{n}=y^{*}$). Conversely, let $\lim _{n \rightarrow \infty} d\left(u_{n}, x^{*}\right)=\lim _{n \rightarrow \infty} d\left(v_{n}, y^{*}\right)=\lim _{n \rightarrow \infty}\left(d\left(u_{n}, x^{*}\right)+d\left(v_{n}, y^{*}\right)\right)=0$. Then by using (3.5) again,

$$
\begin{aligned}
\epsilon_{n}+\delta_{n}= & d\left(u_{n+1}, T\left(u_{n}, v_{n}\right)\right)+d\left(v_{n+1}, T\left(v_{n}, u_{n}\right)\right) \\
\leq & d\left(u_{n+1}, x^{*}\right)+d\left(x^{*}, T\left(u_{n}, v_{n}\right)\right)+d\left(v_{n+1}, y^{*}\right)+d\left(y^{*}, T\left(v_{n}, u_{n}\right)\right) \\
= & d\left(u_{n+1}, x^{*}\right)+d\left(v_{n+1}, y^{*}\right)+d\left(T\left(x^{*}, y^{*}\right), T\left(u_{n}, v_{n}\right)\right)+d\left(T\left(y^{*}, x^{*}\right), T\left(v_{n}, u_{n}\right)\right) \\
\leq & d\left(u_{n+1}, x^{*}\right)+d\left(v_{n+1}, y^{*}\right)+\frac{\alpha \cdot d\left(x^{*}, T\left(u_{n}, v_{n}\right)\right) \cdot d\left(x^{*}, T\left(x^{*}, y^{*}\right)\right) \cdot d\left(u_{n}, T\left(u_{n}, v_{n}\right)\right)}{\left.d x^{*}, u_{n}\right)+d\left(u_{n}, T\left(u_{n}, v_{n}\right)\right.} \\
& +\beta d\left(x^{*}, u_{n}\right)+\frac{\alpha \cdot d\left(y^{*}, T\left(v_{n}, u_{n}\right) \cdot d\left(y^{*}, T\left(y^{*}, x^{*}\right)\right) \cdot d\left(v_{n}, T\left(v_{n}, u_{n}\right)\right)\right.}{d\left(y^{*}, v_{n}+d\left(v_{n}, T\left(v_{n}, u_{n}\right)\right.\right.}+\beta d\left(y^{*}, v_{n}\right) \\
= & d\left(u_{n+1}, x^{*}\right)+d\left(v_{n+1}, y^{*}\right)+\frac{\alpha \cdot d\left(x^{*}, T\left(u_{n}, v_{n}\right) d\left(x^{*}, x^{*}\right) \cdot d\left(u_{n}, T\left(u_{n}, v_{n}\right)\right)\right.}{d\left(u_{n}\right)} \\
& +\beta d\left(x^{*}, u_{n}\right)+\frac{\alpha \cdot d\left(y^{*}, T\left(v_{n}, u_{n}\right)\right) \cdot d\left(y^{*}, y^{*}\right) \cdot d\left(v_{n}, T\left(v_{n}, u_{n}\right)\right)}{d\left(u_{n}, v_{n}\right)}+\beta d\left(y^{*}, v_{n}\right) \\
= & d\left(u_{n+1}, x^{*}\right)+d\left(v_{n+1}, y^{*}\right)+\beta d\left(x^{*}, u_{n}\right)+\beta d\left(y^{*}, v_{n}\right) \rightarrow 0 \text { as } n \rightarrow \infty,
\end{aligned}
$$

from which we have that $\lim _{n \rightarrow \infty}\left(\epsilon_{n}+\delta_{n}\right)=0$, that is, $\lim _{n \rightarrow \infty} \epsilon_{n}=\lim _{n \rightarrow \infty} \delta_{n}=0$.
Theorem 11. Let (X, d) be a complete metric space and $T: X \times X \rightarrow X$ a mapping satisfying the rational type contractive condition

$$
\begin{equation*}
d(T(x, y), T(u, v)) \leq \frac{\alpha d\left(x, T(x, y)[d(x, T(u, v))]^{q} \cdot d(u, T(u, v))\right.}{\gamma d(u, T(u, v))+d(x, u)}+\psi(d(x, u)) \tag{3.9}
\end{equation*}
$$

where $\alpha \geq 0, \gamma \geq 0, q \geq 0, \gamma d(u, T(u, v))+d(x, u)>0 \forall x, y, u, v \in X$. Let $\psi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be a subadditive comparison function. Suppose T has a coupled fixed point $\left(x^{*}, y^{*}\right)$. For $\left(x_{0}, y_{0}\right) \in X \times X$, let $\left\{\left(x_{n}, y_{n}\right)\right\}_{n=0}^{\infty} \subset X \times X$ be the coupled fixed point iterative procedure defined by $(S 1)$. Then, the coupled fixed point iterative procedure is T-stable.

Proof. Let $\left\{x_{n}\right\}_{n=0}^{\infty},\left\{y_{n}\right\}_{n=0}^{\infty} \subset X, \epsilon_{n}=d\left(u_{n+1}, T\left(u_{n}, v_{n}\right)\right)$ and

$$
\delta_{n}=d\left(v_{n+1}, T\left(v_{n}, u_{n}\right)\right) .
$$

Suppose that $\lim _{n \rightarrow \infty} \epsilon_{n}=\lim _{n \rightarrow \infty} \delta_{n}=\lim _{n \rightarrow \infty}\left(\epsilon_{n}+\delta_{n}\right)=0$. Then, we shall establish that $\lim _{n \rightarrow \infty} u_{n}=x^{*}$ and $\lim _{n \rightarrow \infty} v_{n}=y^{*}$. Therefore, by using (3.9), we obtain

$$
\begin{aligned}
d\left(u_{n+1}, x^{*}\right) & \leq d\left(u_{n+1}, T\left(u_{n}, v_{n}\right)\right)+d\left(T\left(u_{n}, v_{n}\right), x^{*}\right) \\
& =d\left(T\left(u_{n}, v_{n}\right), T\left(x^{*}, y^{*}\right)\right)+\epsilon_{n} \\
& \leq \frac{\alpha d\left(u_{n}, T\left(u_{n}, v_{n}\right) \cdot\left[d\left(u_{n}, T\left(x^{*}, y^{*}\right)\right)\right]^{q} \cdot d\left(x^{*}, T\left(x^{*}, y^{*}\right)\right)\right.}{\gamma d\left(x^{*}, T\left(x^{*}, y^{*}\right)\right)+d\left(u_{n}, x^{*}\right)}+\psi\left(d\left(u_{n}, x^{*}\right)\right)+\epsilon_{n} \\
& =\frac{\alpha d\left(u_{n}, T\left(u_{n}, v_{n}\right) \cdot\left[d\left(u_{n}, x^{*}\right)\right]{ }^{*} \cdot d\left(x^{*}, x^{*}\right)\right.}{\gamma d\left(x^{*}, x^{*}\right)+d\left(u_{n}, x^{*}\right)}+\psi\left(d\left(u_{n}, x^{*}\right)\right)+\epsilon_{n} \\
& =\psi\left(d\left(u_{n}, x^{*}\right)\right)+\epsilon_{n},
\end{aligned}
$$

that is,

$$
\begin{equation*}
d\left(u_{n+1}, x^{*}\right) \leq \psi\left(d\left(u_{n}, x^{*}\right)\right)+\epsilon_{n} . \tag{3.10}
\end{equation*}
$$

Using Lemma 8 in (3.10) gives $\lim _{n \rightarrow \infty} d\left(u_{n}, x^{*}\right)=0$. That is, $\lim _{n \rightarrow \infty} u_{n}=x^{*}$.
In a similar manner, we have

$$
\begin{aligned}
& d\left(v_{n+1}, y^{*}\right) \leq d\left(v_{n+1}, T\left(v_{n}, u_{n}\right)\right)+d\left(T\left(v_{n}, u_{n}\right), y^{*}\right), \\
& =d\left(T\left(v_{n}, u_{n}\right), T\left(y^{*}, x^{*}\right)\right)+\delta_{n} \text {, } \\
& \leq \frac{\alpha . d\left(v_{n}, T\left(v_{n}, u_{n}\right) .\left[d\left(v_{n}, T\left(y^{*}, x^{*}\right)\right)\right]^{q}, d\left(y^{*}, T\left(y^{*}, x^{*}\right)\right.\right.}{\gamma d\left(y^{*}, T\left(y^{*}, x^{*}\right)\right)+d\left(v_{n}, y^{*}\right)}+\psi\left(d\left(v_{n}, y^{*}\right)\right)+\delta_{n} \\
& =\frac{\alpha d\left(v_{n}, T\left(v_{n}, u_{n}\right) \cdot\left[d\left(v_{n}, y^{*}\right)\right)^{4}, d\left(y^{*}, y^{*}\right)\right.}{\gamma d\left(y^{*}, y^{*}\right)+d\left(v_{n}, y^{*}\right)}+\psi\left(d\left(v_{n}, y^{*}\right)\right)+\delta_{n} \\
& =\psi\left(d\left(v_{n}, y^{*}\right)\right)+\delta_{n} \text {, }
\end{aligned}
$$

which yields

$$
\begin{equation*}
d\left(v_{n+1}, x^{*}\right) \leq \psi\left(d\left(v_{n}, x^{*}\right)\right)+\epsilon_{n} . \tag{3.11}
\end{equation*}
$$

Again, using Lemma 8 in (3.11) gives $\lim _{n \rightarrow \infty} d\left(v_{n}, x^{*}\right)=0$. That is, $\lim _{n \rightarrow \infty} v_{n}=x^{*}$.
Conversely, let $\lim _{n \rightarrow \infty} d\left(u_{n}, x^{*}\right)=\lim _{n \rightarrow \infty} d\left(v_{n}, y^{*}\right)=\lim _{n \rightarrow \infty}\left(d\left(u_{n}, x^{*}\right)+d\left(v_{n}, y^{*}\right)\right)=0$. Then, by using (3.9) again, we obtain

$$
\begin{aligned}
\epsilon_{n}+\delta_{n}= & d\left(u_{n+1}, T\left(u_{n}, v_{n}\right)\right)+d\left(v_{n+1}, T\left(v_{n}, u_{n}\right)\right) \\
\leq & d\left(u_{n+1}, x^{*}\right)+d\left(x^{*}, T\left(u_{n}, v_{n}\right)\right)+d\left(v_{n+1}, y^{*}\right)+d\left(y^{*}, T\left(v_{n}, u_{n}\right)\right) \\
= & d\left(u_{n+1}, x^{*}\right)+d\left(v_{n+1}, y^{*}\right)+d\left(T\left(x^{*}, y^{*}\right), T\left(u_{n}, v_{n}\right)\right)+d\left(T\left(y^{*}, x^{*}\right), T\left(v_{n}, u_{n}\right)\right) \\
\leq & d\left(u_{n+1}, x^{*}\right)+d\left(v_{n}+1, y^{*}\right) \\
& +\frac{\alpha d\left(x^{*}, T\left(x^{*}, y^{*}\right)\right)\left[d\left(x^{*}, T\left(u_{n}, v_{n}\right)\right)\right]^{q} . d\left(u_{n}, T\left(u_{n}, v_{n}\right)\right)}{\gamma\left(u_{n}, T u_{n}, v_{n}\right)+d\left(x x_{n}^{*}, u_{n}\right)} \\
& +\psi\left(d\left(x^{*}, u_{n}\right)\right)+\frac{\alpha d\left(y^{*}, T\left(y^{*}, x^{*}\right) \cdot \mid\left(d y^{*}, T\left(v_{n}, u_{n}\right)\right)\right]^{q} . d\left(v_{n}, T\left(v_{n}, u_{n}\right)\right)}{\gamma d\left(v_{n}, T\left(v_{n}, u_{n}\right)\right)+d\left(y^{*}, v_{n}\right)} \\
& +\psi\left(d\left(y^{*}, v_{n}\right)\right) \\
= & d\left(u_{n+1}, x^{*}\right)+d\left(v_{n+1}, y^{*}\right)+\psi\left(d\left(x^{*}, u_{n}\right)\right)+\psi\left(d\left(y^{*}, v_{n}\right)\right) \rightarrow 0 \text { as } n \rightarrow \infty,
\end{aligned}
$$

from which we obtain $\lim _{n \rightarrow \infty}\left(\epsilon_{n}+\delta_{n}\right)=0$, that is, $\lim _{n \rightarrow \infty} \epsilon_{n}=\lim _{n \rightarrow \infty} \delta_{n}=0$.
Remark 12. Theorem 9 - Theorem 11 are generalizations of Theorem 2.1-Theorem 2.6 of Olatinwo [17]. Also, Theorem 9 - Theorem 11 are extensions of a multitude of stability results from fixed point consideration to the coupled fixed point setting.

Remark 13. (i) The contractive condition (3.9) reduces to that in (3.5) if $\gamma=q=$ 1 and $\psi(t)=\beta t, t \in \mathbb{R}^{+}$.
(ii) The contractive condition (3.9) reduces to that in (3.1) if $\gamma=q=0$ and

$$
\psi(t)=\beta t, t>0
$$

Example 14. The following example shows that $T: X \times X \rightarrow X$ satisfies both the contractive condition (3.5) of Theorem 10 and the contractive condition (3.9) of Theorem 11:

Let $X=[0,1] \subset \mathbb{R}$ and assume the usual metric (that is, $d(x, y)=|x-y|$, $x, y \in X)$. Define $T: X \times X \rightarrow X$ by

$$
T(x, y)= \begin{cases}\frac{1}{4}, & \text { if } x, y \in\left[0, \frac{1}{2}\right) \\ 1-\frac{1}{2} x-\frac{1}{2} y, & \text { if } x, y \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

and let a comparison function $\psi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be defined by $\psi(t)=\frac{3}{4} t, t \in \mathbb{R}^{+}$. Then, T satisfies the contractive condition (3.5) of Theorem 10 as well as the contractive condition (3.9) of Theorem 11.

Solution

Case 1: We now show that T satisfies the contractive condition (3.5) as follows:
Let $\alpha=1, x=\frac{1}{16}, y=\frac{1}{8}, u=\frac{1}{2}$ and $v=\frac{3}{4}$. Then, we obtain $T(x, y)=\frac{1}{4}, d(x, u)=\frac{7}{16}, d(x, T(x, y))=\frac{3}{16}$, $T(u, v)=1-\frac{1}{4}-\frac{3}{8}=\frac{3}{8}, d(x, T(u, v))=\frac{5}{16}, d(u, T(u, v))=\frac{1}{8}$, and $d(T(x, y), T(u, v))=\frac{1}{8}$.

But,

$$
\begin{aligned}
\frac{1}{8}=d(T(x, y), T(u, v)) & \left.\leq \alpha \frac{d(x, T(u, v) \cdot d(x, T(x, y)) \cdot d(u, T(u, v))}{d(x, u)+d(u, T(u, v))}+\beta d(x, u)\right) \\
& =\frac{\left(\frac{5}{16}\right) \cdot\left(\frac{3}{16}\right) \cdot\left(\frac{1}{8}\right)}{\frac{1}{16}}+\frac{7}{16} \beta \\
& =\left(\frac{5}{16}\right) \cdot\left(\frac{3}{16}\right) \cdot\left(\frac{1}{8}\right) \cdot\left(\frac{16}{9}\right)+\frac{7}{16} \beta,
\end{aligned}
$$

from which we have that $\beta \geq \frac{43}{168}$. That is, $\beta \in[0,1)$.
Thus, T satisfies the contractive condition (3.5) of Theorem 10.
Case 2: We now show that T satisfies the contractive condition (3.9) too as in the following: We assume that $\alpha=q=\gamma=1, x=\frac{1}{16}, y=\frac{1}{8}, u=\frac{1}{2}$ and $v=\frac{3}{4}$. Then, we obtain $T(x, y)=\frac{1}{4}, d(x, u)=\frac{7}{16}, d(x, T(x, y))=\frac{3}{16}$, $T(u, v)=1-\frac{1}{4}-\frac{3}{8}=\frac{3}{8}, d(x, T(u, v))=\frac{5}{16}, d(u, T(u, v))=\frac{1}{8}$, and $d(T(x, y), T(u, v))=\frac{1}{8}$. Also, $\psi(d(x, u))=\frac{21}{64}$. Now,

$$
\begin{aligned}
\alpha \frac{\left[d(x, T(u, v)]^{q} \cdot d(x, T(x, y)) \cdot d(u, T(u, v))\right.}{d(x, u)+\gamma d(u, T(u, v))}+\psi(d(x, u)) & =\frac{\left(\frac{5}{16}\right) \cdot\left(\frac{3}{16}\right) \cdot\left(\frac{1}{8}\right)}{\frac{9}{16}}+\psi(d(x, u)) \\
& =\left(\frac{5}{16}\right) \cdot\left(\frac{1}{24}\right)+\frac{21}{64} \\
& =\frac{13}{384}>\frac{48}{384}=\frac{1}{8}=d(T(x, y), T(u, v))
\end{aligned}
$$

from which it follows therefore, that T satisfies the contractive condition (3.9) of Theorem 11. Indeed, the coupled fixed point of T is $\left(\frac{1}{2}, \frac{1}{2}\right)$. That is, $T\left(\frac{1}{2}, \frac{1}{2}\right)=\frac{1}{2}$.

Alternatively, since ψ is a comparison function, we can prove that T satisfies the contractive condition (3.9) by showing that $0 \leq \psi(t)<1, t \in \mathbb{R}^{+}$, as demonstrated below: We have $\psi(d(x, u))=\frac{21}{64}$ and

$$
\begin{aligned}
\frac{1}{8}=d(T(x, y), T(u, v)) & \leq \alpha \frac{\left[d(x, T(u, v)]^{q} \cdot d(x, T(x, y)) \cdot d(u, T(u, v))\right.}{d(x, u)+\gamma d(u, T(u, v))}+\psi(d(x, u)) \\
& =\frac{\left(\frac{5}{16}\right) \cdot\left(\frac{3}{16}\right) \cdot\left(\frac{1}{8}\right)}{\frac{9}{16}}+\psi(d(x, u)),
\end{aligned}
$$

from which we have

$$
\frac{21}{64}=\frac{126}{384}=\psi(d(x, u)) \geq \frac{1}{8}-\left(\frac{5}{16}\right) \cdot\left(\frac{1}{24}\right)=\frac{43}{384},
$$

that is, we obtain $\frac{43}{384} \leq \psi(d(x, u))=\frac{21}{64}<1$.

Conflict of Interest: On behalf of both authors, the corresponding author states that there is no conflict of interest.

References

[1] M. Abbas and I. Beg, Coupled random fixed points of random multivalued operators on ordered Banach spaces, Communications on Applied Nonlinear Analysis 13 (4) (2006), 31-42. MR2286404. Zbl 1122.47048.
[2] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922), 133-181. MR3949898. JFM 48.0201.01.
[3] I. Beg, A. Latif, R. Ali and A. Azam, Coupled fixed points of mixed monotone operators on probabilistic Banach spaces, Arch. Math., Brno 37 (1) (2001), 1-8. MR1822758. Zbl 1068.47093.
[4] V. Berinde, On the stability of some fixed point procedures, Bull. Stiint. Univ. Baia Mare, Ser., Mathematica-Informatica, 8 (1) (2002), 7-14. MR2014277. Zbl 1031.47030.
[5] V. Berinde, Iterative approximation of fixed points, Editura Efemeride, Baia Mare, 2002. MR1995230. Zbl 1036.47037.
[6] V. Berinde, Iterative approximation of fixed points, Second Edition, SpringerVerlag Berlin Heidelberg, 2007. MR2323613. Zbl 1165.47047.
[7] T. G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Analysis: Theory, Methods and Application 65 (7) (2006), 1379-1393. MR2245511. Zbl 1106.47047.
[8] S. S. Chang and Y. H. Ma, Coupled fixed points of mixed monotone condensing operators and existence theorem of the solution for a class of functional equations arising in dynamic programming, J. Math. Anal. Appl. 160 (1991), 468-479. MR1126131. Zbl 0753.47029.
[9] L. Ciric, M. O. Olatinwo, D. Gopal and G. Akinbo, Coupled fixed point theorems for mappings satisfying a contractive condition of rational type on a partially ordered metric space, Advances in Fixed Point Theory 2 (1) (2012), 1-8.
[10] L. Ciric and V. Lakshmikantham, Coupled random fixed point theorems for nonlinear contractions in partially ordered metric spaces, Stochastic Analysis and Applications 27 (6) (2009), 1246-1259. MR2573461. Zbl 1176.54030.
[11] A. M. Harder and T. L. Hicks, Stability results for fixed point iteration procedures, Math. Japonica 33 (5) (1988), 693-706. MR0972379. Zbl 0655.47045.
[12] C. O. Imoru and M. O. Olatinwo, On the stability of Picard and Mann iteration processes, Carpathian J. Math. 19 (2) (2003), 155-160. MR2069844. Zbl 1086.47512.
[13] C. O. Imoru, M. O. Olatinwo and O. O. Owojori, On the Stability of Picard and Mann iteration procedures, J. Appl. Func. Diff. Eqns. 1 (1) (2006), 71-80. MR2293939.
[14] V. Lakshmikantham and L. Ciric, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Analysis: Theory, Methods \& Applications 70 (12) (2009), 4341-4349. MR2514765. Zbl 1176.54032.
[15] M. O. Olatinwo, Coupled fixed point theorems in cone metric spaces, Ann. Univ. Ferrara 57 (1) (2011), 71-83. MR2821375. Zbl 1230.54042.
[16] M. O. Olatinwo, Coupled common fixed points of contractive mappings in metric spaces, Journal of Advanced Research in Pure Mathematics 4 (2) (2012), 11-20. MR2925664. Zbl 1369.54018.
[17] M. O. Olatinwo, Stability of coupled fixed point iterations and the continuous dependence of coupled fixed points, Communications on Applied Nonlinear Analysis 19 (2) (2012), 71-83. MR2953285. Zbl 1369.54018.
[18] M. O. Osilike, Stability results for fixed point iteration procedures, J. Nigerian Math. Soc. 14/15 (1995), 17-29. MR1775011. Zbl 0847.47043.
[19] M. O. Osilike and A. Udomene, Short proofs of stability results for fixed point iteration procedures for a class of contractive type mappings, Indian Journal of Pure and Applied Mathematics 30 (12) (1999), 1229-1234. MR1729212. Zbl 0955.47038.
[20] A. M. Ostrowski, The round-off stability of iterations, Z. Angew. Math. Mech. 47 (1967), 77-81. MR0216731. Zbl 0149.36601.
[21] B. E. Rhoades, Fixed point theorems and stability results for fixed point iteration procedures, Indian Journal of Pure and Applied Mathematics 21 (1) (1990), 1-9. MR1048010. Zbl 0692.54027.
[22] B. E. Rhoades, Fixed point theorems and stability results for fixed point iterative procedures. II, Indian Journal of Pure and Applied Mathematics 24 (11) (1993), 691-703. MR1251180. Zbl 0794.54048.
[23] F. Sabetghadam, H. P. Masiha and A. H. Sanatpour, Some coupled fixed point theorems in cone metric spaces, Fixed Point Theory and Applications, Volume 2009, Article ID 125426, 8 Pages (2009). MR2557268. Zbl 1179.54069.
M. O. Olatinwo

Department of Mathematics, Obafemi Awolowo University, Ile-Ife, Nigeria.
e-mail: memudu.olatinwo@gmail.com, molaposi@yahoo.com, polatinwo@oauife.edu.ng
K. R. Tijani

Department of Mathematics, Osun State University, Osogbo, Nigeria.
e-mail: kamil_tijani2000@yahoo.com, kkrotimi72@gmail.com, kamiludeen.tijani@uniosun.edu.ng

License

This work is licensed under a Creative Commons Attribution 4.0 International License. © ©

[^0]: 2010 Mathematics Subject Classification: 47H06; 54H25.
 Keywords: Coupled fixed point iterations; continuous dependence of coupled fixed points; complete metric spaces; rational type.

