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A DYNAMIC CONTACT PROBLEM FOR
THERMO-ELECTRO-VISOPLASTIC MATERIALS
WITH DAMAGE AND INTERNAL STATE
VARIABLE

Laid Maiza, Tedjani Hadj Ammar and Mohamed Laid Gossa

Abstract. This work studies a mathematical model involving a dynamic contact between
two thermo-elasto-viscoplastic piezoelectric bodies with internal state variables and damage. The
contact is modelled with normal compliance condition and adhesion effect of contact surfaces. We
derive variational formulation of the problem and we prove an existence and uniqueness result of
the weak solution. The proof is based on classical existence and uniqueness result on parabolic

inequalities, differential equations and fixed-point arguments.

1 Introduction

Important progress has been made in recent years in the modeling and mathemati-
cal study of the different processes involved in contact between deformable bodies.
When there is an interaction between the mechanical, electrical and thermal prop-
erties of the considered material, contact problems involving thermo-piezoelectricity
arise. This type of materials has many applications in sensors and actuators as mag-
netic probes, electric packing, microphones, hydrophones, ultrasonic image process-
ing due to the transition of energy in thermo-electromechanical conversion. Mindlin
[27] was the first to introduce the thermo-piezoelectric theory using motion equations
in pyroelectric and piezoelectric media to model reflection and refraction phenom-
ena. Nowacki [22, 29] discussed the physical laws of thermo-piezoelectric materials
and Chandrasekharaiah [5, 6] extended the thermo-piezoelectricity theory of Mindlin
to a particular model. Then, the propagation of waves in bodies made of thermo-
piezoelectric materials [19, 25, 33, 32, 34, 31] and its references have been studied
by several researchers. Contact problems involving thermo-elastic materials can be
found in [1, 11, 14], the study of an electro-thermo-viscoelastic bodies is considered
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in [12, 3]. In [4, 26], the mathematical model that describes the frictional contact
between a thermo-piezoelectric body and a conductive base is already discussed. In
[13], Essoufi et al. considered the modeling of quasistatic thermo-electro-viscoelastic
body behavior and the contact with nonfrictional and nonconductive foundation by
Signorini condition, they demonstrated the existence and uniqueness of the weak
solution and derived error estimates on the approximate solutions.

In this article, we study a dynamic contact problem between two a thermo-
electro viscoplastic bodies with damage and internal state variable. To this purpose
we introduce the constitutive law:

o= Ae(u) + Be(u) — (E)'E(E) +

: (1.1)
/09<0(8) — Ae(a(s)) — (5)*V€(s),s(u(s)),c(s),k(s)n(s))d&

k=0(c—Ae(a) — ()*VE e(u),s, k,7), (1.2)

D =E&c(u)+ BE(E), (1.3)

where u denotes the displacement field, o and e(w) represent the stress and the
linearized strain tensor, respectively, D is the electric displacement field. Here A
and B are nonlinear operators describing the purely viscous and the elastic properties
of the material, respectively, G is a nonlinear constitutive function describing the
viscoplastic behaviour of the material. k denotes the internal state variable, ¢ and 7
represent the damage and the temperature field, respectively, © is also a nonlinear
constitutive function. There is a variety of choices for the internal state variables,
for reference in the field see [9, 10]. Some commonly used internal state variables
are the plastic strain and a number of tensor variables that take into account the
spatial display of dislocations and the work-hardening of the material. F(§) is the
electric field that satisfies F(§) = —V¢&, where £ is the electric potential. Also,
& represents the third order piezoelectric tensor, (£)* is its transposition and 3
denotes the electric permittivity tensor. It follows from (1.1) that at each time
moment, the stress tensor o is split into three parts: ¢ = oy + o + or, where
oy = Ae(u) represents the purely viscous part of the stress, o = —(&)*E(¢)
represents the electric part of the stress and o g is the elastoplastic part of the stress
which satisfies

or = Be(u) + /OQ(O'R(S), e(u(s)),s(s), k(s),7(s)>ds. (1.4)

Note also that when G = 0 the constitutive law (1.1) becomes the Kelvin-Voigt
electro-viscoelastic constitutive relation,

o = Ae(@) + Be(u) — (£)E(€). (1.5)
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Contact problems with Kelvin-Voigt materials of the form (1.5) can be found in
[2, 26, 35]. The paper is organized as follows. There are some preliminary principles
related to our problem in the section 2. We present the mechanical model of the
problem in the section 3. We add the section 4 with the assumptions on the problem
data. We also derive the problem’s variational formulation, and the main result is
stated in the Theorem 2. Section 5, we proof of Theorem 2 based on nonlinear evolu-
tion equation with monotone operator, parabolic inequalities, differential equations
and fixed point arguments.

2 Notation and preliminaries

In this section, we present some basic notations and preliminary material, which will
be used throughout this paper. For more details, we refer the reader to [28, 36].
Let S? be the space of second order symmetric tensors on R?. The canonical inner
products and norms on S¢ and R¢ are given by

Yu,v € Rd,

N

uv = ui, vl = (v)?,
o.T =0T, |T|= (7'.7')%, Vo, T e %
Everywhere, the indices ¢ and j run between 1 and d the summation convention over
repeated indices is adopted.

Let Q' and Q2 be two bounded domains in R?. Everywhere in this paper, we use
a superscript « to indicate that a quantity is related to the domain Q%, o = 1,2.
For each domain Q% we assume that its boundary I'“ is Lipschitz continuous and let
I'Y be a measurable part of I' such that meas(I'{") > 0. We denote by v* = (v)
the outward unit normal at I'*. Also, an index that follows a comma represents
the partial derivative with respect to the corresponding component of the spatial
variable; for example, uf'; = Juy’ /0z;.

We introduce the spaces and the corresponding inner productsas follows:

HY = {v* = (v )1<ica; vf € L*(QY)},
HY = {7 = (h<ijeas 75 = 755 € LX(QY)},
HY' = {v® = (v )1<i<a; €(v®) € HT},
(11 = {’Ta = (Tg‘)lfigd; T4 e HY, Divr® € Ha},
Y = {A% = (\i<i<m; A € L2(QY)}, Vo= {ua e HY(Q*): v* =0 on r?} :

It is easy to check that the spaces H* H* H{,H{,Y“, and V< are all Hilbert
spaces equipped with the inner products

(u®, v)ge —/ u* vz, (0%, 7%)ye —/ o 7%z,
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(u®, v”) g :/ u®.vdr + Vu®. Vodr,
e Qa
(0%, 7)o :/ a’o‘.'radx—l—/ Div o®. Div 7%z,
(A%, ) ye =/Q A%.pdz, (u® v%)ye = (e(u”),e(v?))nea

and the associated norms |.||ma, ||.[xe, [|-lae, Illxe, [[]lye and [|.[[ye and
respectively. Here and below we use the notation

1
Vat = (ufy), e(u®) = (e(u®),  ey(u®) = g(ui; +ufy), Vu® € HY,
Dive® = (07; ;), Yo € HY.
Completeness of the space (V¢,||.|[v«) follows from the assumption meas(I'{* > 0),
which allows the use of Korn’s inequality.

We denote v* as the trace of an element v* € H{' on I'“. For every element
v® € V% we denote by vy and v$ the normal and the tangential components
of v on the boundary I'“ given by v = v*.v%, v = v* — vyv®. Also, for an
element o € H{ we denote by ov®, o and o¥ the trace, the normal trace and the
tangential trace of o® to I'“, respectively. In addition, the Sobolev trace theorem,

there exists a constant ¢; > 0, depending only on 2%, I'{" and I's such that
H’UQHLQ(Fs)d < CtrH’UaHVa Yo* e V& (21)

Denote L8 = L2(Qa)a L(II = Hl(Qa)a ('7 ')LS‘ = ('7 ')L2(Q°‘)a ('7 )L‘f‘ = ('7 ')Hl(Qa)v
[llze = IIllz2(ey and [|.[Lg = ||| g1(qe)- For the electric unknowns {* and D we
use the spaces

W*={¢a e Lf; €*=00onTq},
W* ={D* = (D%); D} € L*(Q%), div D™ € L*(Q*)} .

These are real Hilbert spaces with inner products

" ") we = | VE VY,
(91et
(D, &)y = D vdx —i—/ div D®. div ¥dxz,
Qa «
where div D = (Dy;), and the associated norms are denoted by ||.||we and ||.[[e,
respectively. Completeness of the space (W, ||.||w«) is a consequence of
the assumption meas(I'Y) > 0 which allows the use of Friedrichs-Poincaré inequality.
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In order to simplify the notations, we define the product spaces
V=V'xV2 H=H'xH? H, =H xH? H=mn"xH?
Hi=HixH:, Y=Y'xY? Lo=L{xL Li=LlxL3

W=Ww!'xW? W=w'xWw.

The spaces V., H, H, Y, Lo, L1, W and W are real Hilbert spaces endowed with
the canonical inner products denoted by (., . )v, (-, )&, (- )1, (v, (5 )Les () L1y
(., )w, and (.,.)w. The associate norms will be denoted by ||.||v, ||-|lz, ||-ll#: |-y
H'HLm H‘”L17 HHW’ and HHW7 respectively.

Finally, for any real Hilbert space H, we use the classical notation for the spaces
LP(0,T; H), W*P(0,T;H), where 1 < p < oo, k > 1. We denote by C(0,T;H) and
C1(0,T;H) the space of continuous and continuously differentiable functions from
[0,T] to H, respectively, with the norms

T m = max ||7(t)||m,
Il = me ()]

s ) = max ||7w(t + max ||7(t
Il oy = mase lw(e) s+ mase ()]s
respectively. Moreover, we use the dot above to indicate the derivative with respect
to the time variable.
Moreover, if H; and Hy are real Hilbert spaces then Hj x Hs denotes the product
Hilbert space endowed with the canonical inner product (.,.)m, xH, -

3 Model of the Problem

We consider two thermo-piezoelectric bodies, occupying two bounded domains Q',
02 of the space R? (d = 2,3 in applications). For each domain Q¢, the boundary
I'* is assumed to be Lipschitz continuous, and is partitioned into three disjoint
measurable parts I'{', I'y and I'§, on one hand, and on two measurable parts I'; and
I'f, on the other hand, such that meas(I'Y) > 0, meas(I'y) > 0. Let 7' > 0 and let
[0,7] be the time interval of interest. The Q¢ body is submitted to ff forces and
volume electric charges of density ¢f. The bodies are assumed to be clamped on
'Y x (0,T), so the displacement field vanishes there. The surface tractions f5 act on
'S x (0, 7). We also assume that the electrical potential vanishes on I'Y x (0,7) and
a surface electric charge of density ¢¢' is prescribed on I'f x (0,7"). The two bodies
can enter in contact along the common part ' = I'} = I';. We use an thermo-
elasto-viscoplastic piezoelectric law with damage and internal state variable given
by (1.1)—(1.3) where the damage of the materials caused by plastic deformations.
The differential inclusion used for the evolution of the damage field is

S KOG Oica (%) 3 6 (0% — A (i) — (E%)°VE®, e(u), 67, K, 7).
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where K denotes the set of admissible damage functions defined by
K*={we H(Q%); 0<w<1, ae. inQ%}, (3.1)

k% is a positive coefficient, 0Y kg« represents the subdifferential of the indicator func-
tion of the set K and ¥® is a given constitutive function which describes the sources
of the damage in the system. When ¢ = 1, there is no damage in the material, when
¢ = 0, the material is completely damaged, when 0 < ¢ < 1 there is partial dam-
age and the system has a reduced load carrying capacity. General novel models
for damage were derived in [17, 16, 18] from the virtual power principle. With
these assumptions, the classical formulation of the dynamic problem for frictionless
contact problem with normal compliance and adhesion between two thermo-elasto-
viscoplastic piezoelectric bodies with damage and with internal state variable is the
following,.

Problem P. For a = 1,2, find a displacement field u® : Q% x [0,7] — R%, a
stress field o : Q% x [0,T] — S%, an electric potential field £ : Q% x [0,T] — R,
a damage field ¢® : Q% x [0,7] — R, a bonding field ¢ : I's x [0, 7] — R, a electric
displacement field D% : Q® x [0,T] — R%, a temperature 7¢ : Q% x [0,T] — R,
and an internal state variable field k¢ : Q% x [0,7] — R™, such that

0% = A% (u®) + BY%(u®) + (E*)*VEr+

97 (0 0) = (i 0)) = (£ D (5. 0 (), (), R 5), 7 (5) s

in Q¢ x (0,7, (3.2)
k" =000 — A% (u®) — (E%)*VEX (s), e(u®), %, k%, 7) inQ® x (0,T),  (3.3)
D® = £%(u®) — BOVE® in Q% x (0,T), (3.4)

S — KON+ Iea(s?) 3 ¢ (0 — A% (0®) — (E2)*VE? e(u®), s, k*, 7°)
in Q% x (0,7), (3.5)

¢ — KGATY = U (0% — A% (%) — (E*)*VEY e(u®), <", kY, %) + x*

in Q% x (0,7), (3.6)
p%ii® = Dive® + f§  in Q x (0,7), (3.7)
divD* — gy =0 in Q% x (0,7, (3.8)
u*=0 onI{x(0,7), (3.9)
ov® = £2 on T x (0,7T), (3.10)
¢ = Haq(¢, Ry(ul +u2), R (ul —u2)) on T3 x (0,7T), (3.11)

o =00 =0, T3 x (0,T) (3.12)
on lg X (U, s .
Oy = _pu(ull, + UZQ,) + 7uC2Ru(Ull, + U,Q,)
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or=-or =0 T's x (0,7) (3.13)
on I's x (0,7), .
or =p(OR; u71— - u72-) ’
g;a —0 onT®x (0,7), (3.14)
I{OW_'_)\OT =0 on I'* x (O,T), 3.15

€*=0 onTlY x(0,7),
D*v®*=¢3 onTl}y x(0,7),
u®(0) = ug,1*(0) = vg,s*(0) = g5, k“(0) = kg, 7%(0) = 7¢" in Q°,
¢(0) = ¢, onTs. (3.19

First, equations (3.2)-(3.4) represent the thermo-elastic-viscoplastic piezoelectric
constitutive law with internal state variable and damage. The equation (3.6) is an
energy conservation equation where U is a nonlinear constitutive function describ-
ing the heat produced by the work of internal forces, and x® is the heat source of
the given volume. The equations (3.7) and (3.8) are the equilibrium equations for
the fields of stress and electric displacement. Next, the equations (3.9) and (3.10)
represent the displacement and traction boundary condition, respectively. Equation
(3.11) represents the ordinary differential equation which describes the evolution of
the bonding field and it was already used in [7, 8, 15, 20, 21], see also [36] for de-
tails, where H,y is the adhesion evolution rate function. Condition (3.12) represents
the normal compliance condition with adhesion. Condition (3.13) is the tangential
boundary condition on the contact surface, showing that the shear on the contact
surface depends on the adhesion field and on the tangential displacement, p, and p;
are given functions,

L lf s < _L7 v if ”U’ < L7
Ry(s)=q-s if —L<s<0, Br(v)=q , if |v] > L
0 if s >0, v

with L > 0 being a characteristic length of the bond, beyond which it does not offer
any additional traction (see, e.g., [30]). Boundary conditions (3.14), (3.15) represent,
respectively on I'*, a homogeneous Neumann boundary condition for the damage
field and a Fourier boundary condition for the temperature. (3.16) and (3.17) rep-
resent the electric boundary conditions. (3.18) represents the initial displacement
field, the initial velocity and the initial damage. Finally (3.19) represents the initial
condition in which (j is the given initial bonding field.

4 Weak formulation and main result

To derive the variational formulation for Problem P, we need to introduce the fol-
lowing assumptions
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The viscosity operator A% : Q% x S¢ — S? satisfies:
H(1): (a) There exist constants C'.,C%a > 0 such that
|A%(z,w)| < Cla|w| + C%a, Yw €S ae. z €0,
(b) There exist constants m 4o > 0 such that
(A%(z,w1) — A%z, w2)) - (w1 — w2) > Ma|w] — wal?,
Vwi,ws €S% ae x e,
(c) A%(.,w) is measurable on Q%, for any w € S%,
(d) A%(z,.) is continuous on S%, a.e. x € Q°.

The elasticity operator B* : Q% x S¢ — S? satisfies:
H(2): (a) There exists Lpa > 0 such that
|BY(x,w1) —BY(x,ws)| < Lpa|wi—ws|, Ywi,ws € S¢, acx € Q%
(b) B%(.,w) is measurable on 0%, Vw € S%,
(c) B*(.,0) belongs to H".

The viscoplasticity operator G* : Q% x S% x §% x R x R™ x R — S% satisfies:
H(3): (a) There exists a constants Lga > 0 such that
’ga(wvnlawhdlvkl?Tl)_ga(wan27w27d27k277—2)’S Lga(‘nl_n2’
+Hwi — wa| + |di — do| + |k1 — k2| + |11 — 72|), Vny, My, w1,
w9y € Sd, Vkl,kz S ]Rm, le,dg S R, VTl,TQ eR ae x€ Qa,
(b) G*(.,m,w,d, k,T) is measurable in Q%, Vn,w € S%,d € R, k € R™,
(¢) G*(.,0,0,0,0,0) belongs to H®.

The nonlinear constitutive functions H,q, ©¢, ¢* and ¥* are assumed to satisfy the
followig:

H(4): Hyg: T3 x R x R x R — R is such that
(a) There exists Lg,, > 0 such that
|Haq(z, C1, 71, w1) — Hag(x, G2, 72, w2)| <
L, (1G = Gl + [r1 = 2| + |1 — wal),
for all ¢1, (o, 71,72 € R,wi,ws € R¥L for ae. & € Ty,
(b) Haq(.,¢,7,w) is measurable on I's, V¢, r € R,w € R4~

(c) Hyq(z,.,.,.) is continuous on R x R x R% ! ae. & € I'3,

(d) Hyg(2,0,7,w0) =0, VreR, we R ae xcTs,
Hyg(x,¢,rw) >0, VC<0,7€R, we R ae xcTs, and
Hyg(x,(,rw) <0, V¢(>1,r€R, we R ae xeTls.

H(5): 6% : Q% x S% x S x R x R™ x R — $% is such that
(a) There exists Lgo > 0 such that
‘@a(l‘,’l’h,wl,al,kl,Tl) - @O‘(ZIZ,’I’IQ,wg,ag,kz,TQ)’ <
L@a(|7’11 — Nyl + w1 — wa| + |a1 — as| + |k1 — k2| + |11 — 7'2’),
YNy, ny, w1, wa € S ki, ke € R™, 7y, 79,01, a0 €ER, a.e. © €N,
(b) ©%(.,n,w, a, k,T) is measurable on Q%, Vn,w € S*, k € R™, a,7 € R,
(c) ©%(.,0,0,0,0,0) belongs to L*(Q%).
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H(6): ¢%: Q% xS?xS% x R x R™ x R — S is such that
(a) There exists Lga > 0 such that
‘Qsa(mvnlawl’al’kl?Tl) - d)a(man%w?aa?a k2a7—2)| <
Lgo (Iny = ma| + |w1 — wo| + a1 — az| + k1 — ko| + |11 — 1),
V1, My,wi,ws € S% ki, ko € R™, 71,79, 00,0 € R, a.e. x € Q°,
(b) ¢%(.,m,w, a, k, T) is measurable on Q%, ¥n,w € S¢, k € R™, a,1 € R,
(c) ¢%(.,0,0,0,0,0) belongs to L?(%).

H(7): U@: 0% x §% x S% x R x R™ x R — S% is such that
(a) There exists Lyo > 0 such that
\\Pa(a:,nl,wl,al,kl,ﬁ) — \I/a(x,'T’IQ,WQ,OCQ,kz,TQ)’ S
Lya (|my — mg| + |w1 — wa| + |a1 — as| + k1 — k| 4 |11 — 72]),
Vn1,172,w1,w2 S Sd,kl,kg eER™, 7,1, a1,a0 €ER, a.e. xe Q¥
(b) ¥*(.,n,w,a, k,7) is measurable on Q% Vn,w € S, k € R™,a,7 € R,
(c) ¥%(.,0,0,0,0,0) belongs to L?(2%).

The piezoelectric tensor and the electric permittivity tensor satisfy the following
conditions:

H(8): £%: Q% x ST — R? is such that
( )((:Oé_( z]k) ak:e?kjeLoo(Qa)7 1§7’7]7k§d7
b) E%.v = 0.(£%)*v, Vo € S%, Vv € R4

a) B = (8%), 8% = B2 € L™(Q%), 1<i,j<d,
b) There exists mge > 0 such that
B*“E.E > mg«|E?, VE = (E;) € RY, ae. z € Q°.

(

H(9): B~ : Q x R? — R is such that
(
(

The normal compliance function p, and the tangential function p, satisfy the as-
sumptions:

H(10): (a) py : T3 x R - Ry
(b) There exists L, > 0 such that
lpu(x,7m1) — pu(x,1m2)| < Ly|ry —ra|, Vri,ro € R, ae. x €T3,
¢) pu(.,7) is measurable on I's, Vr € R,
d) py(x,r) =0,¥r <0, ae. xel;s.

H(11):

b There exists L; > 0 such that
‘pT(:B,dl) T( ,d2)| < L7|d1 d2|, Vdi,dy € R, a.e. x €I's,
(c¢) There exists M, > 0 such that
Ipr(x,d)| < M VdeR, ae xels,
(d) p-(.,d) is measurable on I's, Vd € R.
() pr(,0) € L(T).

(
(
(a) pr: T3 x R > Ry
(b)
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We suppose that the mass density, the forces, the traction densities and the foun-
dation’s temperatures satisfy:

H(12): (a) p* € L™®(Q%), 3po > 0; p*(z) > po a.e. x € Q%,
£ € L2(0,T; L2(Q*)Y), fg € L2(0,T; L*(T'9)9),
g5 € C(0,T; L*(2%)), g5 € C(0,T; LA(Ty)),

)

X® € L2(0,T; L2(Q%)).

a

(
(b
(
(

~— —

c
d

~— —

The energy coefficient, microcrack diffusion coefficient and adhesion coefficient sat-
isfy:

H(13): k§,k* >0, v, € L>®(3), 7, >0, a.e. onI's.
Also, we assume that the initial values satisfy:

H(14): (a) kg € Y, uj € VY, vy e HY, ¢ € K* 1€ Ly,
(b) (o € L*(I5), 0<(o<1, ae onTs.

We will use a modified inner product on H, given by

2
(o) =3 (U o) o,
a=1

and let |.||z be the associated norm. It follows from assumption H(p®), that |||z
and ||.||g are equivalent norms on H, and the inclusion mapping of (V,||.||y/) into
(H,||.|lzr) is continuous and dense. We denote by V' the dual of V. Identifying H
with its own dual. Then (u,v)y 'y = (w,v)n, Yu € H,Vv € V. We define six
mappings £ : [0,7] = V', ¢ :[0,T] = W, a: Ly x L1 — R, ap : L1 x L1 — R,
Jad : L°(T'3) x V xV — Rand j,.: V x V — R, respectively, by

2 2

(f(t),v)y v = Z/ f5'(t) - vz + Z/ £5'(t) - v*da Vv € V, (4.1)
a=1 i a=1 )
Z/ q5( gdmZ/ t)s%da Vs e W, (4.2)
= Z K V¢*. Vwdz, (4.3)
a—=1 Qe
2

ao(€,¢) = Z kG / VEX NV dr + Z AS / £9¢%da, (4.4)

a0(6.¢) = Z 5 [ vaavcadﬂzv [ gcda (45)

Sk ok koo ok ok >k kR Sk ok kok ok sk ok okook sk sk skeok ok sk ok skok sk sk skokok skok kokook sk ok skokook sk kokok sk ok skokook sk ok skok sk sk skokosk skookoskokosk sk skokok skok kokok skokokok

Surveys in Mathematics and its Applications 17 (2022), 241 — 267
http://www.utgjiu.ro/math/sma


http://www.utgjiu.ro/math/sma/v17/v17.html
http://www.utgjiu.ro/math/sma

A Dynamic contact problem 251

Jad(Cs w,v) = /

(=Rl + u2) (v} +22))da
T's

+ [ rORu} ~ u)(0} - v2)da, (4.6)
I's

ool v) = / P+ 2) (0} + v2)da. (4.7)
I's

We note that conditions H(12)(b) and H(12)(c) imply

fc L20,T; V'), qecC0,T;W). (4.8)

By a standard procedure based on Green’s formula, we derive the following varia-
tional formulation of the mechanical (3.2)—(3.19).

Problem PV. Find u = (u',u?) : [0,7] = V, o = (¢',0%) : [0,T] — H,
£ = (64,8 [0,T) = W, ¢ = (¢,¢%) : [0,T] = L1, ¢ : [0,T] — L>®(T3),
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7= (r',72):[0,T] = Ly, and k = (k*, k%) : [0,T] — Y such that
0% = A%(u®) + B%(u®) + (£7) VES+
[ 9(o ) = et () = (€77 Ve (5) el (). (9. k(). 77(5) ) s

in 0 x (0,7), (4.9)
" = 0% — A%(4®) — (£%)*VE(s), e(u®), ¢, k%, 7%)in Q% x (0,T),  (4.10)

2
(i, V) vy + (0%, e(0*))ae + Jad (), w(t), v) + jue(u(t), v) = (1), v)yryv,
a=1
YveV, ae te(0,7), (4.11)

2
S(t) € K, Y (S (), w® = < (1) 2(m) + als(t),w — <(t)) =
a=1

2
az::l( a(o_a_Aae(,ua))_(ga)*vfa,s(ua)7§a7kavTa)(t)’wa o Ca(t)>L2(QQ)
Vw e K, ae. te(0,7), (4.12)
2
ao(7(£),8) = 3 (\pa (0% — A% () — (£)*VE, e(u®), ¢°, ka,Ta)(t),5°‘> .
a=1 0
2
+) () = Xx(1),0%) g Vo€ Ly, ae te(0,T), (4.13)

—_

a=

2
37 (BUVEN() — E%(u (1)), Vo) o = (at), d)w Vo € W,ae. t € (0,T),  (4.14)
a=1

52 Hoa(¢, Ry(ul +42), R (ul —u?)) ae. te(0,7), (4.15)
w(0) = ug, u(0) =wvo, <(0) =<0, ((0)=C(o, k(0)=ko, 7(0) =0, (4.16)

where K = K x K2.

Remark 1. We note that, in Problem P and in Problem PV, we do not need to
impose explicitly the restriction 0 < ¢ < 1. Indeed, equation (4.15) guarantees that
C(x,t) < (o(x) and, therefore, assumption H(}) shows that (x,t) <1 fort >0, a.e.
x € I's. On the other hand, if ((z,to) = 0 at time to, then it follows from (4.15) that

C(x,t) =0 for all t > ty and therefore, ((x,t) = 0 for all t > tg, a.e. x € T's. We
conclude that 0 < {(z,t) <1 for allt € [0,T], a.e. x € T3.

Now, we propose our existence and uniqueness result
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Theorem 2 (Existence and uniqueness). Assume that H(1)- H(1/) hold. Then
there exists a unique solution {u,o,&,<,(, k, 7} to Problem PV, Moreover, the so-
lution satisfies

we Wh2(0,T;V)NCY0,T; H), it € L*(0,T; V"), (4.17)
o € L*(0,T;H), (Dive',Dive?) € L*(0,T; V'), (4.18)
£eC0,T;W), (4.19)

¢ € WH(0,T; Lo) N L*(0,T; Ly), (4.20)

¢ e Wh>(0,T; L*(I'3)) N Z, (4.21)
EcWh(0,T;Y), (4.22)

€ W20, T; Lo) N L*(0,T; Ly). (4.23)

The functions {u, ¢, <, 0, k, 7,(, D} which satisfy (4.9)-(4.16) and (3.4) are called
weak solution of the thermo-piezoelectric contact Problem P. We conclude by Theo-
rem 2 that, under the assumptions H(1)-H(14), the mechanical problem (3.2)—(3.19)
has a unique weak solution {u,¢,s,0,k,7,(, D}. To precise the regularity of the
weak solution, we note that the constitutive relation (3.4), the assumptions H(8)-
H(9) , and the regularities (4.17), (4.19) show that D € C(0,T; H). Moreover, using
(4.14) and notation (4.2), we obtain

divD*(t) = q5(t) Yte[0,T], a=1,2.

It follows now from the regularities H(12)(c) that div D* € C(0,T; H), a = 1,2,
which shows that

D € C(0,T;W). (4.24)

We conclude that the weak solution {u, ¢, s, o, k,,(, D} of the thermo-piezoelectric
contact Problem P has the regularity (4.17)—(4.24).

5 Proof of Theorem 2

The proof of Theorem 2 which will be carried out in several steps and is based on
arguments of nonlinear equations with monotone operators, a classical existence and
uniqueness result on parabolic inequalities and fixed point arguments. We assume
in what follows that assumptions of Theorem 2 hold, and we consider that C' is a
generic positive constant which depends on Q%, I'Y, T'Y, I's, p,,p,, A%, B%, B, G,
EY, 0% Hyq, Yo, ¢, ¥, kG, AG, &%, x¢ and T, with o = 1, 2. But does not depend
on t nor of the rest of input data, and whose value may change from place to place.
Let an = (n*,n?) € L*(0,T; V') be given. In the first step we consider the following
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variational problem.
Problem PV}, Find (u,,&,) : [0,7] = V x W such that

2
(iin(8), )y + Y (A%(@® (1)), e(0®))pe = (E(t) = n(t), v)vrevs

a=1

Vv e V,ae. t€(0,T), (5.1)

2
D (BOVE () — E%(ug (1), Vo™ e = (q(t), d)w, Yo € W ae. t € (0,T), (5.2)
a=1

wl(0) = ug, @2(0)=vg in Q% (5.3)

We have the following result for the problem.
Lemma 3. There exists a unique solution (u,,&,) of Problem PV‘;;5 and it satisfies
u, € WH(0,7; V)N CH0,T; H), i, € L*(0,T; V'), (5.4)
& e C0,T;W). (5.5)

Proof. We define the operator A: V — V' by

2
(Au,v)yrey = > (A% (u®), e(v®)pe Vu,v € V. (5.6)

a=1

We use (5.6) and H(1) to find that

2
[Au — Av||3, <> A% (u®) — A% (0|} Vu,v € V.

a=1

Keeping in mind H(1) and Krasnoselski Theorem (see, for example [24, p.60]), we
deduce that A : V — V' is a continuous, and so hemicontinuous. Now, by H(1)(c)
and (5.6), it follows that

(Au — Av,u — v)yryy > mflu—v|3 Vu,v eV, (5.7)
where the positive constant m = min{m 41, m 42 }. Choosing v = 0 in (5.7) we obtain
(Au, w)y ey > mlully, — [|Ao][3 [lullv
> Cmlfulfy - %HAOHQV, Vue V. (5.8)
Moreover, by (5.6) and H(1)(b) we find

|Awlly < CHjully +C?* Yu eV,
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where C! = max{C1 1, C AQ} and C? = max{C? s 12}. Finally, we recall that by
(4.8) we have f —n € L*(0,T;V’) and vg € H. Therefore, using a standard for
ordinary differential equations in abstract spaces (see, for example, [36, Theorem
2.29]), we know there exists a unique function ¥,, such that

9, € L*(0,T; V)N C(0,T; H), 9, € L*(0,T; V'), (5.9)
Oy (t) + A9, (t) = £(t) —n(t), a.e.t€0,T] (5.10)
U (0) = wo. (5.11)

Let u, : [0,7] — V be the function defined by
P = / 9y(s)ds +uo Vit € [0,T]. (5.12)
0

It follows from (5.6) and (5.9)— (5.12), that u,, is a solution to (5.1), (5.3), with the
regularity (5.4). Next, we define a bilinear form: b(.,.) : W x W — R such that
2

b(&,¢) =D (B*VEX, V™) ga  VE,pEW. (5.13)

a=1
We use H(9) and (5.13) to show that the bilinear form b(., .) is continuous, symmetric
and coercive on W. Moreover, using (4.2) and the Riesz Representation Theorem we
may define an element ¢, : [0,7] — W such that

(qn(t), O)w = O)w + Z (E%(ug (1), Vo™ ua Yo € Wit € (0,T).
We apply the Lax-Milgram Theorem to deduce that there exists a unique element
&y(t) € W such that
b(&n(t), ¢) = (ay(t), D) w Vo e W. (5.14)

It follows from (5.14), that the pair (u,,&,) is the solution to the nonlinear varia-
tional equation (5.2). Let now t1,t2 € [0,T], it follows from (5.2) that

165(t1) = &n(t2)lw < C([luy(tr) — ug(t2)llv + lla(tr) — a(t2)|w)- (5.15)
Since u, € C*(0,T;H) and ¢ € C(0,T;W), inequality (5.15) implies that &, €
C(0,T;W). This completes the proof ]

In the second step, we let # = (0',0') € L?(0.T; Lg) be given and consider the
following initial-value problem.
Problem PVj§. Find <y = (s5,s3) : [0,T] = Ly such that

) € K, Z —0°(8), 1® = 5 (8)) 12(0m) + alsa(t), 1 — co(t)) = 0 (5.16)
Vue K, ae. te(0,T).
In the study of Problem PV} we have the following result.
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Lemma 4. There exists a unique solution ¢ of Problem PV} and it satisfies
s € WY2(0,T; Lo) N L*(0,T; Ly).

Proof. We use a standard result for parabolic variational inequalities (see, e.g., [36,
p.47]). O

In the third step we use the field u,, obtained in Lemma 3 and we consider the
following initial-value problem.
Problem PV5. Find ¢, : [0,7] — L*(T's) such that

¢, (1) = Haa(Gn(t), R (g, (8) + uy, (1), Rr (g () — up (1)), (5.17)
G (0) = Go. (5.18)

We have the following result.

Lemma 5. There ezists a unique solution ¢, € Wh>°(0,T; L*(T's)) N Z to Problem

PV,
Proof. We consider the mapping F,, : [0,7] x L?(I's) — L?(I's),

Fy(t,¢) = Haa(C(t), Ro (g, (1) + up, (1)), Re(uy, (1) — up (1)),

for all t € [0,7] and ¢ € L?(I's). It follows from the properties of the truncation
operator R, and R; that F) is Lipschitz continuous with respect to the second
variable, uniformly in time. Moreover, for all ¢ € L?(T'3), the mapping t — F,(t, ()
belongs to L°°(0,7T; L?(I's)). Thus using the Cauchy-Lipschitz theorem given in
23, p. 60], we deduce that there exists a unique function ¢, € Wh>(0,T; L*(I'3))
solution of the equation (5.17). Also, the arguments used in Remark 1 show that
0<¢,(t) <1forallte[0,T], a.e. on I'3. This completes the proof. O

In the fourth step. Let m = (7', 7!') € L?(0,T; Lo) and consider the auxiliary
problem.

Problem PVZ . Find 7, : [0,7] — Lo, such that

S2(FE() — () — x¥(1), AY) e + ao(rx(£),A) =0, VA€ Ly, (5.19)
=(0) = o. (5.20)

Lemma 6. There exists a unique solution . to the auziliary problem PV satisfying
(4.23).

Proof. Furthermore, by an application of the Poincaré-Friedrichs inequality, we can
find a constant ¢y > 0 such that

)\a
/ |VA|2dx + ‘;/ IA2da > co/ IN2dz, YAeLY, a=1,2.
Qa /fo Fa Qoz
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Thus, we obtain
ao(M\,A) > el A7, VYA€ Ly,

where ¢; = komin(1l,cp)/2, which implies that ag is L;—elliptic. Consequently,
based on classical arguments of functional analysis concerning parabolic equations,
the variational equation (5.19) has a unique solution 7, satisfying 7,(0) = 79 and
the regularity (4.23). O

In the fifth step, we let u € L?(0,T,Y) be given, and define k,, € W12(0,T,Y)
by

t
k.(t) = ko +/0 w(s)ds. (5.21)

We use (uy,§,;) obtained in Lemma 3, ¢y obtained in Lemma 4, 7, obtained in
Lemma 6 and k, defined in (5.21) to construct the following Cauchy problem for
the stress field.

Problem PV?

puors Find o = (0'71w97r’ a%ueﬂ) :[0,T] — H such that

 uor (t) ZB%(UZ‘(t))Jr/O G (0 uon(8), €(uy(s)), 55 (s), kjy(s), 77 (s))ds,

ae. te€(0,7), a=1,2.

(5.22)

In the study of Problem PV;‘WH7r we have the following result.

Lemma 7. There exists a unique solution of Problem PV? and it satisfies

nudm
O puon € L2(0, T;H).

Proof. We introduce the operator A, g = (AL A?

mioms Mor) + L2 (0, TsH) — L*(0, T3 H)
defined by

ﬁuewa(t)ZB"‘E(U?,(t))Jr/o G (0(s), e(uy(5)), 54 (5), ki (), 77 (s)) ds,  (5.23)

for all o = (o!,0?) € L*(0,T;H), t € [0,T] and a = 1,2. For o1, o5 € L*(0,T;H)
we use (5.23) and H(3), to obtain

t
[Anuono1(t) — Aguorora(t)|ls < maX(Lgthﬂ/ |o1(s) — o2(s)|l3 ds
0

P
nuoT
of the operator A9 is a contraction on the Banach space L?(0,T;#H) and, therefore,
there exists a unique element o0, € LQ(O,T;H) such that A, 670 .6r = Tpuor-
Moreover, 0,9~ is the unique solution of Problem PV%MW’ which concludes the
proof. O

for all t € [0, 7. It follows from this inequality that for p large enough, a power A
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Lemma 8. Let (11, u1,01,71), (2, po,02,m2) € L2(0,T;V' xY x Ly x Lo) and
let o; denote the functions obtained in Lemma 7, for i = 1,2.Then, the following
inequalities hold:

Jos (6) = (0) e < € (s ()= s IR + [l (9) = (5] s
[ e () = s+ [ o (5) — R o) s
0

t
[ () = Tra(s)|3ds), ae te (0,7). (5.24)
0

Proof. Let t € [0,T]. Using (5.22) and the properties H(2) - H(3) of B* and G%, we
find

o1 (6) — oa(0) < e (i (1) — gy () + / lo1(5) — ora(s)]13, ds
T /O s (5) — iy ()2 ds + /0 01 () — 502 ()12, ds+

[ W) =Ry st [ s (0) = 7 (9] ).

Using the Gronwall’s inequality in the previous inequality we deduce the estimate
(5.24), which concludes the proof of Lemma 8. O

We now pass to the final step of the proof of Theorem 2 in which we use a fixed
point argument. To this end, we consider the operator:

II: L?(0,T; V' xY x Ly x Lo) — L*(0,T; V' x Y x Lo x Lg)
defined by

(n, p,0,7) = (I (n, 1, 0, 7), 11 (n, 1, 0, ), I (), o, 0, ), I (mp, 1, 0, 7))~ (5.25)
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with

2
(I (g, 1,0, m) (1), V) sy = Y (Be(uy (1) + (E°)°VEY L e(v%))

a=1

2 t
*; ( /0 G (055 (105 (5)), 5 (5), K (), 72(5)) ds , £(v))

+Jad(Cn(t), un(t), v) + Juc(un(t), v), Vv €V, (5.26)
I%(n, p, 0, m)(t) = <@1(0%Meﬂ(t),€(u$(t)),<5(t),kﬁ(t),7$(t)),
)

’,L[oc

(5.27)
62 (02,5, (1), e(u2(1)), 3(1), K2(1), 72(1)))

I (5, 2,0, 7) (t) = (01 (000 (£), £ (1)), 54 (1), KL(8), T2 (1)), (5.28)
P (020n (1), W2 (0), 30, K20, 72(0)))

I (0, 1,0, ) (8) = (" (e (1), € (up(1)), 4 (1), (1), 74 (1) 529
U2(02,00(0). (1), 0. KA. 720) ).

For the operator II, we have the following result.

Lemma 9. The operator 11 has a unique fized point (n*, u*,0* ) € L*(0,T; V' x
Y x LO X Lo)

Proof. Let (01, u1,61,71),(n2, o, 02, m2) in L2(0,T; V' xY x Lo x Lg) and let t €
[0,7]. We use the notation w; = wy,, v; = Uy, 6 = Tpptim> S = Enis Si = S0,
G = Gy, ki =k, and 7 = 7, for i = 1,2. We use H(2), H(3), H(8), H(10), H(11),
(5.24) and the definition of R,, R,, we have

XL 1, o1, 61, 700 )(8) — 0 (0, i, B, ) (1) 12 < c<uu1<t> —w(®)]}

+ / 1 (5) — wa(s))|2 ds + / l61() — a() 12, ds + &1(t) — Ex(8) |3
0 0

G () - GO 2ay, + /0 [k (s) — Ra(s))II% + /0 HTl(S)—w(S))II%OdS)-

By similar arguments, from (5.24), (5.27) and H(5) it follows that
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T2 (1, o1, 01, 1) () — 11 (2, prz, G2, m2) (8) |3 < C(Ilul(t) —wa(t)lly
Hé(t) — L@y + /0 lui(s) = wa(s)I ds + la(t) — 2(t)IZ,+

t
/0 51 (s) = 2(s)1Z, ds + [I€1(8) — &) |5y + 16 (1) — GO 2y

/Hk’l —ka(s))[¥ + /HTl ) — Ta(s ))||L0d5>

Moreover, from (5.24), (5.28) and H(6) we obtain

T (71, o1, 01, ) () — I (2, piz, G2, ) (1) |17, < C(HUl(t) —uz(t)[[¥,
HI€x() — &)1y + /0 11 (s) = ua(s))[I ds + |1 (t) — 2(8))IIZ,+
/0 <1 (s) = «2(s))II7, ds + [1€2(2) = & Fy + 16() — T2y

/Hk1 — k(s Hy+/ I71(s) — T2(s ))HLOds)

Similarly, using (5.29) and H(7), we obtain the following estimate for IT*

I (1, o, 01, 1) (8) — T (1o, paz, B2, 02) (1) 7, < C(H“l(t) —uy(t)[3,
+[|&1 () — &)y + /0 w1 (s) = wa(s)) I3 ds + [s1 () — s2(t))[|7,+

/0 <1 (s) = 2(s)1Z, ds + [1€2(8) = ()5 + 1G1() = (O 2(ry)

+/O \kl(S)—kz(S))HQer/O I71(s) —72(8))\\%06%’)-

(1, par, 01, 1) () — T2, 2, 02, 72) (O oy s £y < C<||U1(7f) —ua(t)[I3,

Consequently,

[ (o) =~ wa(o)) s + lla(®) = 2()IE, + [ lla(s) ~ (o), ds
0 0
et — &0 + / I71(s) — 7a(s)) |12 ds + / Ier(s) — ea(s) 13 ds
0 0
G () = G2y + Im(8) — ma8)) 2, + e (8) — kz(t))H%)- (5.30)
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Moreover, from (5.1) we obtain

2
(V1 — 2,1 — V2)yryy + Z(AQE(U?) — A%(v3),e(v] — v3))pe =

a=1

—(m —n2,v1 — v2)yruy-

We integrate this equality with respect to time, use the initial conditions
v1(0) = v2(0) = vo and condition H(1)(c) to find

t t
TﬂAWM@—Wﬂﬁméﬁﬁ—AUM@—wﬁﬁwﬁﬁ—vﬂQWuv%
where m = min(m 41, m 42). Then, using 2ab < % + 0b% we obtain
t t
/ﬁ lv1(s) — va(s)) 3 ds < C7j€ lm(s) = n2(s)|[3ds. (5.31)
On the other hand, from the Cauchy problem (5.17)—(5.18) we can write
t
1) = o= [ Haa(G). Ruu o) 18, (5) Rl (5) = w (5) s
and then
t
6 =Gal0) ey < C e (6) =ty
t
0 [ Rl (9) 0 (9)) = Rouh(5) 4 05Dy
t
40 [ Rt ) = ke (5) = Rl (5) = 03, (90) ey
Using the definition of R, and R, and writing (1 = (1 — (2 + (2, we get
t
1610 = @Ol ey < € [ (16066) = Gy + a(s) = a(o)] ey ) 5
Next, we apply Gronwall’s inequality and use (2.1) to conclude that

HQ@—@@hm@SCAHMS%%Mﬁwﬁ- (5.32)

The definition (5.21) yields
t
Hh@%%dm@§C<AHm®%wM$W%) (5.33)
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On the other hand, from (5.16) we deduce that
($1— <261 — 2) 1o + als1 — 2,61 — 2) < (61 — b2,61 — Q)Lo)'

Integrating the previous inequality with respect to time, using the initial conditions
61(0) = 2(0) = o and inequality a(s; — s2,51 — s2) > 0, to find

1 t
glla®) = @), < /0 (01(s) = 02(s), 61(s) — <2(s)) 1, ds,
which implies that

la () — 20, < / 161(5) — Ba(s)][3, ds + / lox(s) — ca(s)[13, ds.

This inequality, combined with Gronwall’s inequality, leads to

t
() = 2Bz, < C/ 101(s) — 02(s)IIZ,ds a.e. t € (0,T). (5.34)
0
From (5.19) we deduce that

(71 — 72,71 — T2) 1o + a0(T1 — T2, 71 — T2) = (M1 — W2, 1 — TQ)Lo'

We integrate this equality with respect to time, using the initial conditions
71(0) = 72(0) = 79 and inequality ag(m — 72,71 — 72) > 0, to find

1 t
Slm() - n(t)[7, < /0 [m1(s) — m2(8) || Lo-[IT1(5) — T2(s) | Lods
which implies that
t t
)=l < [ Im(s) =@l + [ lIn() = o)l ds
This inequality combined with Gronwall’s inequality leads to
t
lm1(t) — Tg(t)H%O < C’/ |1 (s) — 772(s)||%0ds ae. t€(0,7). (5.35)
0
Since u; and uo have the same initial value we get
¢
[ () — u2()[[3 < /0 [v1(s) — va(s))l[3-ds. (5.36)
We substitute (5.31)—(5.36) in (5.30) to obtain
2
[T, o, O1,1)(£) — T(n2, pao, B2, 772)(15)HVerX,;OxLO <

t
C/o | (1, pa, 01, 71) () — (772,M2,92,7T2)(8)H3,/nyLoxLod8
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Reiterating this inequality n times we obtain

2
[T (1, 1, 1,m1) — Hn(772’u2’02’7T2>HL2(O,T;V’><Y><L0><L0) <
crrr

n!

2
[ (1, 11, 01, m1) — (112, p12, B2, 7T2)HL2(0,T;V’xYxL0xLO)'

Thus, for n sufficiently large, IT" is a contraction on the Banach space
L?(0,T; V' xY x Lg x Lg), and so II has a unique fixed point. d

Now, we have all the ingredients to prove Theorem 2.

Proof. Ezistence. Let (n*,p*, 0%, 7*) € L?(0,T;V' x Y x Lg x Lg) be the fixed
point of IT defined by (5.25)—(5.29) and denote

Uy = ’U,n*’ é_* = 577*’ Cx = Gp=, C* = Cn*7 kj* = ij* Te = Tr+, (537)
O'g — AQE(U?]*) + (ga)*vff,;* + U%*M*G*ﬂ.*, o = ]., 2 (538)

We prove {w., o4, &, S, Ci, Ky, T} satisfies (4.9)—(4.16) and the regularites (4.17)—
(4.24). Indeed, we write (5.1) for n = n* and use (5.37) to find

2
(i), 0)yry + ) (A%(@(1), e(0™)ue + (0" (1), 0)y iy
a=1
= (f(t),v)ywy YveV,ae te(0,T). (5.39)

Equation IT!(n*, u*, 0%, 7*) = n* combined with (5.26) and (5.38) show that

2 2

O @0y = 3 (BT (1), 0%} + 3 (E7VEE el
o=l a=1
+ ; (/0 G (o — A%(42) — (E)* VEX e(u), & kS, 7) (s)ds E(Ua))?-[a
+ JadlG () wa(1), ©) + (s (1), ), Vo E V. (5.40)

We substitute (5.40) in (5.39) and use (4.9) to see that (4.11) is satisfied. From
% (n*, u*, 0*,7*) = p* and use (5.21) we see that (4.10) is satisfied. We write
now (5.2) and (5.17) for n = n* and use (5.37) to find (4.14) and (4.15). The
equalities IT3(n*, u*, 0*, 7*) = 6* and II*(n*, u*, 0%, 7*) = 7*, combined with (5.16),
(5.19) show that (4.12)—(4.13) are satisfied. Next, (4.16) and the regularity (4.17),
(4.19)—(4.23) follow from Lemmas 3, 4, 5, 6 and the relation (5.21). The regularity
o« € L?(0,T;H) follows from Lemma 7, assumptions H(1), H(8) and (5.38). Finally,
(4.11) implies that

ptuy =Dived + fi ae. t€[0,T], a=1,2

skesk sk ok sk ok ok s ok sk sk ok s ok sk sk ok sk sk sk s ok sk sk sk s ok sk sk ok sk sk sk s ok sk sk sk s ok sk sk ok sk sk sk sk ok sk sk sk ok sk sk ok ok sk sk ok ok sk ok sk sk ok ok sk sk ok ok sk ok

Surveys in Mathematics and its Applications 17 (2022), 241 — 267
http://www.utgjiu.ro/math/sma


http://www.utgjiu.ro/math/sma/v17/v17.html
http://www.utgjiu.ro/math/sma

264 L. Maiza, T. Hadj Ammar and M. L. Gossa

and from H(12)(a), H(12)(b) and (4.17) we find that (Divel, Dive?) € L2(0,T; V).
We deduce that the regularity (4.18) holds.

Uniqueness. The uniqueness part of Theorem 2 is a consequence of the uniqueness of
the fixed point of the operator IT defined by (5.25)-(5.29) and the unique solvability

of the Problems PVZé, PV%, PVy, PVL and PV7 4. -
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