NEW KINEMATICS SCHEME OF THE MECHANISMS FOR THE POWER SWITCHER WITH V EXTINGUISHING CHAMBERS

Ovidiu ANTONESCU*, Mariana TROFIMESCU**, Păun ANTONESCU***

*) Dr. Eng., "Politehnica" University of Bucharest, e-mail: oval33@hotmail.com
**) Drd. Eng., "Dinu Lipatti" High School, Bucharest, e-mail: trofimescumariana@yahoo.com
***) Dr. Eng, "Politehnica" University of Bucharest, e-mail: panton38@hotmail.com

Abstract

The paper presents two new kinematic schemes of the V switcher mechanisms for medium and high power. The proposed schemes consist of triadic chains that ensure transmission angles near to the optimum values. The geometric and kinematic analyses of the proposed mechanisms, with driven components that have to move with high speeds on disengaging process in the extinguishing chamber, have been achieved. In the second section of the paper, an optimum kinematic scheme of the V power switcher with triadic chain type $4 \mathrm{R}+2 \mathrm{~T}$ has been presented. KEYWORDS: kinematic scheme, switcher mechanisms, extinguishing chamber, triadic chain

1. INTRODUCTION

The current mechanism of the power switcher with V placed extinguishing chambers (fig. 1.1a) is based on two kinematic dyadic chains $T+(3 R)+(2 R+T)$. Keeping the same structure of the kinematic couplings used, the two dyadic chains can be configured into a triadic chain (fig. 1.1b).

Fig. 1.1a. The current kinematic diagram

Fig. 1.1b. Kinematic diagram of the new mechanism
With the current kinematic diagram (fig. 1.1a), the structural and topological formula of the leading mechanism is:

$$
M M=M A(0,1)+\left\{\begin{array}{l}
L D(2,3)+L D(4,5) \tag{1.1}\\
L D(\overline{2}, \overline{3})+L D(\overline{4}, \overline{5})
\end{array}\right.
$$

With the new kinematic diagram (fig. 1.1b) the structural and topological formula is written:

$$
M M=M A(0,1)+\left\{\begin{array}{l}
L T(2,3,4,5) \tag{1.2}\\
L T(\overline{2}, \overline{3}, \overline{4}, \overline{5})
\end{array}\right.
$$

For this new structural and geometrical diagram, the kinematic elements 4 and $\overline{4}$ are central elements of the $3^{\text {rd }}$ degree of the corresponding triadic chain $\operatorname{LT}(2,3,4,5)$ and $L T(\overline{2}, \overline{3}, \overline{4}, \overline{5})$ of the $5 \mathrm{R}+\mathrm{T}$ type (fig. 1.1c).

Fig. 1.1c. Kinematic diagrams of MA(0,1) and of the symmetrical (left and right) triadic chains LT

2. SYNTHESIS OF A NEW GEOMETRICAL VERSION OF THE V MECHANISM

We can design structural geometrical versions of the triadic chains $L T(2,3,4,5)$ and $L T(\overline{2}, \overline{3}, \overline{4}, \overline{5})$, where the 3 articulations (B, C and D) respectively ($\bar{B}, \bar{C}, \bar{D}$) of the central elements 4 and $\overline{4}$ are collinear (fig. 2.1a).

Fig. 2.1a. Version of the kinematic diagram of the triadic chain $\mathrm{LT}(5 \mathrm{R}+\mathrm{T})$

We can notice the particularity of this kinematic diagram of the triadic chain LT (fig. 2.1a) which consists in placing the three articulations B, C and D on the same straight line. The rotation semi-couplings A and C_{0}, as well as the translational semi-coupling E are called potential kinematic couplings by means of which the triadic chain $\operatorname{LT}(2,3,4,5)$ is connected to the leading element 1 and to the fixed element 0 .

The equivalent kinematic diagram of the triadic chain $\mathrm{LT}(2,3,4,5)$ is obtained by replacing the bar 5 with a shoe 5^{*} that slides along the fixed guide Δ_{5} (fig. $2.1 b$).

Fig. 2.1b. Equivalent kinematic diagrams of the triadic chains LT (left and right)

With this triadic chain $\operatorname{LT}(2,3,4,5)$ we may notice that the central element 4 having a rotation - translational motion (plane-parallel) does an instantaneous rotation around the I_{40} point (the instantaneous rotation centre) situated upon the intersection of the equalizing bar 3 with the line drawn through the articulation D and perpendicular on the guide Δ_{5} (fig. 2.1c).

Fig. 2.1c. Positioning of the instantaneous rotation centre I_{40}

3. KINEMATIC GEOMETRY OF THE TRIADIC CHAIN MECHANISM

We shall consider the kinematic diagram of the $3^{\text {rd }}$ class mechanism (with a triadic chain) of a V power switcher (fig. 3.1a).

For a geometrical kinematic analysis of the proposed mechanism, we isolate the triadic chain $\operatorname{LT}(2,3,4,5)$ of the 5R+T type (fig. 3.1b).

Fig. 3.1a. Kinematic diagram of the proposed mechanism

Fig. 3.1b. The associated vector contour lines
We identify two vector contour lines associated to this kinematic chain, where each side is suitably oriented and positioned by means of the trigonometrically oriented angle.

The two independent contour lines selected are (fig. $3.1 b$): $\mathrm{O}^{\prime} \mathrm{A}_{0} \mathrm{ABCC}_{0} \mathrm{O}^{\prime}$ and $\mathrm{C}_{0} \mathrm{CDD}_{0} \mathrm{C}_{0}$.

For each independent contour line we write the closing vector equation:

$$
\begin{align*}
& \overrightarrow{O^{\prime} A_{0}}+\overrightarrow{A_{0} A}-\overrightarrow{B A}-\overrightarrow{C B}+\overrightarrow{C C_{0}}+\overrightarrow{C_{0} O^{\prime}}=0 \tag{3.1}\\
& \overrightarrow{C C_{0}}-\overrightarrow{C D}-\overrightarrow{D D_{0}}-\overrightarrow{D_{0} C_{0}}=0 \tag{3.2}
\end{align*}
$$

The two vector equations are written in a suitable way so as to have the vectors containing unknown variables to the left:

$$
\begin{align*}
& \overrightarrow{B A}+\overrightarrow{C B}-\overrightarrow{C C_{0}}=\overrightarrow{O^{\prime} A_{0}}+\overrightarrow{A_{0} A}+\overrightarrow{C_{0} O^{\prime}} \tag{3.3}\\
& \overrightarrow{C C_{0}}-\overrightarrow{C D}-\overrightarrow{D D_{0}}=\overrightarrow{D_{0} C_{0}} \tag{3.4}
\end{align*}
$$

The scaling equations related to the vector equations (3.3) and (3.4) are expressed as follows (fig. 3.1b):
$l_{2} \cos \varphi_{2}+l_{4}^{\prime} \cos \left(\varphi_{4}-\alpha_{4}\right)-l_{3} \cos \varphi_{3}=C_{0} O^{\prime} ;$
$l_{2} \sin \varphi_{2}+l_{4}^{\prime} \sin \left(\varphi_{4}-\alpha_{4}\right)-l_{3} \sin \varphi_{3}=y_{0}-l_{1}-s_{1} ;$
$\left.l_{3} \cos \varphi_{3}-l_{4} \cos \varphi_{4}-s_{5} \cos 90^{\circ}+\alpha\right)=e \cdot \cos \alpha ;$ (3.5)
$l_{3} \sin \varphi_{3}-l_{4} \sin \varphi_{4}-s_{5} \sin \left(90^{\circ}+\alpha\right)=e \cdot \sin \alpha$.
The system (3.5) consists of four scaling equations with four unknown variables, of which three angles $\left(\varphi_{2}, \varphi_{3}, \varphi_{4}\right)$ and a linear displacement $\left(s_{5}\right)$:

$$
\left\{\begin{array}{c}
l_{2} \cos \varphi_{2}+l_{4}^{\prime} \cos \left(\varphi_{4}-\alpha_{4}\right)-l_{3} \cos \varphi_{3}=x_{O^{\prime}}-x_{C_{0}} \tag{3.6}\\
l_{2} \sin \varphi_{2}+l_{4}^{\prime} \sin \left(\varphi_{4}-\alpha_{4}\right)-l_{3} \sin \varphi_{3}=y_{0}-l_{1}-s_{1} \\
l_{3} \cos \varphi_{3}-l_{4} \cos \varphi_{4}+s_{5} \sin \alpha=e \cdot \cos \alpha \\
l_{3} \sin \varphi_{3}-l_{4} \sin \varphi_{4}-s_{5} \cos \alpha=e \cdot \sin \alpha
\end{array}\right.
$$

In the particular case when the articulationse B, C and D are collinear (fig. $3.1 d$), the angle α_{4} is null $\left(\alpha_{4}=0\right)$, so that the scaling equations (3.6) become:

$$
\left\{\begin{array}{c}
l_{2} \cos \varphi_{2}+l_{4}^{\prime} \cos \varphi_{4}-l_{3} \cos \varphi_{3}=x_{O^{\prime}}-x_{C_{0}} \tag{3.7}\\
l_{2} \sin \varphi_{2}+l_{4}^{\prime} \sin \varphi_{4}-l_{3} \sin \varphi_{3}=y_{0}-l_{1}-s_{1} \\
l_{3} \cos \varphi_{3}-l_{4} \cos \varphi_{4}+s_{5} \sin \alpha=e \cdot \cos \alpha \\
l_{3} \sin \varphi_{3}-l_{4} \sin \varphi_{4}-s_{5} \cos \alpha=e \cdot \sin \alpha
\end{array}\right.
$$

To solve the system consisting of four partially nonlinear scaling equations (3.7) with 4 unknown variables, we can apply the linearization method.

Thus, in the initial position of the mechanism ($\left.s_{1}=0\right)$ we measure (on the scaled kinematic diagram) the angles $\varphi_{2}^{0}, \varphi_{3}^{0}, \varphi_{4}^{0}$ and the linear displacement s_{5}^{0}.

In a position of the plane mechanism (from the vicinity of the initial position) for s_{1} imposed, the four variables become:

$$
\begin{equation*}
\varphi_{2}^{0}+\Delta \varphi_{2}, \varphi_{3}^{0}+\Delta \varphi_{3}, \varphi_{4}^{0}+\Delta \varphi_{4} \text { and } s_{5}^{0}+\Delta s_{5} \tag{3.8}
\end{equation*}
$$

The linearization of the (3.7) equations is done with the formulae:

$$
\begin{align*}
& \cos \left(\varphi_{i}+\Delta \varphi_{i}\right)=\cos \varphi_{i}-\Delta \varphi_{i} \cdot \sin \varphi_{i} \tag{3.9}\\
& \sin \left(\varphi_{i}+\Delta \varphi_{i}\right)=\sin \varphi_{i}+\Delta \varphi_{i} \cdot \cos \varphi_{i} \cdot i=2,3,4
\end{align*}
$$

The system of non-linear equations becomes a system of linear equations:

$$
\left\{\begin{array}{l}
a_{11} X_{1}+a_{12} X_{2}+a_{13} X_{3}+a_{14} X_{4}=b_{1} \tag{3.11}\\
a_{21} X_{1}+a_{22} X_{2}+a_{23} X_{3}+a_{24} X_{4}=b_{2} \\
a_{31} X_{1}+a_{32} X_{2}+a_{33} X_{3}+a_{34} X_{4}=b_{3} \\
a_{41} X_{1}+a_{42} X_{2}+a_{43} X_{3}+a_{44} X_{4}=b_{4}
\end{array}\right.
$$

The following notations were used in this system of equations:

$$
\begin{aligned}
& a_{11}=l_{2} \sin \varphi_{2}^{0} ; a_{12}=l_{3} \cos \varphi_{3}^{0} ; a_{13}=l_{4}^{\prime} \sin \varphi_{4}^{0} ; a_{14}=0 \\
& b_{1}=l_{2} \cos \varphi_{2}^{0}+l_{4}^{\prime} \cos \varphi_{4}^{0}+l_{3} \cos \varphi_{3}^{0}+x_{C_{0}}-x_{O^{\prime}} ; \\
& a_{21}=l_{2} \cos \varphi_{2}^{0} ; a_{22}=-l_{3} \cos \varphi_{3}^{0} ; a_{23}=l_{4}^{\prime} \cos \varphi_{4}^{0} ; a_{24}=0 ; \\
& b_{2}=y_{0}-l_{1}-s_{1}-l_{2} \sin \varphi_{2}^{0}+l_{3} \sin \varphi_{3}^{0}-l_{4}^{\prime} \sin \varphi_{4}^{0} ; \\
& a_{31}=0 ; a_{32}=l_{3} \sin \varphi_{3}^{0} ; a_{33}=-l_{4} \sin \varphi_{4}^{0} ; a_{34}=\sin \alpha ; \\
& b_{3}=l_{3} \cos \varphi_{3}^{0}-l_{4} \cos \varphi_{4}^{0}+s_{5}^{0} \sin \alpha+e \cdot \cos \alpha ; \\
& a_{41}=0 ; a_{42}=l_{3} \cos \varphi_{3}^{0} ; a_{43}=-l_{4} \cos \varphi_{4}^{0} ; a_{44}=-\cos \alpha \\
& b_{4}=e \cdot \sin \alpha-l_{3} \sin \varphi_{3}^{0}+l_{4} \sin \varphi_{4}^{0}+s_{5}^{0} \cdot \sin \alpha \\
& \quad X_{1}=\Delta \varphi_{2} ; X_{2}=\Delta \varphi_{3} ; X_{3}=\Delta \varphi_{4} ; X_{4}=\Delta s_{5}
\end{aligned}
$$

4. THE KINEMATIC CALCULATION OF THE PLANAR TRIADIC CHAIN MECHANISM

We begin from the final stage of the geometrical calculation of the plane triadic chain mechanism, when we know the angular or linear positions of the component elements. The methods used in the kinematic calculation are methods that also meet in the papers [5], [6], [7].

To determine the angular and linear velocities of the kinematic elements in the structure of the mechanism, we consider the previously determined position scaling equations (3.7).

$$
\left\{\begin{array}{c}
l_{2} \cos \varphi_{2}+l_{4}^{\prime} \cos \varphi_{4}-l_{3} \cos \varphi_{3}=x_{O^{\prime}}-x_{C_{0}} \tag{4.1}\\
l_{2} \sin \varphi_{2}+l_{4}^{\prime} \sin \varphi_{4}-l_{3} \sin \varphi_{3}=y_{0}-l_{1}-s_{1} \\
l_{3} \cos \varphi_{3}-l_{4} \cos \varphi_{4}+s_{5} \sin \alpha=e \cdot \cos \alpha \\
l_{3} \sin \varphi_{3}-l_{4} \sin \varphi_{4}-s_{5} \cos \alpha=e \cdot \sin \alpha
\end{array}\right.
$$

Each scaling equation is differentiated with respect to time, resulting in the linear system:

$$
\left\{\begin{array}{c}
-l_{2} \sin \varphi_{2} \cdot \dot{\varphi}_{2}-l_{4}^{\prime} \sin \varphi_{4} \cdot \dot{\varphi}_{4}+l_{3} \sin \varphi_{3} \cdot \dot{\varphi}_{3}=0 \tag{4.2}\\
l_{2} \cos \varphi_{2} \cdot \dot{\varphi}_{2}+l_{4}^{\prime} \cos \varphi_{4} \cdot \dot{\varphi}_{4}-l_{3} \cos \varphi_{3} \cdot \dot{\varphi}_{3}=-\dot{s}_{1} \\
\quad-l_{3} \sin \varphi_{3} \cdot \dot{\varphi}_{3}+l_{4} \sin \varphi_{4} \cdot \dot{\varphi}_{4}+\dot{s}_{5} \sin \alpha=0 \\
l_{3} \cos \varphi_{3} \cdot \dot{\varphi}_{3}-l_{4} \cos \varphi_{4} \cdot \dot{\varphi}_{4}+\dot{s}_{5} \cos \alpha=0
\end{array}\right.
$$

We know the linear velocity of piston $1\left(\dot{s}_{1}\right)$, and the unknown variables in the equations forming this system are the angular velocities

$$
\dot{\varphi}_{2}=\omega_{2}=x_{1}, \dot{\varphi}_{3}=\omega_{3}=x_{2}, \dot{\varphi}_{4}=\omega_{4}=x_{3}
$$

as well as the linear velocity $\dot{s}_{5}=v_{5}=x_{4}$.
The linear equations system (4.2) shall be generally written:

$$
\left\{\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+a_{14} x_{4}=b_{1} \tag{4.3}\\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+a_{24} x_{4}=b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+a_{33} x_{4}=b_{3} \\
a_{41} x_{1}+a_{42} x_{2}+a_{43} x_{3}+a_{44} x_{4}=b_{4}
\end{array}\right.
$$

In the equations of the system (4.3), we used the following notations for coefficients:

$$
\begin{aligned}
& a_{11}=-l_{2} \sin \varphi_{2} ; a_{12}=l_{3} \sin \varphi_{3} ; a_{13}=-l_{4}^{\prime} \sin \varphi_{4} ; a_{14}=0 ; b_{1}=0 \\
& a_{21}=l_{2} \cos \varphi_{2} ; a_{22}=-l_{3} \cos \varphi_{3} ; a_{23}=l_{4}^{\prime} \cos \varphi_{4} ; a_{24}=0 ; b_{2}=-\dot{s}_{1} ; \\
& a_{31}=0 ; a_{32}=-l_{3} \sin \varphi_{3} ; a_{33}=l_{4} \sin \varphi_{4} ; a_{34}=\sin \alpha ; b_{3}=0 \\
& a_{41}=0 ; a_{42}=l_{3} \cos \varphi_{3} ; a_{43}=-l_{4} \cos \varphi_{4} ; a_{44}=\cos \alpha ; b_{4}=0
\end{aligned}
$$

The angular / linear accelerations are obtained by differentiating with respect to time the velocity scaling equations (4.2), resulting in:

$$
\left\{\begin{array}{c}
l_{2} \cos \varphi_{2} \cdot \dot{\varphi}_{2}^{2}+l_{2} \sin \varphi_{2} \cdot \ddot{\varphi}_{2}+l_{4}^{\prime} \cos \varphi_{4} \cdot \dot{\varphi}_{4}^{2}+l_{4}^{\prime} \sin \varphi_{4} \cdot \ddot{\varphi}_{4}- \\
-l_{3} \cos \varphi_{3} \cdot \dot{\varphi}_{3}^{2}-l_{3} \sin \varphi_{3} \cdot \ddot{\varphi}_{3}=0 \\
l_{2} \sin \varphi_{2} \cdot \dot{\varphi}_{2}^{2}-l_{2} \cos \varphi_{2} \cdot \ddot{\varphi}_{2}+l_{4}^{\prime} \sin \varphi_{4} \cdot \dot{\varphi}_{4}^{2}-l_{4}^{\prime} \cos \varphi_{4} \cdot \ddot{\varphi}_{4}- \\
-l_{3} \sin \varphi_{3} \cdot \dot{\varphi}_{3}^{2}+l_{3} \cos \varphi_{3} \cdot \ddot{\varphi}_{3}=\ddot{s}_{1} \\
-l_{3} \cos \varphi_{3} \cdot \dot{\varphi}_{3}^{2}-l_{3} \sin \varphi_{3} \cdot \ddot{\varphi}_{3}+l_{4} \cos \varphi_{4} \cdot \dot{\varphi}_{4}^{2}- \\
-l_{4} \sin \varphi_{4} \cdot \ddot{\varphi}_{4}+\ddot{s}_{5} \sin \alpha=0 \\
-l_{3} \sin \varphi_{3} \cdot \dot{\varphi}_{3}^{2}+l_{3} \cos \varphi_{3} \cdot \ddot{\varphi}_{3}+l_{4} \sin \varphi_{4} \cdot \dot{\varphi}_{4}^{2}- \tag{4.4}\\
-l_{4} \cos \varphi_{4} \cdot \ddot{\varphi}_{4}+\ddot{s}_{5} \cos \alpha=0
\end{array}\right.
$$

Keeping to the left of the above equations the terms containing accelerations, the system of linear equations (4.4) shall be written:

$$
\left\{\begin{array}{c}
l_{2} \sin \varphi_{2} \cdot \ddot{\varphi}_{2}+l_{4}^{\prime} \sin \varphi_{4} \cdot \ddot{\varphi}_{4}-l_{3} \sin \varphi_{3} \cdot \ddot{\varphi}_{3}= \\
=-l_{2} \cos \varphi_{2} \cdot \dot{\varphi}_{2}^{2}-l_{4}^{\prime} \cos \varphi_{4} \cdot \dot{\varphi}_{4}^{2}+l_{3} \cos \varphi_{3} \cdot \dot{\varphi}_{3}^{2} \\
-l_{2} \cos \varphi_{2} \cdot \ddot{\varphi}_{2}-l_{4}^{\prime} \cos \varphi_{4} \cdot \ddot{\varphi}_{4}+l_{3} \cos \varphi_{3} \cdot \ddot{\varphi}_{3}= \tag{4.5}\\
=\ddot{s}_{1}-l_{2} \sin \varphi_{2} \cdot \dot{\varphi}_{2}^{2}-l_{4}^{\prime} \sin \varphi_{4} \cdot \dot{\varphi}_{4}^{2}+l_{3} \sin \varphi_{3} \cdot \dot{\varphi}_{3}^{2} \\
-l_{3} \sin \varphi_{3} \cdot \ddot{\varphi}_{3}+l_{4} \sin \varphi_{4} \cdot \ddot{\ddot{\varphi}}_{4}+\ddot{s}_{5} \sin \alpha= \\
=l_{3} \cos \varphi_{3} \cdot \dot{\varphi}_{3}^{2}-l_{4} \cos \varphi_{4} \cdot \dot{\varphi}_{4}^{2} \\
l_{3} \cos \varphi_{3} \cdot \ddot{\varphi}_{3}-l_{4} \cos \varphi_{4} \cdot \ddot{\varphi}_{4}+\ddot{s}_{5} \cos \alpha= \\
=l_{3} \sin \varphi_{3} \cdot \dot{\varphi}_{3}^{2}-l_{4} \sin \varphi_{4} \cdot \dot{\varphi}_{4}^{2}
\end{array}\right.
$$

Solving the system of 4 linear equations (4.5) the 4 accelerations shall be inferred as unknown variables:

$$
\ddot{\varphi}_{2}=\varepsilon_{2} ; \ddot{\varphi}_{3}=\varepsilon_{3} ; \ddot{\varphi}_{4}=\varepsilon_{4} ; \ddot{s}_{5}=a_{5}
$$

5. OPTIMIZATION OF THE KINEMATIC SCHEME WITH TRIADIC CHAIN TYPE 4R+2T

In order to minimize the space occupied by the mechanism of the V power switcher, in the kinematic diagram of the triadic chains $\operatorname{LT}(2,3,4,5)$ and $\operatorname{LT}(\overline{2}, \overline{3}, \overline{4}, \overline{5})$, (fig. 5.1), we replace the articulations $\mathrm{C}(3,4)$ and $\bar{C}(\overline{3}, \overline{4})$ with a transational coupling between elements 3 and 4 respectively $\overline{3}$ and $\overline{4}$ (fig. 5.1a).

Fig. 5.1a. Kinematic scheme of the triadic chains $4 \mathrm{R}+2 \mathrm{~T}$

In the topological structure of the new version of the triadic kinematic chain $\operatorname{LT}(2,3,4,5) 4$ rotation couplings are identified (A, B, $\mathrm{C}_{0}, \mathrm{D}$) as well as 2 translational couplings (C, E).

Fig. 5.1b. Kinematic scheme of the triadic chain with superposed couplings
Also, the length CC_{0} of the equalizer 3 can significantly decrease to zero (fig. $5.1 b$), when the fixed articulation C_{0} lies in the direction of the bar 4 in parallel superposed planes.In this new scheme (fig. 5.1b) kinematic geometry is much simpler. Thus, when the point A moves to the position A^{\prime} (on the vertical Δ_{1}), the motion is transmitted by means of the bars 2 and 4 to the bar 5 which translates into the fixed guide E.

Fig. 5.1c. Drawing a new position of the triad.

6. THE GEOMETRICAL POSITIONAL CALCULATION OF THE NEW TRIADIC CHAIN MECHANISM

We consider the kinematic scheme of the V mechanism (fig. 6.1a) where two symmetrical triadic chains are identified $\operatorname{LT}(2,3,4,5)$ and $\operatorname{LT}(\overline{2}, \overline{3}, \overline{4}, \overline{5})$.

Fig. 6.1a. Kinematic diagram of the new V mechanism $\left(a_{1}\right)$ and vector contour lines $\left(a_{2}\right)$

Depending on the y_{0} coordinate, the point A_{0}, the displacement s_{1} of piston 1 and the lengths l_{1} and $l_{1}^{\prime}=0,5 A \bar{A}$ we determine the coordinates of the articulations A and \bar{A} :

$$
\begin{aligned}
x_{A}=-l_{1}^{\prime} ; y_{A}=y_{0}-l_{1}-s_{1} \\
x_{\bar{A}}=l_{1}^{\prime} ; y_{\bar{A}}=y_{0}-l_{1}-s_{1} .
\end{aligned}
$$

Also, the Cartesian coordinates of the fixed articulations C_{0} and \bar{C}_{0} are known:

$$
x_{C_{0}}=-x_{\bar{C}_{0}} ; y_{C_{0}}=y_{\bar{C}_{0}}
$$

The two fixed guides of the bars 5 and $\overline{5}$ (fig. 9.4.1a) are inclined at an α angle as to the axis of the coordinates.

Following only the left kinematic chain, the fixed point C_{0} is situated as to the guide Δ_{5} at the distance $C_{0} D_{0}=e$, and displacement of the point D as to D_{0} is $D_{0} D=s_{5}$.

The constant lengths of the bars 2 and 4 are known: $A B=l_{2} ; D B=l_{4}$.

We noted as C the mobile point on the bar 4, whose position as to the articulation D was noted as $C D=s_{43}$ and symbolises the relative displacement between elements 4 and 3.

To determine the instantaneous positions of the proposed mechanism (fig. 6.1a), we identify two independent closed contour lines containing the elements 02430 and 03450.

Using the method of the associated vector contour [7], we obtain the following scaling equations:

$$
\begin{align*}
& l_{2} \cos \varphi_{2}-l_{4} \cos \varphi_{4}+s_{43} \cos \varphi_{4}=x_{A}-x_{C_{0}} \\
& l_{2} \sin \varphi_{2}-l_{4} \sin \varphi_{4}+s_{43} \sin \varphi_{4}=y_{A}-y_{C_{0}} \\
& s_{5} \sin \alpha-s_{43} \cos \varphi_{4}=e \cdot \cos \alpha \\
& s_{5} \cos \alpha-s_{43} \sin \varphi_{4}=e \cdot \sin \alpha \tag{6.4}
\end{align*}
$$

It should be noticed that the first two scaling equations are non-linear having the angular unknown variables φ_{2} and φ_{4}, while the last two equations are partially linear having the unknown variables s_{43} and $s_{5}=s_{50}$.

7. DETERMINING VELOCITIES AND ACCELERATIONS FOR THE NEW TRIADIC CHAIN V MECHANISM

Depending on the instantaneous known position of the analysed mechanism (fig. 6.1a), we can determine the angular and linear velocities of the led kinematic elements forming the triadic chains $L T(2,3,4,5)$ and $L T(\overline{2}, \overline{3}, \overline{4}, \overline{5})$ of the 4R+2T type.

We consider the positions/ displacements scaling equations ($7.1,2,3,4$) that are differentiated with respect to time, resulting in the velocities equations:

$$
\begin{aligned}
& -l_{2} \sin \varphi_{2} \cdot \dot{\varphi}_{2}+\left(l_{4}-s_{43}\right) \sin \varphi_{4} \cdot \dot{\varphi}_{4}+\cos \varphi_{4} \cdot \dot{s}_{43}=\dot{x}_{A} ;(7.1) \\
& l_{2} \cos \varphi_{2} \cdot \dot{\varphi}_{2}-\left(l_{4}-s_{43}\right) \cos \varphi_{4} \cdot \dot{\varphi}_{4}+\sin \varphi_{4} \cdot \dot{s}_{43}=\dot{y}_{A} ;(7.2)
\end{aligned}
$$

$$
\begin{align*}
& s_{43} \sin \varphi_{4} \cdot \dot{\varphi}_{4}-\cos \varphi_{4} \cdot \dot{s}_{43}+\sin \alpha \cdot \dot{s}_{5}=0 \tag{7.3}\\
& s_{43} \cos \varphi_{4} \cdot \dot{\varphi}_{4}+\sin \varphi_{4} \cdot \dot{s}_{43}-\cos \alpha \cdot \dot{s}_{5}=0 \tag{7.4}
\end{align*}
$$

The obtained equations (7.1, 2, 3, 4) are linear equations forming a linear system that leads to the further calculation of the angular / linear velocities $\dot{\varphi}_{2}=\omega_{2}, \dot{\varphi}_{4}=\omega_{4}, \dot{s}_{43}=v_{43}, \dot{s}_{5}=v_{5}$.

The angular $\left(\varphi_{2}, \varphi_{4}\right)$ and linear $\left(s_{43}, s_{5}\right)$ positions of the elements of the triadic chain are determined in the previous stage. The components of the point A velocity are:

$$
\begin{equation*}
\dot{x}_{A}=0 ; \dot{y}_{A}=-v_{1} \tag{7.5}
\end{equation*}
$$

Generally, the velocity scaling equations are written:

$$
\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+a_{14} x_{4}=0 \tag{7.6}\\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+a_{24} x_{4}=-v_{1} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+a_{34} x_{4}=0 \\
a_{41} x_{1}+a_{42} x_{2}+a_{43} x_{3}+a_{44} x_{4}=0
\end{array}\right.
$$

The following notations were used in the system of linear scaling equations (7.6):

- for variable or constant coefficients:
$a_{11}=-l_{2} \sin \varphi_{2} ; a_{12}=\left(l_{4}-s_{43}\right) \sin \varphi_{4} ; a_{13}=\cos \varphi_{4} ; a_{14}=0 ;$
$a_{21}=l_{2} \cos \varphi_{2} ; a_{22}=-\left(l_{4}-s_{43}\right) \cos \varphi_{4} ; a_{23}=\sin \varphi_{4} ; a_{24}=0 ;$
$a_{31}=0 ; a_{32}=s_{43} \sin \varphi_{4} ; a_{33}=-\cos \varphi_{4} ; a_{34}=\sin \alpha ;$
$a_{41}=0 ; a_{42}=s_{43} \cos \varphi_{4} ; a_{43}=\sin \varphi_{4} ; a_{44}=-\cos \alpha$.
- for unknown variables / angular or linear velocities:

$$
x_{1}=\dot{\varphi}_{2} ; x_{2}=\dot{\varphi}_{4} ; x_{3}=\dot{s}_{43} ; x_{5}=\dot{s}_{5} .
$$

In the third stage, knowing the angular / linear velocities of the kinematic elements 2, 3, 4 and 5 from the triadic chain, we determine the angular / linear accelerations of these kinematic elements. Thus, the explicit scaling equations $(7.1,2,3,4)$ are differentiated with respect to time and the following are obtained:

$$
\begin{gather*}
-l_{2} \sin \varphi_{2} \cdot \ddot{\varphi}_{2}+\left(l_{4}-s_{43}\right) \sin \varphi_{4} \cdot \ddot{\varphi}_{4}+\cos \varphi_{4} \cdot \ddot{s}_{43}= \\
l_{2} \cos \varphi_{2} \cdot \dot{\varphi}_{2}^{2}-l_{4} \cos \varphi_{4} \cdot \dot{\varphi}_{4}^{2}+2 \sin \varphi_{4} \cdot \dot{s}_{43} \cdot \dot{\varphi}_{4} \tag{7.7}\\
l_{2} \cos \varphi_{2} \cdot \ddot{\varphi}_{2}-\left(l_{4}-s_{43}\right) \cos \varphi_{4} \cdot \ddot{\varphi}_{4}+\sin \varphi_{4} \cdot \ddot{s}_{43}= \\
l_{2} \sin \varphi_{2} \cdot \dot{\varphi}_{2}^{2}-l_{4} \sin \varphi_{4} \cdot \dot{\varphi}_{4}^{2}-2 \cos \varphi_{4} \cdot \dot{s}_{43} \cdot \dot{\varphi}_{4} \tag{7.8}\\
s_{43} \sin \varphi_{4} \cdot \ddot{\varphi}_{4}-\cos \varphi_{4} \cdot \ddot{s}_{43}+\sin \alpha \cdot \ddot{s}_{5}= \\
-s_{43} \cos \varphi_{4} \cdot \dot{\varphi}_{4}^{2}-2 \sin \varphi_{4} \cdot \dot{s}_{43} \cdot \dot{\varphi}_{4} \tag{7.9}\\
s_{43} \cos \varphi_{4} \cdot \ddot{\varphi}_{4}-\sin \varphi_{4} \cdot \ddot{s}_{43}+\cos \alpha \cdot \ddot{s}_{5}= \\
\quad-s_{43} \sin \varphi_{4} \cdot \dot{\varphi}_{4}^{2}-2 \cos \varphi_{4} \cdot \dot{s}_{43} \cdot \dot{\varphi}_{4} \tag{7.10}
\end{gather*}
$$

From this system of linear equations we determine the accelerations: $\ddot{\varphi}_{2}, \ddot{\varphi}_{4}, \ddot{s}_{43}, \ddot{s}_{5}$.

8. CONCLUSIONS

Starting from the current dyadic chain kinematic scheme of the V high voltage power switcher, the paper suggests new kinematic diagrams with a triadic structure.

For the first kinematic scheme proposed, based on a triadic chain of the $5 \mathrm{R}+\mathrm{T}$ type, we have analysed two versions having a different geometrical structure.

The second kinematic scheme is based on a triadic chain of the $4 \mathrm{R}+2 \mathrm{~T}$ type, having the possibility to optimize the operation of the V mechanism.

For each new kinematic scheme the geometrical and kinematic analysis method has been developed, presenting all the stages of the analytic calculations of displacements, velocities and accelerations, especially for the translating bar with the power switch point.

BIBLIOGRAPHY

[1] Antonescu, P., Antonescu, O., Mechanisms and the Dynamics of Machines, Printech Publishing House, Bucharest, 2005;
[2] Nedela, N., Antonescu, O., Mechanisms Used as Medium Voltage Electric Power Switchers, Journal of Mechanisms and Manipulators, Vol. 8, No 1, 2009;
[3] Nedela, N., Geonea, I., Mechanisms Used for High Voltage Switch Devices, Journal of Mechanisms and Manipulators, Vol. 9, No 1, 2010, p. 51-58;
[4] Nedela, N., A Geometrical Analysis and Synthesis of Mechanisms in the Electro Technical Field, Doctoral thesis, "Politehnica" University of Bucharest, 2012;
[5] Luca L., Popescu I, Paths and Laws of Motion of a Mechanism with Two Successive Conductive Elements and a Triad. Applied Mechanics and Materials Vol. 772 ,2015 © (2015) Trans Tech Publications, Switzerland, pp 344-349.
[6] Popescu I., Luca L. , Mitsi S., Geometria , structura si cinematica unor mecanisme. Editura Sitech, Craiova, 2011.
[7] Popescu I., Luca L., Cherciu M., Structura si cinematica mecanismelor. Aplicatii. Editura Sitech Craiova, 2013.

