GEOMETRIC AND KINEMATIC OF SERIAL ROBOT

Ovidiu Antonescu*, Mariana Trofimescu**, Păun Antonescu***
* University "Politehnica" of Bucharest, e-mail: oval33@hotmail.com
** Dinu Lipatti High School, Bucharest, e-mail: banitamariana@yahoo.com
*** University "Politehnica" of Bucharest, e-mail: panton38@hotmail.com

Abstract

The paper presents the mobility calculation, geometry and kinematics of a robot arm. It is a serial robot whose main spatial kinematic chain consists of four revolute joints. Four continuous current electric motors are used for driving the serial robot. We have used matrix calculus for the kinematic analysis of the serial robot arm so that we obtained the three Cartesian coordinates of the characteristic points according to the four independent angular parameters. By means of reversed kinematics, when the three coordinates of the end effector point are imposed, we deduced three non-linear equations with four angular unknown parameters, which proves the robot's redundancy (an extra unknown parameter). Regarding the prehension mechanism, the kinematic schema with two symmetrical parallelograms has been presented, which ensures the circular translational motion of the two fingers.

Keywords: serial robot, kinematic schema, mobility, matrix calculus, end effector.

1. The topological structure of the serial robot

The mechanical robotic arm (fig. 1) is a serial type robot [5, 9, 10], including an open kinematic chain $[1,2]$ with spatial motion.

Fig. 1. Photos of the electrically driven serial robot [11]

The kinematic schema of the robotic arm (fig.
2) consists of a fixed standing point 0 around
which the articulated kinematic chain moves in a horizontal plane.

a

b

c

Fig. 2. Kinematic schema of the serial robot mechanism

The mobility of the open kinematic chain is given by the number of kinematic joints, which represent planar articulations (mono-mobile): O (with a vertical axis), A, B, C (with parallel horizontal axes), and D (whose axis is perpendicular on the C axis). For the vertical position of the kinematic chain (fig. 2b), the articulation axis in D is horizontal.

By observing the kinematic schema (fig. 2), we identify five articulations, which means that the mobility of the serial robot is $M_{b}=5$. The five main kinematic elements are driven by five

continuous current electric motors, located right on or next to the axis of each articulation.

Each electric motor is geared with a wormtype reducer and spur gears. What is specific to this serial robot is the fact that the motor of the articulation in C is placed on bar 3 in point E (fig. 2c).

From E, the motion is transmitted to the axis in C by means of two parallelogram dyadic chains ($\mathrm{EFGC}, \mathrm{EF} \mathrm{G}^{\prime} \mathrm{C}$) denoted as 6 and 7 .

The articulation in D (fig. 2b) is double, consisting of two closed kinematic chains $(4,5,8,9)$ of the parallelogram type (fig. 3).

Fig. 3. The prehension mechanism: photo (a) [11] and kinematic schema (b)

Thus, a dyadic chain $\operatorname{LD}(8,9)$ is added to each bar 5, and the rotations of bars 5 (to the right and to the left) are obtained by means of a spur gear (fig. 3b).

The double articulation in D (fig. 2 b) is in fact a plate 4 with four articulations $\mathrm{D}, \mathrm{D}^{\prime}, \mathrm{D}_{1}$ and D^{\prime} (fig. 3b).

Each of the two gears is solidary with bar 5, the one to the left, respectively to the right (fig. 3). The two segments JK and J'K' are parallel, which allows for better prehension.

The mobility of the serial robot, equipped with two kinematic closed contours on bar 3 (fig. 2 c), is then calculated using the formula [1, 3, 4]

$$
\begin{equation*}
M_{b}=\sum_{m=1}^{5} m C_{m}-\sum_{r=2}^{6} r N_{r} \tag{1}
\end{equation*}
$$

The kinematic parameters of the mechanism
(fig. 2) are in the matrix

$$
\left[\begin{array}{lllll}
C_{1} & C_{2} & C_{3} & C_{4} & C_{5} \tag{2}\\
N_{2} & N_{3} & N_{4} & N_{5} & N_{6}
\end{array}\right]=\left[\begin{array}{ccccc}
11 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0
\end{array}\right]
$$

Using formula (1) we deduce

$$
\begin{equation*}
M_{b}=1 \times 11-3 \times 2=5 \tag{3}
\end{equation*}
$$

Regarding the prehension mechanism that
where structural parameters are given in the consists of articulated bars and gears (fig. 3), its matrix mobility is calculated by means of formula (1),

$$
\left[\begin{array}{ccccc}
C_{1} & C_{2} & C_{3} & C_{4} & C_{5} \tag{4}\\
N_{2} & N_{3} & N_{4} & N_{5} & N_{6}
\end{array}\right]=\left[\begin{array}{lllll}
8 & 1 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 & 0
\end{array}\right]
$$

Substituting these parameters in formula (1)
we deduce

$$
\begin{equation*}
M_{b}=(1 \times 8+2 \times 1)-3 \times 3=1 \tag{5}
\end{equation*}
$$

The mobility of the entire mechanism of the serial robot (fig. 2), including the prehension mechanism (fig. 3), is deduced by means of

$$
\left[\begin{array}{ccccc}
C_{1} & C_{2} & C_{3} & C_{4} & C_{5} \tag{6}\\
N_{2} & N_{3} & N_{4} & N_{5} & N_{6}
\end{array}\right]=\left[\begin{array}{ccccc}
19 & 1 & 0 & 0 & 0 \\
0 & 5 & 0 & 0 & 0
\end{array}\right]
$$

Substituting these numerical data, we obtain

$$
M_{b}=(1 \times 18+2 \times 1)-3 \times 5=5
$$

(7)

Besides the mobility of the prehension mechanism (fig. 3), the serial robot has four mobilities, which shows that the robot is hyperredundant [7] since a point in 3D is defined by three Cartesian coordinates.
 \section*{2. Direct kinematics of the robot arm type
 \section*{2. Direct kinematics of the robot arm type

 RRRR}

 RRRR}

robot

Let us consider the spatial kinematic chain of the RRRR type, having the geometrical configuration $R \perp R\|R\| R$ (fig. 4), which can be used as a positioning mechanism $[6,8]$ in the structure of a serial sture of a
formula (1) and the matrix of specific parameters is

$$
\begin{gather*}
{\left[S_{01}\right]_{4 \times 4}=\left[\begin{array}{cccc}
\cos \varphi_{1} & 0 & \sin \varphi_{1} & 0 \\
\sin \varphi_{1} & 0 & -\cos \varphi_{1} & 0 \\
0 & 1 & 0 & a_{1} \\
0 & 0 & 0 & 1
\end{array}\right] ;\left[S_{12}\right]_{4 \times 4}=\left[\begin{array}{cccc}
\cos \varphi_{2} & -\sin \varphi_{2} & 0 & d_{2} \cos \varphi_{2} \\
\sin \varphi_{2} & \cos \varphi_{2} & 0 & d_{2} \sin \varphi_{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] ;} \\
{\left[S_{23}\right]_{4 \times 4}=\left[\begin{array}{cccc}
\cos \varphi_{3} & -\sin \varphi_{3} & 0 & d_{3} \cos \varphi_{3} \\
\sin \varphi_{3} & \cos \varphi_{3} & 0 & d_{3} \sin \varphi_{3} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] ;\left[S_{23}\right]_{4 \times 4}=\left[\begin{array}{cccc}
\cos \varphi_{4} & -\sin \varphi_{4} & 0 & d_{4} \cos \varphi_{4} \\
\sin \varphi_{4} & \cos \varphi_{4} & 0 & d_{4} \sin \varphi_{4} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] ;\left\{\bar{r}_{4}\right\}_{4 \times 1}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]} \tag{10}
\end{gather*}
$$

The transfer matrix $\left[T_{04}\right]_{4 \times 4}$ is the product of the four screw-matrices in (10)

$$
\begin{gather*}
{\left[T_{04}\right]_{4 \times 4}=\left[S_{01}\right]_{4 \times 4} \cdot\left[S_{12}\right]_{4 \times 4} \cdot\left[S_{23}\right]_{4 \times 4} \cdot\left[S_{34}\right]_{4 \times 4}=} \\
{\left[\begin{array}{cccc}
c \varphi_{1} c\left(\sum_{i=2}^{4} \varphi_{i}\right) & -c \varphi_{1} s\left(\sum_{i=2}^{4} \varphi_{i}\right) & s \varphi_{1} & \left(d_{2} c \varphi_{2}+d_{3} c\left(\sum_{i=2}^{3} \varphi_{i}\right)+d_{4} c\left(\sum_{I=2}^{4} \varphi_{I}\right)\right) c \varphi_{1} \\
s \varphi_{1} s\left(\sum_{i=2}^{4} \varphi_{i}\right) & s \varphi_{1} c\left(\sum_{i=2}^{4} \varphi_{i}\right) & -c \varphi_{1} & \left(d_{2} c \varphi_{2}+d_{3} c\left(\sum_{I=2}^{3} \varphi_{I}\right)+d_{4} c\left(\sum_{I=2}^{4} \varphi_{I}\right)\right) s \varphi_{1} \\
s\left(\sum_{i=2}^{4} \varphi_{i}\right) & c\left(\sum_{i=2}^{4} \varphi_{i}\right) & 0 & a_{1}+d_{2} s \varphi_{2}+d_{3} s\left(\sum_{I=2}^{3} \varphi_{I}\right)+d_{4} s\left(\sum_{I=2}^{4} \varphi_{I}\right) \\
0 & 0 & 0 & 1
\end{array}\right]} \tag{11}
\end{gather*}
$$

where we have used the notations for the final expression: $c=\cos , s=\sin , \varphi_{2}=\varphi_{20}, \varphi_{3}=\varphi_{32}$, $\varphi_{4}=\varphi_{43}$.

We notice the identity of the first three terms of the last column in (11) with the column matrix to the right of the matrix equation (8).

The Cartesian coordinates of point D are calculated by means of the formulas

$$
\begin{align*}
& x_{D}=\left(d_{2} \cos \varphi_{2}+d_{3} \cos \left(\varphi_{2}+\varphi_{3}\right)+d_{4} \cos \left(\varphi_{2}+\varphi_{3}+\varphi_{4}\right)\right) \cos \varphi_{1} \\
& y_{D}=\left(d_{2} \cos \varphi_{2}+d_{3} \cos \left(\varphi_{2}+\varphi_{3}\right)+d_{4} \cos \left(\varphi_{2}+\varphi_{3}+\varphi_{4}\right)\right) \sin \varphi_{1} \tag{12}\\
& z_{D}=a_{1}+d_{2} \sin \varphi_{2}+d_{3} \sin \left(\varphi_{2}+\varphi_{3}\right)+d_{4} \sin \left(\varphi_{2}+\varphi_{3}+\varphi_{4}\right)
\end{align*}
$$

This proves relation (8) obtained from a square matrix 3×3.

3. Inverse kinematics of the RRRR robot (determining position functions)

For the serial robot of the RRRR type (fig. 5), reversed kinematics results on the position functions:

$$
\begin{align*}
& \varphi_{10}=\varphi_{1}=f_{1}(t) ; \varphi_{21}=\varphi_{2}=f_{2}(t) \\
& \varphi_{32}=\varphi_{3}=f_{3}(t) ; \varphi_{43}=\varphi_{4}=f_{4}(t) \tag{13}
\end{align*}
$$

The Cartesian coordinates of the tracing point system of equations (12) deduced in direct D are imposed in reversed kinematics, and the kinematics is written as follows:

$$
\begin{align*}
& \left(d_{2} c \varphi_{2}+d_{3} c\left(\varphi_{2}+\varphi_{3}\right)+d_{4} c\left(\varphi_{2}+\varphi_{3}+\varphi_{4}\right)\right) c \varphi_{1}=x_{D} \\
& \left(d_{2} c \varphi_{2}+d_{3} c\left(\varphi_{2}+\varphi_{3}\right)+d_{4} c\left(\varphi_{2}+\varphi_{3}+\varphi_{4}\right)\right) s \varphi_{1}=y_{D} \tag{14}\\
& d_{2} s \varphi_{2}+d_{3} s\left(\varphi_{2}+\varphi_{3}\right)+d_{4} s\left(\varphi_{2}+\varphi_{3}+\varphi_{4}\right)=z_{D}-a_{1}
\end{align*}
$$

In general, for the robot we have considered (fig. 4), the system of equations (14) has a singular solution only for angle φ_{1}. Thus, we may
deduce angle φ_{1} from the first two equations using the formula

$$
\begin{equation*}
\varphi_{1}=\operatorname{arctg}\left(\frac{y_{D}}{x_{D}}\right) \tag{15}
\end{equation*}
$$

If we select a certain value for angle φ_{4}, we eliminate angle φ_{1} from the first two equations (14), and we obtain the trigonometric equation

$$
\begin{equation*}
d_{2} c \varphi_{2}+d_{3} c\left(\varphi_{2}+\varphi_{3}\right)+d_{4} c\left(\varphi_{2}+\varphi_{3}+\varphi_{4}\right)=\sqrt{x_{D}^{2}+y_{D}^{2}} \tag{16}
\end{equation*}
$$

Which together with the last equation of (14) forms the system of two non-linear equations:

$$
\left\{\begin{array}{c}
d_{2} c \varphi_{2}+d_{3} c\left(\varphi_{2}+\varphi_{3}\right)+d_{4} c\left(\varphi_{2}+\varphi_{3}+\varphi_{4}\right)=\sqrt{x_{D}^{2}+y_{D}^{2}} \tag{17}\\
d_{2} s \varphi_{2}+d_{3} s\left(\varphi_{2}+\varphi_{3}\right)+d_{4} s\left(\varphi_{2}+\varphi_{3}+\varphi_{4}\right)=z_{D}-a_{1}
\end{array}\right.
$$

From system (17) we first determine angle φ_{2}, by eliminating angle $\left(\varphi_{2}+\varphi_{3}\right)$, which leads to the trigonometric equation of the form:

$$
\begin{equation*}
A_{2} \sin \varphi_{2}+B_{2} \cos \varphi_{2}=C_{2} \tag{18}
\end{equation*}
$$

whose solution is given by the formula:

$$
\begin{equation*}
\varphi_{2}=2 \operatorname{arctg}\left(\frac{-A_{2} \pm \sqrt{A_{2}^{2}+B_{2}^{2}-C_{2}^{2}}}{B_{2}+C_{2}}\right) \tag{19}
\end{equation*}
$$

In formula (19) we obtain two solutions for angle φ_{2} (fig. 5).

Angle φ_{3} is obtained in a similar manner, but it can also be determined directly from one of the two equations (17). The two solutions for angles φ_{2} and φ_{3} have been distinctly represented for
the same position of the tracing point D respectively of the articulation C .

We shall consider the solution for which angle φ_{2} is smaller, which corresponds to the kinematic chain depicted by means of the continuous line (fig. 5).

Fig. 5. The two solutions B and B^{\prime} for the articulation $(2,3)$
The functional model of the serial redundant robot (fig. 1) allows the following limits of the rotation angles:
$\varphi_{1}=0^{0}, \ldots, 270^{0}$ (fig. 6a), $\varphi_{2}=0^{0}, \ldots, 180^{0}$ (fig. 6b), $\varphi_{3}=0^{0}, \ldots, 300^{0}$ (fig. 6c) and $\varphi_{4}=0^{0}, \ldots, 120^{0}$ (fig.
6 d).

a

b

c

d

Fig. 6. Extreme rotations of the kinematic elements [11]
If we consider a median position of the
kinematic chain plane, then angle φ_{I} will have the maximum value $\varphi_{1 \text { max }}= \pm 135^{0}$ (fig. 7a).

Fig. 7. Photo of vertical position of the kinematics chain of arm (c);
photo of the vertical bar 2 and the horizontal bars 3 and $4(d)$; photo of the vertical bars 2 and 3 of the mechanical robotic arm (e) [11]

For angle $\varphi_{2 \max }= \pm 90^{\circ}$ (fig. 7c) we consider the vertical position of bar 2 as a median position, so that angle For bar 3, we also consider the vertical position as a median position (fig. 7d), which leads to the maximum value of angle φ_{3} $\varphi_{3 \text { max }}= \pm 150^{0}$. For bar 4 , the median position is as a continuation of bar 3 (fig. 7b), and the maximum value of φ_{4} will be $\varphi_{4 \text { max }}= \pm 60^{\circ}$.

4. Reference

[1] Antonescu, O., Antonescu, P., Mechanism and Machine Science - course-book, Politehnica Press, Bucharest, 2016
[2] Antonescu, P., General formula for the D.O.F. of complex structure manipulators and robots, Proceedings of Tenth World Congress on the Theory of Machines and Mechanisms, Oulu, Finland, V. 2, pp. 1067-1072, 1999
[3] Antonescu, P., s.a., Analysis and synthesis of robot orientation mechanisms, Construcţia de maşini Journal, 54, No. 3, pp. 27-30, 2002
[4] Antonescu, P., Antonescu, O., Methods to determine the mobility (d.o.f.) of complex structure manipulators, Mechanisms and Manipulators Journal, Vol. 3, No. 1, pp. 49-54, 2004
[5] Staretu, I., Structural synthesis and workspaces of the serial kinematic chains with 7 and 8 axes for industrial robots, Robotics \& Management J., Vol. 18, No. 2, pp. 21-25, 2013
[6] Filip, V., Mateoiu, M.C., Consideration on the use of manipulator-robots in the laser beam processing technology, Mechanisms and Manipulators Journal, Vol. 2, No. 1, pp 5156, 2003
[7] Nitu, I., Cononovici, S. B., Racovita, W., Using the redundancy of plane manipulators to avoid restriction areas, Mechanisms and Manipulators Journal, Vol. 3, No. 2, pp. 6572, 2002
[8] Antonescu, P., Mechanisms and Manipulators - applications - project topics, Printech Publishing House, Bucharest, 2000
[9] Doroftei, I., The Architecture and Kinematics of Robots, Cermi Publishing House, Iasi, 2002
[10] Ramirez, D., Kotlarski, J., Ortmaier, T., Automatic generation of serial manipulators to be used in a combined structural geometrical synthesis, Mechanisms, transmissions and applications, Proceedings of the Third MeTrApp Conference, pp. 239-247, 2015
[11] *** Instructions - build your own mechanical robot arm, Taiwan.

