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ABSTRACT: The purpose of this short note is to introduce a notion of (T,S)-intuitionistic fuzzy 

subgroupoid  that allows to study within a unified framework various intuitionistic fuzzy structures 

such as intuitionistic fuzzy sets, intuitionistic fuzzy subgroup and (T, S)- indistinguishability 

operators. We also propose a notion of (T, S) - intuitionistic fuzzy action of a groupoid defined as a 

(T,S)-fuzzy subgroupoid.  
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1. TERMINOLOGY AND 

NOTATION 
 

The term groupoid has different meanings. In 

this paper we refer to the notion of groupoid 

in the sense of Brandt [4] (small category 

with inverses). More precisely, by a (crisp) 

groupoid we mean a set G, together two 

maps: a partially defined multiplication  

(x, y)  xy [: G
(2)

   G ×G  G],  

and an inverse map  

x  x
-1

 [: G  G], 

satisfying the following properties: 

1. (x-1
)
-1

 = x for all  x  G. 

2. If  (x,y)G
(2)

 and (y,z)G
(2)

,  then (xy, z), 

(x,yz) G
(2)

 and (xy)z=x(yz). 

3. For all xG, (x, x
-1

), (x
-1

, x)G
(2)

, and if 

(x, y)G
(2)

 (respectively, (z,x)G
(2)

),  then y 

= x
-1

(xy) (respectively, z = (zx)x
-1

). 

 

The maps r and d on a groupoid G, defined by 

r(x) =xx
-1

 and respectively, d(x) =x
-1

x, are 

called the range and respectively the domain 

map. It is easy to see that (x,y) G
(2)

 if and 

only if d(x)=r(y). The maps r and d have a 

common image r(G)=d(G) called the unit 

space of G.  The unit space is denoted G
(0)

.  

The concept of fuzzy set was introduced 

by Zadeh [12] and concept of intuitionistic 

fuzzy set is due to Atanassov [1]. Afterwards, 

the theory of fuzzy and intuitionistic fuzzy 

sets was extended to other algebraic structure: 

groups, equivalence relation, group actions 

etc. In [5] we proposed a unifying approach to 

the above mentioned fuzzy structures through 

the (Brandt) groupoids and in [6] we tried to 

fuzzify not only the subset of the groupoid but 

also the groupoid operations. 

In this paper we introduce a notion of 

intuitionistic fuzzy subgroupoid that 

generalizes intuitionistic fuzzy sets, 

intuitionistic fuzzy subgroup and  

indistinguishability operators. We also 

introduce a notion of intuitionistic fuzzy 

action (of a groupoid on a set) defined as a 

intuitionistic fuzzy subgroupoid.  The notions 

of fuzzy action [3], intuitionistic fuzzy action 

[8] and [11] are obtained as particular cases. 

 In this paper I = [0,1], T: I  I  I is  a t-

norm, i.e. a function T: I × I → I which 

satisfies the following properties: 

1. T(a, b) = T(b, a) for all a, b  I; 

2. T(a, b) ≤ T(c, d) if a ≤ c and b ≤ d; 
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3. T(a, T(b, c)) = T(T(a, b), c) for all a, b, 

cI; 

4. T(a, 1) = a for all aI, 

and S: I  I  I is a t-conorm, i.e. a function 

S:I×I → I which satisfies the following 

properties: 

1. S(a, b) = S(b, a) for all a, b  I; 

2. S(a, b) ≤ S(c, d) if a ≤ c and b ≤ d; 

3. S(a, S(b, c)) = S(S(a, b), c) for all a, b, c 

I; 

4. S(a, 0) = a for all a  I. 

(see [7] for various examples of t-norms).   

We write  

I ×* I ={(a,b)I × I : a + b ≤ 1} 

and for (a1,b1), (a2,b2)  I ×* I 

(a1,b1) ≤* (a2,b2) iff a1 ≤ a2 and b1 ≥ b2, 

(a1,b1) ≥* (a2,b2) iff a1 ≥ a2 and b1 ≤ b2. 

 

 

2. INTUITIONISTIC GROUPOIDS 
 

Definition of the intuitionistic groupoid: 

Let G be groupoid, T : I  I  I be a t-norm 

and S:I  I  I be a t-conorm. A function  

 = (, ) : G  I ×* I 

is said to be (T,S)-fuzzy intuitionistic 

subgroupoid of G if the following conditions 

are satisfied 

i. (xy)  ≥
*
  (T((x), (y)), S((x), 

(y))) for all (x, y)  G⁽²⁾. 

ii.  (x⁻¹)  ≥
*
 (x) for all x  G. 

iii.  (r(x)) ≥
*
 (x) for all x  G. 

 

It follows easily from the definition that 

1. (x⁻¹) = (x) for all x  G, because (x
-1

)
-1 

= x. Hence if we denote by inv the inversion 

on G, then inv[](x) = sup{(y): y
-1

 = x} = 

(x
-1

) =  (x). 

2. (d(x)) ≥
*
 (x) for all x  G (indeed, if 

we replace x with x
-1

 in iii, then (r(x)) ≥
*
 (x

-

1
) = (x)). 

3. (r(x)) = (xx⁻¹)  

≥
*
 (T((x),(x⁻¹)), S((x),(x⁻¹)))  

= (T((x),(x)), S((x),(x)))  

for all x  G. 

4. (d(x)) = (x
-1

x)  

≥
*
 (T((x

-1
),(x)), S((x

-1
),(x)))  

= (T((x),(x)), S((x),(x)))  

for all x  G. 

5. (T((x),(d(x))), S((x),(d(x)))) ≤
*
  

                        (xd(x)) =  (x) for all x G.  

6.  (T((r(x)),(x)), S((r(x)),(x))) ≤
*
  

                         (r(x)x) =  (x) for all x G. 

7. If T(a,b) = Tmin(a,b) =min{a, b} and 

S(a,b) = Smax(a, b) = max{a, b} for all a, b I, 

then condition iii in the definition of 

intuitionistic groupoid is automatically 

satisfied. 

     Let us highlight a few structures which fit 

in the definition of intuitionistic groupoid. 

      If G is a group, then G can be viewed as 

groupoid with G
(2)

 = G  G and G
(0)

 = {e} 

(the neutral  element of G). Also  : G I ×* 

I is a (T, S)-fuzzy subgroupoid of G if and 

only if 

1.  (xy) ≥
*
  (T((x), (y)), S((x), (y)))  

for all x,yG 

   2.  (x⁻¹) = (x) for all xG 

   3.  (e) ≥* (x) for all xG 

For T(a,b) = Tmin(a,b) =min{a, b} and S(a,b) 

= Smax(a, b) = max{a, b}, this notion of (T, S)-

fuzzy subgroupoid of a group G coincide with 

the notion of intuitionistic fuzzy subgroup in  

[2] (and for S=0, fuzzy subgroup [10]).  

    A set X can be regarded as a groupoid  

under the operations: xx = x,  x
-1

 = x. Then  

= (, ) : X  I ×* I is a (S,T)-fuzzy 

intuitionistic subgroupoid of X if and only if  

= {(x, (x), (x),  xX} is an intuitionistic 

fuzzy set on X.  

    If G = X × X, then G can be seen as a 

groupoid (the pair groupoid) under the 

operations: (u, v)(v,w) = (u, w), (u,v)
-1

 = 

(v,u). 

A function E = (E, ) : X × X  I ×* I  is a 

(T,S) -fuzzy intuitionistic subgroupoid of X × 

X if and only if the following conditions are 

satisfied 

1. E(u,v)  ≥
*
  (T(E(u,w), E(w,v)), 

S(E(u,w), E(w,v))) for all u,v,wX. 

2.  E(u,v)  = E(v,u) for all u,v  X. 

3.  E(u,u) ≥
*
 E(u,v) for all u,v  X. 

If E satisfies in addition the condition E(u,u) 

= (1,0) for all u X, then E is a (T, S)-
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indistinguishability operator on X in the sense 

of [9]. 

                         

3. INTUITIONISTIC ACTIONS AS 

INTUITIONISTIC GROUPOIDS 

 

We say a groupoid G acts (to the left) on a 

set X if there is   : X  G
(0)

 (called a 

momentum map) and a map  

(g, x) ↦ g · x 

from 

{(g, x)  G × X: d(g) = (s)} 

to X, called left action, such that: 

1.  (g · x) = r (g) for all g  G and x X such 

that d(g) = (x). 

2. (x) · x = x for all x  X. 

3. If (g, h)  G
(2)

 , x  X and d(h) = (x), then 

(gh) · x = g · (h · x). 

In the same manner, we define a right action 

of G on X, using a map  : X  G
(0)

 and a 

map 

(x, g) ↦ x · g 

from 

{(x, g) X × G :  (x) = r (g)} 

to X satisfying the following conditions: 

1. (x · g) = d(g) for all g  G and x X such 

that r(g) = (x). 

2. x · (x) = x for all x  X. 

3. If (g, h)  G
(2)

 , x  X and r(g) = (x), then x· 

(gh)  = (x · g) · h. 

If (g, x) ↦ g · x is a left action of a 

groupoid G on a set X with the momentum 

map  then 

G[X, ] = {(x, g, y)  X × G × X:  

                             d(g) = (y), r(g) = (x)}  

is a groupoid under the operations: 

(x, g1, y) (y, g2, z) = (x, g1g2, z) 

  (x, g, y)
-1

 = (y, g
-1

, x). 

Furthermore, 

G ⋉ X = {(g · x, g, x)  X × G × X:  

                                               d(g) = (y)} 

is a subgroupoid of  G[X, ]. 

Similarly, if (x, g) ↦ x · g is a right action 

of a groupoid G on a set X with the 

momentum map  then 

G[X, ] = {(x, g, y)  X × G × X:  

                            d(g) = (y), r(g) = (x)}  

is a groupoid under the operations: 

(x, g1, y) (y, g2, z) = (x, g1g2, z) 

  (x, g, y)
-1

 = (y, g
-1

, x). 

and 

X ⋊ G = {(x, g, x · g)  X × G × X:  

                                                r(g) = (x)} 

is a subgroupoid of  G[X, ].  

Every groupoid G acts to the left, 

respectively, right on its unit space G
(0)

 by  

 g · d(g) = r(g) 

respectively, 

      r(g) · g = d(g). 

(In these cases  (u) =  (u) = u for all u 

G
(0)

.). In addition  

g ↦ (r(g), g, d(g)) 

is a groupoid isomorphism from G to G ⋉ 

G
(0)

, as well as, to G
(0)

 ⋊ G.  

 

Definition of the intuitionistic fuzzy 

action:  Let T : I  I  I be a t-norm and  S: 

II I be a t-conorm. A (T, S) - intuitionistic 

fuzzy left (respectively, right) action of a 

groupoid G on a set X with momentum map 

: X G
(0)

 (respectively, :XG
(0)

) is a (T, 

S) - intuitionistic fuzzy subgroupoid of G[X, 

] (respectively, G[X,]). 

 

It follows from the definition that a 

function  = (, ) : G[X, ]  I ×* I  is a 

(T, S) - intuitionistic fuzzy left action of G on 

X with momentum map  : X G
(0)

 if and 

only if the following conditions are satisfied 

i. (x, g1g2, z)  ≥
*
  (T((x, g1, y), (y, g2, 

z)), S((x, g1, y), ( y, g2, z))) for all x, y, z 

g1, g2  G such that (x) = r(g1), (y) = 

d(g1) = r(g2) and (z) =d(g2). 

ii.  (y, g
-1

, x)  ≥
*
 ( x, g, y) for all for all 

x, yg  G such that (x) = r(g) and (y) 

= d(g). 

iii. (x, (x), x) ≥
*
 ( x, g, y) for all x, 

yg  G such that (x) = r(g) and (y) = 

d(g). 

      

If  = (, ) : G[X, ]  I × I  is a (T, S) 

- intuitionistic fuzzy left action of G on X, 

then (y, g, x) can be viewed as the degree to 

which y is the result of the action of g on x 

https://en.wikipedia.org/wiki/%E2%86%A6
https://en.wikipedia.org/wiki/%E2%86%A6
https://en.wikipedia.org/wiki/%E2%86%A6
https://en.wikipedia.org/wiki/%E2%8B%89
https://en.wikipedia.org/wiki/%E2%86%A6
https://en.wikipedia.org/wiki/%E2%86%A6
https://en.wikipedia.org/wiki/%E2%8B%89
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(i.e. g · x). Also (y, g, x) can be interpreted 

as the degree to which y and g · x differ. 

G acts upon itself by either left (or right) 

translation (multiplication).  Thus if we take 

into consideration, for instance the left action 

of G upon itself and the groupoid  

G[G, r] = {(x, g, y)  G × G × G:  

                           d(g) = r(y), r(g) = r(x)},  

a (T, S) - intuitionistic fuzzy left 

(respectively, right) action of a groupoid G on 

G with momentum map r : G G
(0)

, i.e. a (T, 

S) - intuitionistic fuzzy subgroupoid  = (, 

) : G[G, r]  I × I, can be regarded as a 

fuzzification  of the groupoid partially defined 

operation. More precisely, (y, g, h) can be 

interpreted as the degree to which y is the 

product gh, and (y, g, h) can be interpreted 

as the degree to which y and gh differ. 

    We end this section by showing that fuzzy 

actions in the sense of [3] and the 

intuitionistic fuzzy actions in the sense of [8] 

and [11], are particular cases of a (T, S) - 

intuitionistic fuzzy left action of a group G 

seen as groupoid.   

Let G be a group acting to the left on a set 

X. Seen as a groupoid action, it has the 

momentum map  : X  {e} where e is 

neutral element  of G. Hence in this case 

G[X, ] = {(x, g, y)  X × G × X:  

                                  d(g) = (y), r(g) = (x)} 

                  = X × G × X. 

Therefore a (T, S) - intuitionistic fuzzy left 

action of a group G on a set X is a (T, S) - 

intuitionistic fuzzy subgroupoid of X × G × 

X, i.e. a function  

 = (, ) : X × G × X  I ×* I 

satisfying the following conditions  

i. (x, gh, z)  ≥
*
  (T((x, g, y), (y, h, z)), 

S((x, g, y), ( y, h, z))) for all x, y, z 

andg, h  G.  

ii.  (y, g
-1

, x)  ≥
*
 ( x, g, y) for all for all 

x, yg  G. 

      iii. (x, e, x) ≥
*
 ( x, g, y) for all x, 

yg  G. 

If we take S=0,  such that (x, e, x) = 1 

for all x  X,  and if we define 

(g,x,y) = (y, g, x)  

for all x, yg  G, then : G × X × X  I 

is a T –fuzzy action in the sense of [3]. 

Indeed, 

1. T((hg, x, y), (g, x, z)) = T((y, hg, x), 

(z, g, x)) = T((y, hg, x), (x, g
-1

, z)) 

≤  (y, (hg)g
-1

 z) = h, z, y) for all x, y, 

z andg, h  G. 

2.  T((g, x, z), (h, z, y)) = T((z, g, x), (y, 

h, z)) = T((y, h, z), (z, g, x))   ≤ (y, hg, 

x) = (hg, x, y) for all x, y, z andg, h  

G. 

3. (e,x,x) = (x, e, x) = 1 for all x  X. 

 

If  = (, ) such that (x, e, x) = 1, (x, 

e, x) = 0  for all x  X,  and if we define 

(g,x,y) = (y, g, x)  

for all x, yandg  G, then  

: G × X × X  I ×* I 

is a (T, S)-intuitionistic fuzzy action in the 

sense of [8] and [11] (xg, y) =(y, g, x)). 
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