INTUITIONISTIC FUZZY GROUPOIDS AND ACTIONS

Mădălina Roxana Buneci, Associate Professor

"Constantin Brâncuși" University from Târgu Jiu, ROMANIA

ABSTRACT: The purpose of this short note is to introduce a notion of (T,S)-intuitionistic fuzzy subgroupoid that allows to study within a unified framework various intuitionistic fuzzy structures such as intuitionistic fuzzy sets, intuitionistic fuzzy subgroup and (T, S)- indistinguishability operators. We also propose a notion of (T, S) - intuitionistic fuzzy action of a groupoid defined as a (T,S)-fuzzy subgroupoid.

KEY WORDS: *groupoid, (T, S)-intuitionistic fuzzy subgroupoid, intuitionistic fuzzy action.*

1. TERMINOLOGY AND NOTATION

The term groupoid has different meanings. In this paper we refer to the notion of groupoid in the sense of Brandt [4] (small category with inverses). More precisely, by a (crisp) groupoid we mean a set G, together two maps: a partially defined multiplication

$$(x,y) \to xy \ [: G^{(2)} \subset G \times G \to G],$$
 and an inverse map

$$x \to x^{-1}$$
 [: $G \to G$],

satisfying the following properties:

1. $(x^{-1})^{-1} = x$ for all $x \in G$.

2. If $(x,y) \in G^{(2)}$ and $(y,z) \in G^{(2)}$, then (xy, z), $(x,yz) \in G^{(2)}$ and (xy)z = x(yz).

3. For all $x \in G$, (x, x^{-1}) , $(x^{-1}, x) \in G^{(2)}$, and if $(x, y) \in G^{(2)}$ (respectively, $(z,x) \in G^{(2)}$), then $y = x^{-1}(xy)$ (respectively, $z = (zx)x^{-1}$).

The maps r and d on a groupoid G, defined by $r(x) = xx^{-1}$ and respectively, $d(x) = x^{-1}x$, are called the range and respectively the domain map. It is easy to see that $(x,y) \in G^{(2)}$ if and only if d(x)=r(y). The maps r and d have a common image r(G)=d(G) called the unit space of G. The unit space is denoted $G^{(0)}$.

The concept of fuzzy set was introduced by Zadeh [12] and concept of intuitionistic fuzzy set is due to Atanassov [1]. Afterwards, the theory of fuzzy and intuitionistic fuzzy sets was extended to other algebraic structure: groups, equivalence relation, group actions etc. In [5] we proposed a unifying approach to the above mentioned fuzzy structures through the (Brandt) groupoids and in [6] we tried to fuzzify not only the subset of the groupoid but also the groupoid operations.

In this paper we introduce a notion of intuitionistic fuzzy subgroupoid that intuitionistic generalizes fuzzy sets. intuitionistic fuzzy subgroup and indistinguishability We operators. also introduce a notion of intuitionistic fuzzy action (of a groupoid on a set) defined as a intuitionistic fuzzy subgroupoid. The notions of fuzzy action [3], intuitionistic fuzzy action [8] and [11] are obtained as particular cases.

In this paper I = [0,1], $T: I \times I \rightarrow I$ is a tnorm, i.e. a function $T: I \times I \rightarrow I$ which satisfies the following properties:

- 1. T(a, b) = T(b, a) for all $a, b \in I$;
- 2. $T(a, b) \le T(c, d)$ if $a \le c$ and $b \le d$;

- 3. T(a, T(b, c)) = T(T(a, b), c) for all a, b, $c \in I$:
- 4. T(a, 1) = a for all $a \in I$,

and S: $I \times I \rightarrow I$ is a t-conorm, i.e. a function S: $I \times I \rightarrow I$ which satisfies the following properties:

- 1. S(a, b) = S(b, a) for all $a, b \in I$;
- 2. $S(a, b) \le S(c, d)$ if $a \le c$ and $b \le d$;
- 3. S(a, S(b, c)) = S(S(a, b), c) for all $a, b, c \in I$;
- 4. $S(a, 0) = a \text{ for all } a \in I.$

(see [7] for various examples of t-norms).

We write

$$\begin{split} I \times^* I = & \{ (a,b) \in I \times I : a+b \leq 1 \} \\ \text{and for } (a_1,b_1), \, (a_2,b_2) \in I \times^* I \\ & (a_1,b_1) \leq^* (a_2,b_2) \text{ iff } a_1 \leq a_2 \text{ and } b_1 \geq b_2, \end{split}$$

2. INTUITIONISTIC GROUPOIDS

 $(a_1,b_1) \ge * (a_2,b_2)$ iff $a_1 \ge a_2$ and $b_1 \le b_2$.

Definition of the intuitionistic groupoid:

Let G be groupoid, $T: I \times I \rightarrow I$ be a t-norm and $S: I \times I \rightarrow I$ be a t-conorm. A function

$$\gamma = (\gamma_{\mu}, \gamma_{\nu}) : G \rightarrow I \times^* I$$

is said to be (T,S)-fuzzy intuitionistic subgroupoid of G if the following conditions are satisfied

- i. $\gamma(xy) \geq^* (T(\gamma_{\mu}(x), \gamma_{\mu}(y)), S(\gamma_{\nu}(x), \gamma_{\nu}(y)))$ for all $(x, y) \in G^{(2)}$.
 - ii. $\gamma(x^{-1}) \ge^* \gamma(x)$ for all $x \in G$.
 - iii. $\gamma(r(x)) \ge^* \gamma(x)$ for all $x \in G$.

It follows easily from the definition that

- 1. $\gamma(x^{-1}) = \gamma(x)$ for all $x \in G$, because $(x^{-1})^{-1} = x$. Hence if we denote by inv the inversion on G, then $inv[\gamma](x) = sup\{\gamma(y): y^{-1} = x\} = \gamma(x^{-1}) = \gamma(x)$.
- 2. $\gamma(d(x)) \ge^* \gamma(x)$ for all $x \in G$ (indeed, if we replace x with x^{-1} in iii, then $\gamma(r(x)) \ge^* \gamma(x^{-1}) = \gamma(x)$).

$$\begin{split} 3. \ \ & \gamma(r(x)) = \gamma(xx^{-1}) \\ & \stackrel{>}{\geq}^* \left(T(\gamma_{\mu}(x), \gamma_{\mu}(x^{-1})), \ S(\gamma_{\nu}(x), \gamma_{\nu}(x^{-1})) \right) \\ & = \left(T(\gamma_{\mu}(x), \gamma_{\mu}(x)), \ S(\gamma_{\nu}(x), \gamma_{\nu}(x)) \right) \end{split}$$

for all $x \in G$.

4.
$$\gamma(d(x)) = \gamma(x^{-1}x)$$

 $\geq^* (T(\gamma_{\mathfrak{u}}(x^{-1}), \gamma_{\mathfrak{u}}(x)), S(\gamma_{\mathfrak{v}}(x^{-1}), \gamma_{\mathfrak{v}}(x)))$

$$= (T(\gamma_{\mu}(x), \gamma_{\mu}(x)), S(\gamma_{\nu}(x), \gamma_{\nu}(x)))$$

for all $x \in G$.

- 5. $(T(\gamma_{\mu}(x), \gamma_{\mu}(d(x))), S(\gamma_{\nu}(x), \gamma_{\nu}(d(x)))) \leq^* \gamma(xd(x)) = \gamma(x) \text{ for all } x \in G.$
- 6. $(T(\gamma_{\mu}(r(x)), \gamma_{\mu}(x)), S(\gamma_{\nu}(r(x)), \gamma_{\nu}(x))) \leq^* \gamma(r(x)x) = \gamma(x) \text{ for all } x \in G.$
- 7. If $T(a,b) = T_{min}(a,b) = min\{a, b\}$ and $S(a,b) = S_{max}(a, b) = max\{a, b\}$ for all $a, b \in I$, then condition iii in the definition of intuitionistic groupoid is automatically satisfied.

Let us highlight a few structures which fit in the definition of intuitionistic groupoid.

If G is a group, then G can be viewed as groupoid with $G^{(2)} = G \times G$ and $G^{(0)} = \{e\}$ (the neutral element of G). Also $\gamma: G \rightarrow I \times^*$ I is a (T, S)-fuzzy subgroupoid of G if and only if

- 1. $\gamma(xy) \ge^* (T(\gamma_{\mu}(x), \gamma_{\mu}(y)), S(\gamma_{\nu}(x), \gamma_{\nu}(y)))$ for all $x,y \in G$
 - 2. $\gamma(x^{-1}) = \gamma(x)$ for all $x \in G$
 - 3. $\gamma(e) \ge \gamma(x)$ for all $x \in G$

For $T(a,b) = T_{min}(a,b) = min\{a, b\}$ and $S(a,b) = S_{max}(a, b) = max\{a, b\}$, this notion of (T, S)-fuzzy subgroupoid of a group G coincide with the notion of intuitionistic fuzzy subgroup in [2] (and for S=0, fuzzy subgroup [10]).

A set X can be regarded as a groupoid under the operations: xx = x, $x^{-1} = x$. Then $\gamma = (\gamma_{\mu}, \ \gamma_{\nu}) : X \rightarrow I \times^* I$ is a (S,T)-fuzzy intuitionistic subgroupoid of X if and only if $\gamma = \{(x, \ \gamma_{\mu}(x), \ \gamma_{\nu}(x), \ x \in X\}$ is an intuitionistic fuzzy set on X.

If $G = X \times X$, then G can be seen as a groupoid (the pair groupoid) under the operations: $(u, v)(v,w) = (u, w), (u,v)^{-1} = (v,u)$.

A function $E=(E_{\mu}, \gamma_{\nu}): X\times X\to I\times^*I$ is a (T,S)-fuzzy intuitionistic subgroupoid of $X\times X$ if and only if the following conditions are satisfied

- 1. $E(u,v) \ge^* (T(E_{\mu}(u,w), E_{\mu}(w,v)), S(E_{\nu}(u,w), E_{\nu}(w,v)))$ for all $u,v,w \in X$.
 - 2. E(u,v) = E(v,u) for all $u,v \in X$.
- 3. $E(u,u) \ge^* E(u,v)$ for all $u,v \in X$. If E satisfies in addition the condition E(u,u)

indistinguishability operator on X in the sense of [9].

3. INTUITIONISTIC ACTIONS AS INTUITIONISTIC GROUPOIDS

We say a groupoid G acts (to the left) on a set X if there is $\rho: X \to G^{(0)}$ (called a momentum map) and a map

$$(g, x) \mapsto g \cdot x$$

from

$$\{(g,x)\in G\times X\colon d(g)=\rho(s)\}$$

to X, called left action, such that:

- 1. $\rho(g \cdot x) = r(g)$ for all $g \in G$ and $x \in X$ such that $d(g) = \rho(x)$.
- 2. $\rho(x) \cdot x = x$ for all $x \in X$.
- 3. If $(g, h) \in G^{(2)}$, $x \in X$ and $d(h) = \rho(x)$, then $(gh) \cdot x = g \cdot (h \cdot x)$.

In the same manner, we define a right action of G on X, using a map $\sigma: X \to G^{(0)}$ and a map

$$(x, g) \mapsto x \cdot g$$

from

$$\{(x, g) \in X \times G : \sigma(x) = r(g)\}$$

to X satisfying the following conditions:

- 1. $\sigma(x \cdot g) = d(g)$ for all $g \in G$ and $x \in X$ such that $r(g) = \sigma(x)$.
- 2. $x \cdot \sigma(x) = x$ for all $x \in X$.
- 3. If $(g, h) \in G^{(2)}$, $x \in X$ and $r(g) = \sigma(x)$, then $x \cdot (gh) = (x \cdot g) \cdot h$.

If $(g, x) \mapsto g \cdot x$ is a left action of a groupoid G on a set X with the momentum map ρ then

$$G[X, \rho] = \{(x, g, y) \in X \times G \times X: \\ d(g) = \rho(y), r(g) = \rho(x)\}$$

is a groupoid under the operations:

$$(x, g_1, y) (y, g_2, z) = (x, g_1g_2, z)$$

 $(x, g, y)^{-1} = (y, g^{-1}, x).$

Furthermore,

$$G \bowtie X = \{(g \cdot x, g, x) \in X \times G \times X: \\ d(g) = \rho(y)\}$$

is a subgroupoid of $G[X, \rho]$.

Similarly, if $(x, g) \mapsto x \cdot g$ is a right action of a groupoid G on a set X with the momentum map σ then

$$G[X, \sigma] = \{(x, g, y) \in X \times G \times X: \\ d(g) = \sigma(y), r(g) = \sigma(x)\}$$

is a groupoid under the operations:

$$(x, g_1, y) (y, g_2, z) = (x, g_1g_2, z)$$

 $(x, g, y)^{-1} = (y, g^{-1}, x).$

and

$$X \rtimes G = \{(x, g, x \cdot g) \in X \times G \times X: \\ r(g) = \sigma(x)\}$$

is a subgroupoid of $G[X, \sigma]$.

Every groupoid G acts to the left, respectively, right on its unit space $G^{(0)}$ by

$$g \cdot d(g) = r(g)$$

respectively,

$$r(g) \cdot g = d(g).$$

(In these cases ρ (u) = σ (u) = u for all u \in G⁽⁰⁾.). In addition

$$g \mapsto (r(g), g, d(g))$$

is a groupoid isomorphism from G to $G \ltimes G^{(0)}$, as well as, to $G^{(0)} \rtimes G$.

Definition of the intuitionistic fuzzy

action: Let $T: I \times I \to I$ be a t-norm and $S: I \times I \to I$ be a t-conorm. A (T, S) - intuitionistic fuzzy left (respectively, right) action of a groupoid G on a set X with momentum map $\rho: X \to G^{(0)}$ (respectively, $\sigma: X \to G^{(0)}$) is a (T, S) - intuitionistic fuzzy subgroupoid of $G[X, \rho]$ (respectively, $G[X, \sigma]$).

It follows from the definition that a function $\gamma=(\gamma_\mu,\,\gamma_\nu):G[X,\,\rho]\to I\times^*I$ is a $(T,\,S)$ - intuitionistic fuzzy left action of G on X with momentum map $\rho:X\to G^{(0)}$ if and only if the following conditions are satisfied

$$\begin{split} &i. \ \gamma(x, \, g_1g_2, \, z) \, \geq^* \ (T(\gamma_\mu(x, \, g_1, \, y), \, \gamma_\mu(y, \, g_2, \, z)), \, S(\gamma_\nu(x, \, g_1, \, y), \, \gamma_\nu(\, y, \, g_2, \, z))) \ for \ all \ x, \, y, \, z \\ &\in X, \, g_1, \, g_2 \in G \ such \ that \ \rho(x) = r(g_1), \, \rho(y) = \\ &d(g_1) = r(g_2) \ and \ \rho(z) = d(g_2). \end{split}$$

ii. $\gamma(y, g^{-1}, x) \ge^* \gamma(x, g, y)$ for all for all $x, y \in X, g \in G$ such that $\rho(x) = r(g)$ and $\rho(y) = d(g)$.

iii. $\gamma(x, \rho(x), x) \ge^* \gamma(x, g, y)$ for all $x, y \in X, g \in G$ such that $\rho(x) = r(g)$ and $\rho(y) = d(g)$.

If $\gamma = (\gamma_{\mu}, \gamma_{\nu}) : G[X, \rho] \rightarrow I \times I$ is a (T, S) - intuitionistic fuzzy left action of G on X, then $\gamma_{\mu}(y, g, x)$ can be viewed as the degree to which y is the result of the action of g on x

(i.e. $g \cdot x$). Also $\gamma_{\nu}(y, g, x)$ can be interpreted as the degree to which y and $g \cdot x$ differ.

G acts upon itself by either left (or right) translation (multiplication). Thus if we take into consideration, for instance the left action of G upon itself and the groupoid

$$G[G, r] = \{(x, g, y) \in G \times G \times G:$$

$$d(g) = r(y), r(g) = r(x)\},$$

a (T, S) - intuitionistic fuzzy left (respectively, right) action of a groupoid G on G with momentum map $r: G \to G^{(0)}$, i.e. a (T, S) - intuitionistic fuzzy subgroupoid $\gamma = (\gamma_{\mu}, \gamma_{\nu}): G[G, r] \to I \times I$, can be regarded as a fuzzification of the groupoid partially defined operation. More precisely, $\gamma_{\mu}(y, g, h)$ can be interpreted as the degree to which y is the product gh, and $\gamma_{\nu}(y, g, h)$ can be interpreted as the degree to which y and gh differ.

We end this section by showing that fuzzy actions in the sense of [3] and the intuitionistic fuzzy actions in the sense of [8] and [11], are particular cases of a (T, S) - intuitionistic fuzzy left action of a group G seen as groupoid.

Let G be a group acting to the left on a set X. Seen as a groupoid action, it has the momentum map $\rho: X \to \{e\}$ where e is neutral element of G. Hence in this case

$$G[X, \rho] = \{(x, g, y) \in X \times G \times X: \\ d(g) = \rho(y), r(g) = \rho(x)\}$$
$$= X \times G \times X.$$

Therefore a (T, S) - intuitionistic fuzzy left action of a group G on a set X is a (T, S) - intuitionistic fuzzy subgroupoid of $X \times G \times X$, i.e. a function

$$\gamma = (\gamma_{\mu}, \gamma_{\nu}) : X \times G \times X \to I \times^* I$$
 satisfying the following conditions

$$\begin{split} &i.\ \gamma(x,gh,z) \geq^* \ (T(\gamma_\mu(x,g,y),\gamma_\mu(y,h,z)),\\ &S(\gamma_\nu(x,g,y),\gamma_\nu(\ y,h,z))) \ \text{for all} \ x,\,y,\,z\\ &\in X \ \text{and} \ g,\,h \in G. \end{split}$$

ii. $\gamma(y, g^{-1}, x) \ge^* \gamma(x, g, y)$ for all for all $x, y \in X, g \in G$.

iii. $\gamma(x, e, x) \ge^* \gamma(x, g, y)$ for all $x, y \in X, g \in G$.

If we take S=0, γ_{μ} such that $\gamma_{\mu}(x, e, x) = 1$ for all $x \in X$, and if we define

$$\alpha(g,x,y) = \gamma_{\mu}(y, g, x)$$

for all $x, y \in X$, $g \in G$, then $\alpha: G \times X \times X \to I$ is a T -fuzzy action in the sense of [3]. Indeed,

$$\begin{split} 1. \ T(\alpha(hg,\,x,\,y),\,\alpha(g,\,x,\,z)) &= T(\gamma_{\mu}(y,\,hg,\,x), \\ \gamma_{\mu}(z,\,g,\,x)) &= T(\gamma_{\mu}(y,\,hg,\,x),\,\gamma_{\mu}(x,\,g^{\text{-}1},\,z)) \\ &\leq \gamma_{\mu}(y,\,(hg)g^{\text{-}1}\,z) = \alpha(h,\,z,\,y) \text{ for all } x,\,y, \\ z \in X \text{ and } g,\,h \in G. \end{split}$$

$$\begin{split} 2. \ T(\alpha(g,\,x,\,z),\,\alpha(h,\,z,\,y)) &= T(\gamma_\mu(z,\,g,\,x),\,\gamma_\mu(y,\,h,\,z)) = T(\gamma_\mu(y,\,h,\,z),\,\gamma_\mu(z,\,g,\,x)) \quad \leq \gamma_\mu(y,\,hg,\,x) = \alpha(hg,\,x,\,y) \text{ for all } x,\,y,\,z \in X \text{ and } g,\,h \in G. \end{split}$$

3. $\alpha(e,x,x) = \gamma_{\mu}(x, e, x) = 1$ for all $x \in X$.

$$\begin{split} &\text{If } \gamma = (\gamma_{\mu}, \gamma_{\nu}) \text{ such that } \gamma_{\mu}(x, \, e, \, x) = 1, \, \gamma_{\nu}(x, \, e, \, x) = 0 \text{ for all } x \in X, \text{ and if we define } \\ &\alpha(g, x, y) = \gamma(y, \, g, \, x) \\ &\text{for all } x, \, y \in X \text{ and } g \in G, \text{ then } \\ &\alpha \colon G \times X \times X \to I \times^* I \\ &\text{is a (T, \, S)-intuitionistic fuzzy action in the} \end{split}$$

4. REFERENCES

[1] K. Atanassov, *Intuitionistic fuzzy sets*. Fuzzy Sets and Systems, 20 (1986), 87-96.

sense of [8] and [11] $(\alpha(x_g, y) = \gamma(y, g, x))$.

- [2] R. Biswas, *Intuitionistic fuzzy subgroups*. Notes on Intuitionistic Fuzzy Sets 3 no. 2 (1997), 53-60.
- [3] D. Boixader and J. Recasens, *Fuzzy actions*, Fuzzy Sets and Systems 339 (2018), 17-30.
- [4] H. Brandt, Über eine Verallgemeinerun des Gruppenbegriffes, Mathematische Annalen, 96 (1927), 360–366.
- [5] M. Buneci, *Unifying various fuzzy structures using Brandt groupoids*, Fiabilitate şi durabilitate (Fiability & durability), no 1 (2018), 442-447.
- [6] M. Buneci, Fuzzy actions as fuzzy groupoids, Annals of the "Constantin Brâncuşi" University of Târgu-Jiu. Engineering Series, 4 (2018), 130-133.
- [7] M. M. Gupta and J. Qi, *Theory of T-norms and fuzzy inference methods*, Fuzzy Sets and Systems 40 (1991), 431-450.
- [8] S. Melliani, M. Elomari, I. Bakhadach and L. S. Chadli, *Intuitionistic fuzzy actions*. Notes

- Intuitionistic Fuzzy Sets, 24 no. 3 (2018), 11-26
- [9] K. Hur, S. Y. Jang and Y. S. Ahn, *Intuitionistic fuzzy equivalence relations*. Honam Math. J. 27 no. 2 (2005), 163—181.
- [10] A. Rosenfeld, *Fuzzy groups*, J. Math. Anal. Appl. 35 (1971), 512-517.
- [11] S. Tarsuslu (Yılmaz), A. Tarsuslu and M. Citil, *Intuitionistic fuzzy action of a group on a set*. Notes on Intuitionistic Fuzzy Sets, 24, no. 2 (2018), 18–24
- [12] L. A. Zadeh, *Fuzzy sets*, Inform. Control, vol. 8 (1965), 338-353.