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ABSTRACT: In this paper we apply the results in [7] concerning a finite-horizon, linear, quadratic 

optimal control problem for class of fractional order systems (FOS) with Markovian jumps to 

simulate the behaviour of the state variable of the system under the action of an optimal control 

input. We provide here some MATLAB algorithms for the computation of the state variable of the 

system and we illustrate its behaviour by plotting various instances of it.  Unlike [7], where the 

simulations concern only the value of the optimal cost, in this paper we simulate the response of the 

system to both an optimal control action and no control action. As far as we know, such simulations 

are new for this type of systems. 
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1. INTRODUCTION 
 

Fractional calculus (FC) began to become 

more popular among the scientists due to its 

new applications in various fields of 

economic interest. For example, linear 

quadratic (LQ) optimal control problems 

represent an important branch of the control 

theory of linear fractional order systems 

(LFOS) and have many practical applications 

(see [1-3],[7-8] and the references therein). At 

this moment these issues are insufficiently 

addressed and any new result helps the 

development of the field. In [7] was solved 

recently a finite horizon LQ optimal control 

problem for infinite dimensional LFOS with 

Markovian jumps. Using a state expanded 

linear form of the fractional system (similar to 

the one in [5] and [8]) and an associated class 

of Riccati type equation, [7] provides the 

theoretic formulas of the optimal control and 

of the optimal cost. In this paper we shall use 

the results from [7] to simulate the response 

of a finite dimensional LFOS to the action of 

the optimal control. All simulations are made 

in MATLAB and the source codes of the 

programs are presented in this paper. 

 

2. PRELIMINARIES 
 

In this section we present the mathematical 

framework and the known theoretical results.  
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is the discrete-time version of the Grünwald-

Letnikov operator (see for e.g. [3-4]). 

In the sequel we shall consider the discrete-

time fractional system with control 
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where 

 Nkkr }{   is a homogeneous Markov chain 

on  a complete probability space  ,,, PF   

having a countably finite or infinite state 

space  Z ,    Z ikirP k ,,0 N   and 

the transition probability matrix  

 irnij n
jrPqQ   |{ 1   for all  

  ZZ jin ,}N . 

 for a fixed Nk , )(ikA , )(i
k

B Zi,  

are bounded sequences of real matrices of 

dimensions   and , respectively.  

 the control sequence  
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formed by all sequences  u   with the 
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As in [7], our linear quadratic optimal 

control problem associated with (1) consists 

in minimizing the cost functional 
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for any bounded sequence  of 

symmetric and nonnegative matrices.  

As it follows from [7] system (1)-(2) can be 

equivalently rewritten as an expanded state 

linear discrete-time system with Markovian 
jumps 

(4) 
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The following backward discrete-time Riccati 

equation (see [6]) plays a key role in solving 

the above LQ optimal control problem: 
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The sequences )(ikC  
and S(i) are defined as 

in [ 7]   by   ,)(,...,,)(
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The next theorem is the main result from [7] 

and gives a formula for the computation of 

the optimal control gain. 

 

 Theorem 1. If  1,..,0}{  NnnP   is the unique 

solution of the Riccati equation (5) and  

NkW
k

,..,0,    is defined by  
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3. MATLAB SIMULATIONS 
 

In this section we present the algorithms 

which provide the state variable of the system 

under the control action. For the case of 

LFOS with multiplicative white noise and no 

Markovian jumps see [5]. 

Let us consider a time-invariant, version of 

the LFOS with control where  
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and 







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7.03.0

21
0r is the initial distribution 

of the Markov chain.  

In what follows the functions: 

matrA(h,alf,A,i,d,N); matrB(d,i,m,N), 

matrC(i,d,N,p) and matrS(i,d,N) define the 

coefficients 
k

A , 
k

B ,
k

C and S  of the Riccati 

equation (5),  cj( alf,j) defines the coefficient 

i
c and function erond(Z,i, P,X) defines the 

operator E .  

The next source code provides function 

matrA(h, alf,A,i,d,N) in the time invariant 

case and gives matrix 
k

A  starting from 

matrix kA , which was transmitted as a 

parameter A to the function. 

function [rez] = matrA(h, alf,A,i,d,N) 

I=eye(d); 

A0=h^alf*A(:,:,i)+alf*I; 

Z= zeros(d); 

B0=I; 

for i=1:N-1 

    A0=[A0 I*cj( alf,i )]; 

    B0=[B0 Z]; 

end 

A0=[A0;B0]; 

for i=3:N 

    B0=[Z B0]; 

    B0=B0(:,1:d*N) 

    A0=[A0;B0] 

end 

rez=A0; 

end 

 

The next function LantMarkov(x,n, p, Q, m) 

generates the first n elements of the Markov 

chain r = {rn} with the state space {0, 1, 

2,...,Z}, the transition matrix Q and the initial 

distribution p. Function FctRep(p,n) 

computes the cumulative distribution function 

of a random variable with the probability 

distribution p. 

Function SimVAD(x,p,F,n) generates a 

random variable having the vector values x 

and the cumulative distribution function F. 

  

function [rez]= LantMarkov(x,n, p, Q, m) 

 F=FctRep(p,n); 

 r(1) =SimVAD(x, p,F,n); 

 i = r(1); 

 for k = 2 : m 

% the i-th line of the transition matrix Q 

 p = Q(i, :);  

 F=FctRep(p,n); 

r(k) = SimVAD(x,p,F,n); 

i = r(k); 

end 

rez= r; 

 

function [rez]=FctRep(p,n) 

F(1)=p(1); 

for i=2:n 

    F(i)=F(i-1)+p(i); 

end 

rez=F 

end 

function [rez] = SimVAD(x,p,F,n) 
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k=1; 

u=rand; 

g=F(1); 

while u>g 

    k=k+1 

    g=F(k); 

end 

rez=x(k); 

end 

end 

 

 Function OptimCo1(N) receives as 

parameter the number of iterations N, 

computes the solution Pn, n=1,..,N of the 

Riccati equation (5) and returns the 

coefficient      iWii kkk BA   of the response 

kX  of the system (4) to the action of the 

optimal control provided by Theorem 1. 
 

function [rez]= OptimCo1(N) 

Z=2; 

alf=1/2; 

A(:,:,1)=[1 2; 0 3]; 

A(:,:,2)=[-1 1; 3 2]; 

d=2;  

h=2; 

p=3;  

m=2; 

K(:,:,1)=[2 0; 0 2]; 

K(:,:,2)=[4 2; 2 4]; 

Q=[1/3 2/3; 2/5 3/5]; 

x0=[1 ;1]; 

for i=1:Z 

A00(:,:,i)=matrA(h, alf,A,i,d,N); 

B(:,:,i)=matrB(d,i,m,N); 

C(:,:,i)=matrC(i,d,N,p); 

end; 

S=matrS(d,N); 

 

% here it is computed  P(:,:,i,N+1) which  

% denotes the component PN-1(i) of the  

% solution of the Riccati equation (5) 

 

for i=1:Z 

P(:,:,i,N+1)=C(:,:,i)'*C(:,:,i)+ 

A00(:,:,i)'*S*A00(:,:,i)-

A00(:,:,i)'*S*B(:,:,i)*inv(K(:,:,1)+B(:,:,i)'*S*

B(:,:,i))*B(:,:,i)'*S*A00(:,:,i) 

end 

 

% here it is computed  P(:,:,i,k) which denotes 

% the  component Pk-1(i) of the solution of the 

%  Riccati equation (5). 

 

for k=N:-1:1 

   for i=1:Z 

   P(:,:,i,k)=C(:,:,i)'*C(:,:,i)+ 

A00(:,:,i)'*erond(Z,i,Q,P(:,:,:,k+1))*A00(:,:,i

) - 

A00(:,:,i)'*erond(Z,i,Q,P(:,:,:,k+1))*B(:,:,i) 

*inv(K(:,:,1)+B(:,:,i)' 

*erond(Z,i,Q,P(:,:,:,k+1)) 

*B(:,:,i))*B(:,:,i)'*erond(Z,i,Q,P(:,:,:,k+1)) 

*A00(:,:,i); 

 end 

end 

for k=N:-1:1 

   for i=1:Z 

   WB(:,:,i,k)=A00(:,:,i)-B(:,:,i)*inv(K(:,:,1) 

+B(:,:,i)'*erond(Z,i,Q,P(:,:,:,k+1))*B(:,:,i))*

B(:,:,i)'*erond(Z,i,Q,P(:,:,:,k+1))*A00(:,:,i); 

  end 

end 

rez=WB 

 

The following two algorithms generate 20 

instances of the random variable 

 N,1,.., =n ,nx  representing the response of 

the system (1) in the cases when the 

controlled gain is either optimal or absent. 
 

Algorithm 1(generates the first component of 

xn) 

N=6; Z=2; 
% p is the initial distribution of the Markov chain 

p=[0.3 0.7]; 
% x is the state space of the Markov chain 

 x=1:Z;  
% Q is the transition matrix of the Markov chain 

Q=[1/3 2/3; 2/5 3/5]; 

U=zeros(1:2)';  
% here is defined X the initial value of the  

% expanded state system (4) 

X=[10 ;20]; 

for i=1:N-1 

X=[X;U] 

end 

Y=X 
% there are generated 20 instances of xn, the state 

% variable of system (1) 

 for i=1:20 
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r=LantMarkov(x,2, p, Q, N) 
% LantMarkov(x,2, p, Q, N) generates vector r 

% representing the first N components of a  

% Markov chain 

WB=OptimCo1(N)  
%WB is the coefficient of Xn from the exanded 

%state system (4) in the case when the optimal 

%control is defined as in Theorem 1 

for k=1:N 

X=WB(:,:,r(k),1)*X; 

end 
% the resultin value X represents the N-th step 

 % solution of system (4) and X=(x1,x2,..,xN),  

% where x1,x2,..,xN are state states of system (1) 

xx(1)=X(1) 

for k=2:N 

    xx(k)=X(1+2*(k-1)) 

end 
% xx returns the first components of x1,x2,..,xN 

% these components are ploted here with a dash-

% dot, red line 

plot(1:N,xx,'-.r*'); 

hold on 

for i=1:Z 

WW (:,:,i)=matrA(h, alf,A,i,d,N); 

end; 
% WW collects the coefficients of system (4) in  

% the  absence of control 

X=Y 

for k=1:N 

X=WW(:,:,r(k))*X; 

end 

xx(1)=X(1) 

for k=2:N 

    xx(k)=X(1+2*(k-1)) 

end 
% xx returns the first components of x1,x2,..,xN 

% these components are plotted here with a solid 

% blue line  

plot(1:N,xx,'blue'); 

end 

 

Algorithm 2(generates the second component 

of xn) 

N=6; Z=2;U=zeros(1:2)';  
% here it is defined the initial value of the 

% expanded state system (4) 
X=[10 ;20]; 

for i=1:N-1 

X=[X;U]; 

end 

Y=X; 

% p is initial distribution of the Markov chain 

p=[0.3 0.7]; 
% x is the state space of the Markov chain 

x=1:Z; 
% Q is the transition matrix of the Markov chain 

Q=[1/3 2/3; 2/5 3/5]; 
% there are generated 20 instances of xn, the state 

% variable of system (1) 

for i=1:20 

% the first N components of the Markov chain 

are %generated in vector r 

r=LantMarkov(x,2, p, Q, N) 
% LantMarkov(x,2, p, Q, N) generates vector r 

% representing the first N components of a  

% Markov chain 

WB=OptimCo1(N) 
%WB is the coefficient of Xn from the exanded 

%state system (4) in the case when the optimal 

%control is defined as in Theorem 1 

for k=1:N 

X=WB(:,:,r(k),2)*X; 

end 

for k=1:N 

    xx(k)=X(2*k) 

end 
% xx returns the first components of x1,x2,..,xN 

% these components are ploted here with a dash-

% dot, red line 

plot(1:N,xx,'-.r*');hold on; 

for i=1:Z 

WW (:,:,i)=matrA(h, alf,A,i,d,N); 

end; 
% WW collects the coefficients of system (4) in  

% the  absence of control 

X=Y 

for k=1:N 

X=WW(:,:,r(k))*X; 

end 

for k=1:N 

    xx(k)=X(2*k) 

end 
% xx returns the first components of x1,x2,..,xN 

% these components are plotted here with a solid 

% blue line  

plot(1:N,xx,'blue');  
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Figure 1. The first component of the state xn. 

 
Figure 2. The second component of the state 

xn. 

 

 

4. CONCLUSION  
 

This paper presents two computer algorithms 

which provides the response of a class of 

LFOSs to the optimal control input which 

represents the solution of a finite horizon 

optimal linear quadratic control problem 

solved in [7]. We hope that these algorithms 

will be helpful to all those who have to 

simulate the behaviour of fractional linear 

systems with Markovian jumps. Such 

algorithms seem to be new in the literature.  
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