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Abstract.  The purpose of this paper is to provide a formal approach based on groupoids for studying certain 

discrepancies between computational output and theoretical expectations in the analysis of the orbit space 

associated to an irreversible dynamical system.  
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  1. INTRODUCTION 

 

  The temporal evolution of a real world system can mathematically be described by a 

dynamical system. Classically, the continuous-time evolution is given by an ordinary 

differential equation of the form 
dx

dt
=F(x) (F satisfying the Lipschitz existence condition), 

where x is state-valued function. On the other hand, if time is assumed to go on continuously 

but just single instances of time are taken into account, then the mathematical model is a 

discrete dynamical system. The mathematical setting for a discrete-time dynamical system is a 

space X and a map :XX. The space X is the phase space (the space of all possible states of 

the system) and the map  defines time evolution - the change of the states over one time 

step: the state xX at time t = 0 evolves into (x) at t = 1, ((x)) at t = 2, etc. Consequently, 


n
(x) is the state of the system at time t = n if x is the state of the system at time t = 0. Also 

this type of dynamical system naturally arises when an ordinary differential equation is 

integrated by an explicit numerical scheme.  

 There is a rich interplay between dynamical systems theory and computational 

analysis of dynamical systems. In this paper we take advantage of the framework of groupoids 

in order to study at a formal level the discrepancies between orbit computation using floating 

point arithmetic and theoretical expectations. More precisely, we introduce a groupoid 

associated to an irreversible dynamical system and to an equivalence relation on the phase 

space. The study of computational output versus theoretical expectations in the analysis of the 

orbit space will be replace by a comparative study of this groupoid and of the original 

groupoid associated to the dynamical system as in [3] and [4].  

 

2. GROUPOIDS ASSOCIATED TO IRREVERSIBLE DYNAMICAL 

SYSTEMS 

A groupoid is a set G, together with a distinguished subset G
(2)
 GG, and two maps:  

a product map (1, 2)  12 [:G
(2)

  G], and an inverse map   
-1

 [:G  G], such that the 

following relations are satisfied: 
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(1) (-1
)

-1
 =  

(2) If  (1,2)G
(2)

 and (2,3)G
(2)

,  then (12, 3), (1,23) G
(2)

 and (12) 3= 1(2, 3). 

(3) (, -1
)G

(2)
, and if (1, )G

(2)
,  then (1)

-1
 = 1. 

(4) (-1
, )G

(2)
, and if (, 1)G

(2)
,  then 

-1
(1) = 1. 

 The maps r and d on G, defined by the formulae r() =
-1

 and d() =
-1
, are called the 

range and the source (domain) maps. It follows easily from the definition that they have a 

common image called the unit space of G, which is denoted G
(0)

. The fibres of the range and 

the source maps are denoted G
x
 =r

-1
 ({x}) and Gx

 
=d

-1
 ({x}), respectively.  For x and y in G

(0)
, 

(r,d)-fibre is x
yG   = G

x
Gy. It is easy to see that x

xG  is a group, called the isotropy group at x, 

and will be denoted G(x).  

 The relation x~y if and only if there is G such that r()=x and d() is an equivalence 

relation on G
(0)

. Its equivalence classes are called orbits. The graph of this equivalence 

relation 

R=(x,y) G
(0)

  G
(0)

 : there is G such that r()=x and d() 

can be regarded as a groupoid, under the operations: 

    (x,y)(y,z) = (x,z) 

    (x,y)
-1

 = (y,x) 

R is called the principal groupoid associated with G. We denote by (r,d):G→R, the map 

defined by 

(r,d)(x)=(r(x),d(x)) for all  x∈G. 

A topological groupoid consists of a groupoid G and a topology compatible with the groupoid 

structure i.e. the inverse and multiplication are continuous maps (the topology on G
(2)

 is 

induced from G×G endowed with the product topology).  

  

 Notation 2.1. Let X be a topological space, : X  X a function and E be the graph 

of an equivalence relation on X. Let us denote be G(X, , E) the set: 

G(X, , E) ={(x,k,y)X×Z×X:  

there is nZ such that n+k0 and for all mn (
m+k

(x), 
m
(y))E }, 

where Z is the group of integers.  

 We endow G(X, , E) with the subspace topology coming from XZX, where Z has 

the discrete topology. Under the operations 

 (x, n, y)(y, m, z) = (x, n+m, y) 

 (x, n, y)
-1

 = (y, -n, x) 

XZX is a topological groupoid. In the following the unit space of the groupoid XZX 

{(x,0,x), xX} 

will be identified with X. 
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 Proposition 2.2. Let : X  X be a function, E be the graph of an equivalence 

relation on X and 

G(X, , E) ={(x,k,y)X×Z×X:  

there is nZ such that n+k0 and for all mn (
m+k

(x), 
m
(y))E }. 

Then 

1. G(X, , E) is a subgroupoid of XZX having the same unit space. 

2. If  X is a topological space and G(X, , E) is endowed with the induced topology from 

X×Z×X, then G(X, , E) is a topological groupoid. 

Proof. If (x, k1, y), (y, k2, z)  G(X, , E), then there are n1 and n2 such that n1+k1 0, 

n2+k2 0, and for all m max(n1-k2, n2),  

    y,x 212 kmkkm 
 E and     z,y mkm 2 

 E. 

Consequently, if n0 = max(n1-k2, n2),  n0+k2+k1n1 + k10 and for every mn0, 

    z,x mkkm 12 
 E. Hence (x, k1+k2, z) G(X, , E). If (x,k,y) G(X, , E), then there is 

nZ such that n+k0 and for all mn (
m+k

(x), 
m
(y))E. Let n1=max(n+k,k). Then n1-k0 

and for all mn1 we have     y,x kmkkm   E and consequently,     x,y mkm   E. 

Thus (y,-k,x) G(X, , E).  

 

 Examples 2.3. 

 1. Let fl(x) denote the floating point number approximating x and let : R  R be a 

function. Let us define an equivalence relation E on  R:  

 y1  ~ y2 if and only if fl(y1) = fl(y2) or  

there are x1, x2 such that fl(x1) = fl(x2), fl((x1)) = fl(y1)  fl((x2))=fl(y2). 

Then (x, fl(x)), ((fl(x)), (x))E and (fl((fl(x))), (x))E for all x. 

The study of computational output versus theoretical expectations in the analysis of the orbit 

space could be replace by a comparative study of the groupoid G(X, , E) and of the groupoid  

G(X, ) ={(x,k,y)X×Z×X: there is nZ such that n+k0 
m+k

(x) = 
m
(y)} introduced in [3] 

(let us notice that if * is an approximation for  such that fl((fl(x)))=fl(*(fl(x)) for all x, 

then (
n
(x), *

n
(fl(x))E for all x and all nZ, n1).  

 2. To study a long term dynamical behavior of a discrete dynamical system (X, ) we 

can use the groupoid G(X, , E) where E is defined bellow assuming that the phase space is 

endowed with a uniform structure US:  

x ~ y if and only if  

for each VUS there is nVZ, nV0 such that (
m
(x), 

m
(y))V for all mnV.  

If (X, d) is a metric space and US is the uniform structure associated to the metric then 

x ~ y if and only if limnd(
n
(x),

n
(y))=0. 
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 3. If the space X is endowed with a uniform structure US and E={V, VUS} then 

G(X,,E) and the groupoid G(X, P, H, , US) introduced in [2] coincide (where 

xn=(x,n)=
n
(x), P=N, H=Z).  

 4. If E = Δ = { (x, x) : x X }, :XX, then G(X,,E)= G(X, ) (the groupoid 

introduced in [3]). 

  Notation 2.4. Let : X  X be a function, E be the graph of an equivalence 

relation on X and 

G(X, , E) ={(x,k,y)X×Z×X:  

there is nZ such that n+k0 and for all mn (
m+k

(x), 
m
(y))E }. 

For each xX, let us denote by  

x
xH ={k  Z: there is nZ such that n+k0 and for all mn (

m+k
(x), 

m
(x))E } 

Let kx be the smallest positive k x
xH  if such k exists, and kx=0 otherwise.   

The next propositions will be used to characterize the transported topology (introduced 

in [1]) from G(X,,E) to its principal groupoid.  

Proposition 2.5.  With the notation 2.4, for every x,yX, let 

x
yG ={ G(X, , E): r()=x and d()=y}. 

(we identified the unit space of G(X, , E) with X). Then 

1. For every xX, x
xG  =(x, kxt, x): tZ}. 

2. For every G(X, , E), kr() = kd(). 

3. For every G(X, , E) with the property that kr() = 0 (and consequently, kd()=0), 

there is a unique kr(),d()Z such that 

 
 


r

d
G =(r(), kr(),d(), d()). 

Moreover kd(),r() = - kr(),d(). 

4. For every G(X, , E) with the property that kr()  0, there is k0 such that 

(r(),k,d())  
 


r

d
G  

Proof. For each xX,  

x
xG ={(x, k, x)  X  Z  X :  

there is nZ such that n+k0 and for all mn (
m+k

(x), 
m
(x))E } 

                  ={(x, k, x)  X  Z  X : k x
xH } 

                  ={x}× x
xH ×{x}, is the isotropy group at x associated to the groupoid G(X, , E). 

Since x
xH  is a subgroup of Z, it follows that there is an integer kx0 such that x

xH =kxZ (kx = 0 

iff x
xH ={0} and kx is the smallest positive k x

xH  otherwise). Thus x
xG  =(x, kxt, x): tZ}.  
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For every G(X, , E),  
 


r

r
H  and  

 


d

d
H  are isomorphic. Consequently, kr() = kd(). 

Let G(X, , E) be such that kr() = 0. Let us assume by contradiction that there are 

k1≠k2 such that 1=(r(), k1, d())  
 


r

d
G  and 2=(r(), k2, d())  

 


r

d
G . Then  

(r(), k1- k2 ,r()) = 12
-1
  

 


r

r
G ={(r(),0,r())}. 

Hence k1 – k2 = 0, which is in contradiction with k1≠k2. Consequently, there is a unique 

kr(),d()Z such that 

 
 


r

d
G =(r(), kr(),d(), d()). 

Obviously,  
 


d

r
G =  

   1r

d
G




=(d(), -kr(),d(), r()). 

Let G(X, , E) be such that kr() ≠ 0. Then there is mZ such that 

(r(),m,d())  
 


r

d
G . Let tZ, t0 be such that m+tkr() 0. It is easy to see that 

(r(),k+tkr(),d())  
 


r

d
G .  

Notation 2.6. With the notation 2.4, for every x,yX, let 

x
yG ={ G(X, , E): r()=x and d()=y}. 

and let G(X, , E). If kr() = 0 (and consequently, kd()=0),  let us denote by kr(),d() the 

unique kZ such that 

 
 


r

d
G =(r(), k, d()). 

If kr() ≠ 0  let us denote by kr(),d() the smallest nonnegative number k with the 

property that (r(), k, d())  
 


r

d
G . 

For each x, let nx be the smallest nonnegative integer n, n+kx0 satisfying 

(  x
mkx ,

m
(x))E for all mn. 

For every equivalent units x,yX, let nx,y be the smallest nonnegative integer n 

satisfying (  x
mk y,x 

 ,
m
(y))E, for all mn. 

 Proposition 2.7. With the notations 2.4 and 2.6, we have 

1. If G(X, , E) and kr()  0, then  

 
 


r

d
G =(r(), kr(),d() + kr() t, d()), tZ. 

2. If G(X, , E), kr()  0, then  kr(),d()  {0,1, …, kr()-1}. 

3. If G(X, , E), then  kr(),d()=0 <=> kd(),r()=0 <=> there is nN such that for all mn 

(
m

(r()), 
m
(d()))E. 

4. If G(X, , E) and  kr(),d()≠0, then kd(),r() = kr() - kr(),d(). 

5. For every equivalent units x,yX with the property that kx0, we have  

nx,y < kx+max(nx,ny). 
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Proof.  Let G(X, , E) be such that kr() ≠ 0. Let  k1 Z and let k0 be the remainder 

obtained by Division Theorem : k1 = kr() t+ k0. Then  

0 =(r(), k0, d())  
 


r

d
G  if and only if 1 =(r(), k1, d())  

 


r

d
G . 

Since kr() is the smallest positive k with the property that (r(),k,r())  
 


r

r
G , it follows that k0 

is the smallest nonnegative number k having the property that =(r(), k, d())  
 


r

d
G . Thus k0 

= kr(),d(). Therefore 1 =(r(), k1, d())  
 


r

d
G  if and only if there is tZ such that k1 = kr() t +  

kr(),d(). Since kr(),d().  is the remainder, obviously, kr(),d()  {0,1, …, kr()-1}. 

Moreover k1 = kr() t+ kr(),d() implies  - k1 = kr() (-t-1)+ kr() - kr(),d() = kd() (-t-1)+ kr() 

- kr(),d(). If kr(),d()  0, then 0  kr() - kr(),d() < kr() = kd(). Thus kr() - kr(),d() is the remainder 

of the division of –k1 by kd(). On the other hand  

1 =(r(), k1, d())  
 


r

d
G  if and only if 1

-1
 =(d(), -k1, r())  

 


d

r
G . 

Consequently, kd(),r() = kr() - kr(),d().  

Let us consider two equivalent units x,yX such that  kx≠0.  Let us assume by 

contradiction that  nx,y  kx+max(nx,ny). Hence nx,y – 1  max(nx,ny).   Since for all n  

max(nx,ny), 

(  x
nk y,x 

 ,  x
nkk xy,x 

 )E,  (  y
nkx ,  yn )E, 

it follows that for all m  nx,y – 1,  

(  x
mk y,x 

 ,  x
mkk xy,x 

 )E,  (  y
mkx ,  ym )E. 

On  the other hand for all m  nx,y – 1,  kx + m  nx,y  and therefore  

(  x
mkk xy,x 

 ,  y
mkx )E. 

Consequently, (  x
mk y,x 

 ,  ym )E for all m  nx,y – 1, which is in contradiction with the 

choice of nx,y. Thus nx,y < kx+max(nx,ny). 
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