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Abstract. In this paper, starting from previous methods written by other authors, we present the theoretical 

background of the modal identification for hyperstatic metallic structures (in an own way). We present also the 

known methods which are used nowadays for modal parameters identification. 
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1. Introduction 

 
The modal identification of three dimensional metallic structures consists in an 

assembly of theoretical and experimental procedures for determination of those parameters 
that characterize the system eigenmodes. The testing techniques for nowadays, for modal 
parameters identification can be broadly classified in two majour groups (according to Manea 
(2006)[17], Manea et al. (2007)[18], Miritoiu et al. (2011)[19] or Edwins (1987)[8]): the 
multipoint-excitation that involves the usage of multiple shakers located at various points on 
the structure and having controlled force amplitudes and phase relationships in order to nullify 
the damping forces presented in the structure and to drive the structure in an undamped mode; 
the single point excitation method used even if the structure is complicated and consists in 
applying a force in a given point and recording the vibratory response in all interest points, 
including the excitation point. The advantages of the first method are: the undamped normal 
frequencies and the corresponding mode shapes are immediately produced. The major 
disadvantage of the first method is: high complexity and expense in time and cost of installing 
multiple shakers. The main advantage of the second method is that it requires a minimum of 
equipment, but, as a disadvantage, it needs a laborious analysis to perform extensive 
processing of the result to interprete the dynamic behaviour of the structure under test. It also 
gives a good procedure and criteria to validate the mathematical model obtained by finite 
element analysis using specialised softwares. This article presents a theoretical background of 



 Fiabilitate si Durabilitate - Fiability & Durability    Supplement no 1/ 2012 
 Editura “Academica Brâncuşi” , Târgu Jiu, ISSN 1844 – 640X 

 

 

 

 

37 

single point excitation method from the authors point of view, a software for modal 
identification and an application for modal identification on a hyperstatic metallic structure. 

Many papers present methods for eigenmodes calculus. For example, in Gomes et al. 

(2008)[10] the limit spectral problems are derived for the problem on oscillations of a solid 

with light inclusions. It is established that, for heavy inclusions, the limit problems are united 

into a more complex resultant problem describing the far action in the set of inclusions. In 

Mishakin and Samsonov (2011)[20] it is presented a method for calculating the dispersion 

characteristics of eigenmodes of metal waveguides with helical corrugations on the inner 

surface, which is based on the transition to a new nonortogonal system of coordinates. The 

analyzed problem is reduced to solving a generalized algebraic problem. Kairov (2001)[12] 

studies the effect of holes on the eigenmodes of reinforced shells of rotation.  A solution is 

built on the basis of the linear theory of thin elastic shells using the Ritz method. The obtained 

numerical results are compared with experimental data. Tommaseo et al. study the 

subharmonic excitation of the eigenmodes of charged particles in a penning trap. Komarov 

(2011)[14] studies the eigenvalues and eigenfields of regular polygonal waveguides. The 

lowest and high-order TE- and TM-modes are identified on a basis of united classification 

scheme. Closed-form expressions for calculation of cutoff wavelengths of the lowest TE- and 

TM-modes are presented. Belousov et al. (2000)[2] study methods of spectrum calculation 

and parameter control of open-cavity eigenmodes. The potential of the proposed software and 

hardware is demonstrated on the basis of an orotron cavity model designed and examined for 

millimeter wavelengths. The numerical and experimental results are in good agreement. The 

developed methods and software can be used for designing open cavities in various frequency 

ranges. Vlasov (2006)[27] has determined the characteristics (eigenfrequencies and radiation 

Q-factors) of elastic oscillations existing at the boundary of a cylindrical cavity in a solid 

body. These oscillations become Rayleigh waves with increasing cavity radius. It was shown 

that such oscillations in bodies with moderate Poisson’s ratios (about 0.2–0.3) can exist in the 

case of sufficiently large cavity diameters exceeding 100 Rayleigh wave lengths. In Schidt-

Hattenberger (1992)[22] an important subclass of solutions has been analytically investigated 

for a non-linear three coupler fiber. These were the stationary solutions or nonlinear 

eigenmodes. Their stability is checked by using an exact method and numerical tests. In 

Stanescu et al. (2009)[23] it was made a study for modal identification for two bars from 

composite materials (bar 1 made of phenolic fireproof resin reinforced with fiberglass; bar 2 

made of ortophtalic polyesteric resin reinforced with fiberglass). 

Many other vibration studies exist in the engineering literature. For example, in Hu 

(2011)[7] the vibration mode of the constrained damping cantilever is built up according to 

the mode superposition of the elastic cantilever beam. The control equation of the constrained 

damping cantilever beam is then derived using Lagrange’s equation. There is made a 

comparison between analytical and experimental methods. Xinong and Zinghui (1998)[31] 

studied the active and passive control of vibration of the thin plate with Local Active 

Constrained Damping Layer. The governing equations of system were formulated based on 

the constitutive equations of elastic, viscoelastic, piezoelectric materials. Cao et al. (2011)[3] 

studied the free vibration characteristics of circular cylindrical shell with passive constrained 

layer damping (PCLD). Wave propagation approach rather than finite element method, 

transfer matrix method, and Rayleigh-Ritz method was used to solve the problem of vibration 

of PCLD circular cylindrical shell under a simply supported boundary condition at two ends. 

Numerical results show that the presented method was more effective in comparison with 

other methods. Xia and Lukasiewicz (1995)[29] studied the nonlinear, forced, damped 
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vibrations of simply-supported rectangular sandwhich plates with a viscoelastic core. 

Damping was taken into account by modelling the viscoelastic core as a Voigt-Kelvin solid. It 

was also studied the influence of the thickness of the layers and the material properties on the 

nonlinear response of the plates. Lee and Han (2006)[11] studied the free and forced vibration 

of laminated composite plates and shells using a 9-node strain shell element. The natural 

frequencies of isotropic and composite laminates were presented. The forced vibration 

analysis of laminated composite plates and shells subjected to arbitrary loading was 

investigated. Karnopp et al. (1970)[13] studied the problem of determining the natural 

frequencies and modes of a statically indeterminant Timoshenko beam. By lumping the beam 

properties of linear and rotary inertia at discrete points along the length of the beam and by 

employing the complementary, variational principle, an approximate solution was obtained by 

using simple matrix iteration. 

 

2. Theoretical background for the modal parameters identification 

 

Any system can be modeled by n concentrated mass points jointed by elastic elements 
having kk rigidity and elements having ck damping. If this damped system, having n degrees of 
freedom, is loaded by an external excitation system marked with {Q(t)}, the motion equations 
are given in relation (1). 

                                                 tQtxktxCtxM 
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                            (1) 

where [M], [C] and [K] represent the matrices of mass, damping and rigidity; {x(t)} 

with the first and second derivatives are the vectors of displacements, velocity and 

acceleration; {Q(t)} is the generalised forces vector. 

The system response at external excitation is calculated with (2), where it is processed 

as a sum of ‘n’ modal contributions due to each separate degree of freedom. 
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where {X(ω)} is the Fourier transform of displacement;  k  and  k

  represent the k 

order eigenvector and its complex conjugate; μk is the k order of damping ratio; νk is the k 

order of damped natural frequency; ka  and ka  are the norm constants of eigenvector; ω is the 

external excitation frequency. 

In practical applications in mechanical engineering, we usually replace the modal 

vectors with two constants that are determined with (3). 
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The system admittance, defined as the ratio between the displacement response and 

the force excitation is calculated with (4). 
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The concept of discrete system with concentrated mass in n material points was used 

in the approximations adopted during the mathematical model. In order to obtain an accurate 

approximation of the real system by the discrete one, n must converge to infinity. Because of 

experimental and processing technique and of the necessary time for data processing, this is 

impossible. The frequencies domain is limited to a reasonable width in practical applications, 

which is obtained by the major resonances of the analyzed equipment and the frequency 

domain of the application goal. In these conditions, the sum from relation (4) is reduced to 

several components marked in the following with n.  The contribution of superior and inferior 

modes are included in two corrections factors known as residual flexibility S
’
ij (for superior 

modes) and inferior modal addmitance (-1)/(M
’
ij · ω

2
) (for inferior modes). The system 

admittance will be calculated with (5). 
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where i is the excitation point and j is the measuring point. 

The modal identification of a system with n degrees of freedom assumes 

determination of 4n modal parameters: μk, νk, U
’
ij, V

’
ij. These are the intrinsic characteristics 

of the system, independent of the external conditions. The system response to different 

excitations (like: seismic motion applied to base, concentrated electrodynamics forces due to 

the switching phenomena, distributed forces due to wind actions and so on) can be calculated 

with relation (2). The modal parameters are determined from experimental tests performed on 

the system brought into a controlled vibrations state with simultaneous measurement of the 

applied excitation and structure response. The controlled vibration state can be made using the 

following low-level excitation methods (according to Manea (2007)[18] or Miritoiu 

(2011)[19]): the relaxed step force, the one-point sinusoidal or large band steady-state 

vibration excitation and the impact force. In this paper, in order to bring the metallic structure 

into a controlled vibrations state, there will be used the impact force. 

 

3. Modal parameters identification steps 

 
To determine de modal parameters, we follow the next steps: 
 We determine the frequency response characteristics by calculating the admittance 

αij(ω) for all the pairs excitation/vibratory response points 
 Preliminary resonances localization in the initial approximation of μk and νk 

(k=1,2,..,n) modal parameters 
 The first stage identification of modal parameters μk, νk, U

k
ij, V

k
ij, S

’
ij and (-1/M

’
ij) 

(where k=1,2,..,n) on limited frequency domains. The identification is made by using linear 
procedures, determining those parameters which inserted in relation (5) generate theoretical 
characteristics that approximate with minimal error the experimental calculated frequency 
response function. 
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 The final identification of modal parameters μk, νk, U
k

ij, V
k

ij, S
’
ij and (-1/M

’
ij) (where 

k=1,2,..,n) on the entire frequency domain. The identification is made similar with the above 
step. 
 

4. Conclusions 
 
In this paper we have presented the theoretical background for the modal parameters 

identification. The modal parameters can be used for structural changes analysis and for 

assesment of structure response to given excitations concentrated in distinct points or 

distributed on the structure.  

Applied on a new equipment in the prototype stage, modal identification gives 

informations about the corectitude of design conception, construction, and it may give 

informations concerning the improvement of the vibration response of the equipment. 

This method can be used in parallel with a finite element software. A very good finite 

element software can be a certain error source if it is used by an analyst that mindless of the 

fact that the material characteristics are only approximate known, even if the geometrical 

model is very good. 

Applied on a recent mounted equipment, or on a working equipment, the modal 

identification gives informations concerning the quality of the mounting process, the  

weariness of material, possible cracks or the whickness of some parts. 
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