A NEW REPRESENTATION RESULT FOR STOCHASTIC DIFFERENTIAL EQUATIONS WITH INFINITE MARKOV JUMPS AND MULTIPLICATIVE NOISE

V.M. UNGUREANU, Constantin Brâncuși University, Tg-Jiu, ROMANIA

Abstract. In this paper we give a new representation of the conditional mean square of the solutions for a class of stochastic differential linear equations with infinite Markov jumps (SDELMs) and multiplicative noise. The obtained result is related to the solutions of two Lyapunov type differential equations defined on ordered Banach spaces of sequences of bounded operators.

Keywords: sequences, matrix, subspace;

1. INTRODUCTION

In the last decades, the SDELMs with and without multiplicative noise have attracted the interest of the researchers [5], [6] and led to new applications in modern queuing network theory [4] or in the study of safety-critical and high integrity systems (see [1] and the references therein.) As in the discrete time-case (see for e.g [9], [8]), the representation of the conditional mean square of the solutions for SDELMs play an important role in studying different stability and optimal control problems ([8], [5], [6], [1]). So, in this paper we establish a new representation result based on the solution properties of some Lyapunov type equations associated with the discussed SDELMs.

2. NOTATIONS

Let be an interval of integers, which may be finite or infinite. Let be the -dimensional Euclidian space of real numbers and let be the real normed linear space of all matrices with real entries; if we will write instead of . Let be the space of all -sequences with the property that . It can be shown by using a standard procedure that is a real Banach space when endowed with the usual term-wise addition, the real scalar multiplication and the norm . The Banach subspace of formed by all sequences of symmetric matrices will be denoted by . An element is said to be positive, and we write iff is a nonnegative matrix for all . If is the identity matrix from , then is an element of .
Let us consider the linear subspace H^z_n of $l^z_n(M_n(R))$ formed by all sequences $\{P_i\}_{i\in\mathbb{Z}}$ with the property $\|P\|_2 = \sqrt{\sum_{i\in\mathbb{Z}} Tr P_i^r P_i^l} < \infty$, where $Tr A$ is the trace of the matrix $A \in M_n(R)$ and the superscript T denotes the transpose. It is not difficult to see that H^z_n is a Hilbert space with the inner product $\langle D,F \rangle_2 = \sum_{i\in\mathbb{Z}} Tr F_i^T D_i^l, D,F \in H^z_n$.

Analogously, we define N^z_n, the linear subspace of $l^z_n(M_n(R))$ formed by all sequences $\{P_i\}_{i\in\mathbb{Z}}$ with the property $\|P\|_1 = \sum_{i\in\mathbb{Z}} \sqrt{Tr P_i^r P_i^l} < \infty$. (We recall that, if $A \in M_n(R)$ is a nonnegative matrix, then \sqrt{A} is the unique nonnegative matrix defined by $A = \sqrt{A \sqrt{A}}$). By a standard way it follows that N^z_n is a Banach space.

Moreover, since there are $n_1, n_2 > 0$ such that $n_1 Tr \sqrt{X^TX} \leq \sqrt{Tr X^TX} \leq n_2 Tr \sqrt{X^TX}$ for all $X \in M_n(R)$ it follows that the linear spaces N^z_n and H^z_n coincide. In what follows we will denote by Γ the adjoint operator of any operator $\Gamma \in L(H^z_n)$.

Let $T > 0$. If B is an arbitrary Banach space, then we denote by $C([0,T],B)$ the space of all mappings $G : [0,T] \rightarrow B$ that are continuous. Also $C^1([0,T],B)$ denotes the subspace of $C([0,T],B)$ of all continuously differentiable mappings G on $(0,T)$ (i.e. G is differentiable on $(0,T)$ and G' is continuous on $(0,T)$). The product $t \in J \rightarrow G(t)(X(t)) \in l^z_n(M_n(R)_t)$ of any two functions $G : J \rightarrow l^z_n(M_n(R)_t)$ and $X : J \rightarrow l^z_n(M_n(R)_t)$ will be often denoted shortly $G(t,X(t))$. In this case we will write $G(t,X(t))(i)$ for the i-th component of $G(t,X(t))$.

Let $w(t) = (w_1(t), w_2(t), \ldots, w_r(t)) \in \mathbb{R}_+$ (i.e. $\mathbb{R}_+ = \{t \in \mathbb{R}, t \geq 0\}$) be a standard r dimensional Wiener process (see [3]) on a complete probability space (Ω, \mathcal{F}, P). For each $t \geq 0$, we denote by \mathcal{F}_t the smallest σ-algebra which contains all sets $M \in \mathcal{F}$ with $P(M) = 0$ and with respect to which all random vectors $\{w(s)\}_{s\leq t}$ are measurable. Let $\eta(t), t \in \mathbb{R}_+$ be a right continuous, homogeneous Markov chain with the state space \mathbb{Z} and a stationary standard transition probability matrix function $\{P_i(i,j)\}_{i,j \in \mathbb{Z}}$ defined by

$$P_i(i,j) = P(\eta(t+\tau) = j | \eta(\tau) = i) = \begin{cases} \lambda_{ij} t + o_i(t), & i \neq j \\ 1 + \lambda_{ii} t + o_i(t), & i = j \end{cases}$$

for all $0 \leq \tau$. Here $\Lambda = (\lambda_{ij})_{i,j \in \mathbb{Z}^+}$ is the infinitesimal matrix of the Markov process; it is known that $\lambda_{ij} \geq 0$ for $i \neq j$ and $\lambda_{ii} < 0$. We also assume that:

1. $\eta(t)$ is conservative and stable, i.e. there is $c \in \mathbb{R}_+$ such that $\sum_{j \in \mathbb{Z}^+, i \neq j} \lambda_{ij} = -\lambda_{ii} \leq c$ for all $i \in \mathbb{Z}$;
2. there is $c_1 \in \mathbb{R}_+$ such that $\sum_{j \in \mathbb{Z}^+, i \neq j} \lambda_{ij} \leq c_1$ for all $i \in \mathbb{Z}$;
3. the σ-algebras \mathcal{F}_t and $G_t = \sigma(\eta(\tau), 0 \leq \tau \leq t)$ are independent for every $t \geq 0$.

424

Fiabilitate si Durabilitate - Fiability & Durability
Supplement no 1/ 2012
Editura “Academica Brâncuși”, Târgu Jiu, ISSN 1844 – 640X
2. MAIN RESULTS

We consider the class of stochastic differential equations

\[dx(t) = A_0(t, \eta(t))x(t)\,dt + \sum_{k=1}^{r} A_k(t, \eta(t))x(t)\,dw_k(t), \quad t \geq t_0, x(t_0) = x_0 \in \mathbb{R}^n, \]

where \(A_k \in C_b\left(\mathbb{R}_+; L_{\mathcal{M}_k(\mathbb{R})}\right), A_k(t) = \{A_k(t, i)\}_{i \in \mathbb{Z}} \) for all \(k = 0, 1, \ldots, r \).

It is known that under the above hypotheses there is a unique continuous solution \(x(t) = x(t, t_0, x), \quad t \geq t_0, \) of (1). Let us denote \(A(t, i) = A_0(t, i) + \frac{\nu}{2} I_n \) and, for all \(i \in \mathbb{Z} \) and \(X \in l^2_{\mathcal{S}_n(\mathbb{R})} \) and \(t \in \mathbb{R}_+ \), we define the linear operators on \(L(l^2_{\mathcal{S}_n(\mathbb{R})}) \):

\[
\Pi_i(t, X)(i) = \sum_{k=1}^{r} A_i^T(t, i)X(i)A_k(t, i) + \sum_{j \in \mathbb{Z}, j \neq i} \lambda_{ij}X(j),
\]

\[
\Gamma_i(t, X)(i) = \sum_{k=1}^{r} A_k(t, i)X(i)A_i^T(t, i) + \sum_{j \in \mathbb{Z}, j \neq i} \lambda_{ji}X(j),
\]

\[
G(t, X)(i) = A^T(t, i)X(i) + X(i)A(t, i) + \Pi_i(t, X)(i),
\]

\[
\overline{G}(t, Y)(i) = A(t, i)Y(i) + Y(i)A^T(t, i) + \Gamma_i(t, Y)(i).
\]

It is not difficult to see that \(G(t), \overline{G}(t) \in L(l^2_{\mathcal{S}_n(\mathbb{R})}) \) and their restrictions to \(H^2_n \) and \(N^2_n \), respectively, remain linear and bounded operators. In addition \(G, \overline{G} \in C_b\left(\mathbb{R}_+; B\right) \), where \(B = L(l^2_{\mathcal{S}_n(\mathbb{R})}), L(H^2_n), L(N^2_n) \). It is not difficult to see that the adjoint operator of \(G(t) \) (as a linear and bounded operator from \(L(H^2_n) \)) is exactly the restriction of \(\overline{G}(t) \) to \(L(H^2_n) \).

We associate with (1) the following Lyapunov equations:

\[
\frac{d}{dt} X(t, i) + G(t, X(t))(i) = 0 \quad (4)
\]

\[
\frac{d}{dt} Y(t, i) = \overline{G}(t, Y(t))(i). \quad (5)
\]

The equation (4) with the initial condition \(X(s) = D \in l^2_{\mathcal{S}_n(\mathbb{R})} \) has a unique solution \(X(t, s; D) = U(t, s)(D) \in C^1([s, \infty), l^2_{\mathcal{S}_n(\mathbb{R})}) \) [7]. The mapping \((t, s) \mapsto U(t, s) \in L(l^2_{\mathcal{S}_n(\mathbb{R})}) \) is an evolution operator on \(l^2_{\mathcal{S}_n(\mathbb{R})} \) having the property \(\frac{dU(t, s)}{dt} = U(t, s)G(s) \) [7]. It is called the evolution operator generated by \(G \in C_b\left(\mathbb{R}_+, l^2_{\mathcal{S}_n(\mathbb{R})}\right) \). Let \(D \in H^2_n \). An easy computation shows that \(U^*(t_0, t)(D) \) is the unique solution of (5) with the final condition \(Y(t_0) = D \).

Now let \(\{V(t, s)\}_{0 \leq s \leq t} \) be the evolution operator generated by the mapping \(\overline{G} \in C_b\left(\mathbb{R}_+, l^2_{\mathcal{S}_n(\mathbb{R})}\right) \) (see [7]). Since \(\overline{G} \in C_b\left(\mathbb{R}_+, L(H^2_n)\right) \), it follows that \(V(t, s)(D) = U^*(t_0, t)(D) \) for all \(D \in H^2_n \), by the uniqueness of the solution. Analogously we can deduce that \(V(t, s)(D) \in N^2_n \) for all \(D \in N^2_n \).

Further we consider the element of \(H^2_n \cap N^2_n \) defined by \(i, x \}_{P[i]} = 0 \), if \(i \neq j \) and \(i, x \}_{P[j]} = x \otimes x \). We get the following.

Fiabilitate si Durabilitate - Reliability & Durability Supplement no 1/2012
Editura "Academica Brâncuși", Târgu Jiu, ISSN 1844 – 640X
Lemma 1. For all \(0 \leq s \leq t, i \in \mathbb{Z} \) and \(x \in \mathbb{R}^n \) we have
\[
\langle U(t, s)(i)(i, x) \rangle = \| V(t, s) \|_{i, x, P}
\]

Proof. Let \(\Phi(m) \in H^2_\nu, m \in \mathbb{N}^+ \), defined by \(\Phi(m)[i] = \left\{ \begin{array}{ll} 1_n, |i| \leq m, \\ 0, |i| > m. \end{array} \right. \) Obviously
\(\Phi(1) \leq \Phi(2) \leq \ldots \leq \Phi(m) \leq \ldots \leq \Phi \). By Lemma 2 from [9] we have
\[
\| V(t, s) \|_{i, x, P} = \lim_{m \to \infty} \langle \Phi(m), V(t, s) \rangle_{i, x, P}
\]
From (5), it follows that \(V(t, s) = U^*(s, t) \) and therefore
\[
\lim_{m \to \infty} \langle \Phi(m), V(t, s) \rangle_{i, x, P} = \lim_{m \to \infty} \langle \Phi(m), U^*(s, t) \rangle_{i, x, P}
\]
\[
= \lim_{m \to \infty} \sum_{j \in \mathbb{Z}} \langle j \rangle U(s, t) \Phi(m)(j) \rangle_{i, x, P} = \langle U(t, s) \rangle_{i, x, P}.
\]

The conclusion follows.

For all \(H \in l^2_{\mathbb{S},(R)} \) and \(0 \leq t_0 \leq s \) we define the mapping \(T(s, t_0) : l^2_{\mathbb{S},(R)} \to l^2_{\mathbb{S},(R)} \),
\[
\langle T(s, t_0)(H)(i, x) \rangle = E[H(\eta(t), s), x(s)]_{|_{\eta(t_0)=i}}
\]
where \(i \in \mathbb{Z} \) and \(x \in \mathbb{R}^n \). Note that \(T(s, t_0) \) is well defined, because sup \(E[H(\eta(s), x(s))_{|_{\eta(t_0)=i}}] \leq \| H \|_{i, x, P} \) and
\[
E[\| s \|_{|_{\eta(t_0)=i}}] < K, \text{ where } K \text{ does not depend on } i. \text{ (The last inequality follows by arguing as for the proof of Theorem 37 from [3]).}
\]
Moreover, it follows easily that \(T(s, t_0) \) is a linear and bounded operator on \(l^2_{\mathbb{S},(R)} \) and \(T(s, t_0)(H) \geq 0 \) for all \(H \in l^2_{\mathbb{S},(R)}, H \geq 0 \) (we will say that \(T(s, t_0) \) is a positive operator).

Theorem 1. For all \(0 \leq s \leq t, i \in \mathbb{Z} \) and \(x \in \mathbb{R}^n \) we have
\[
E[\| x \|_{|_{\eta(t_0)=i}}] - \langle T(s, t_0)(\Phi)_{|_{|_{|_{|_{i}}}}}, x \rangle = \langle V(s, t_0) \rangle_{i, x, P}
\]

Proof. Applying Ito’s formula (see Theorem 37 in [3]) for the function
\[
v(t, s)(\eta(t), x) = \langle H(i, x) \rangle_{t, x, P}, i \in \mathbb{R}, x \in \mathbb{R}^n \text{ and } i \in \mathbb{Z} \text{ and the stochastic process } x(t, t_0, x) \text{ we get}
\]
\[
E[\langle H(\eta(s))_x(s), x(s) \rangle_{|_{\eta(t_0)=i}}] - \langle H(i)(x_0), x_0 \rangle =
\]
\[
E[\int_0^s \langle H(\eta(t))_x(t), A_0(t, \eta(t))x(t) \rangle + \sum_{j \in \mathbb{Z}} \langle A_j(t, \eta(t))_x(t), x(t) \rangle \rangle_{|_{\eta(t_0)=i}} dt.
\]
Hence
\[
\langle T(s, t_0)(H) \rangle_{i, x, P} - \langle H(i) \rangle_{i, x, P} = \int_0^s \langle T(t, t_0)A_0(t)H + HA_0(t) + \Pi_1(t, H)(i) \rangle_{i, x, P} dt.
\]
Differentiating with respect to \(s \) we get
\[
\frac{d\langle T(s, t_0) \rangle_{i, x, P}}{ds} = T(s, t_0)G(s), T(t_0, t_0)(H) = H.
\]

426

Fiabilitate si Durabilitate - Fiability & Durability Supplement no 1/2012
Editura “Academica Brâncuși”, Târgu Jiu, ISSN 1844 – 640X
$H, D \in H_{\alpha}$ we have \(\frac{d}{ds} \frac{\partial^{(2)}(x, t, s)(D, H)}{\partial x} = (\mathcal{G}(s)T^*(s, t_0)(D), H), \frac{\partial T^*(t_0, t_0)(D)}{\partial s} = D \) and we deduce that \(T^*(s, t_0) = V(t, s) \). On the other hand, let \(\{D(m)\}_{m \in \mathbb{N}} \subset l^2_{\alpha}(\mathbb{R}^k) \) be an increasing and bounded sequence with \(D_i(x) = \lim_{m \to \infty} D(m)_{i,j}(x) \), for all \(i \in \mathbb{Z} \) and \(x \in H \). Since \(T(s, t_0) \) is a positive operator, it follows that \(T(s, t_0)D(m) \leq T(s, t_0)D(m+1), \forall m \in \mathbb{N} \). Thus, the definition of \(T(s, t_0)D(m) \) and the Monotone convergence theorem imply that
\[
\lim_{m \to \infty} \langle T(s, t_0)(D(m))_{i,j}x, x \rangle = \langle T(s, t_0)(D)_{i,j}x, x \rangle
\]
for all \(i \in \mathbb{Z} \) and \(x \in \mathbb{R}^n \). Now it is clear that \(T(s, t_0)(D(m))_{i,j} \) converges to \(T(s, t_0)(D)_{i,j} \) for all \(i \in \mathbb{Z} \). Replacing \(D_m \) and \(D \) with \(\Phi_m \) and \(\Phi \), respectively, and using Lemma 1, we get successively \(\langle T(s, t_0)(\Phi)_{i,j}x, x \rangle = \lim_{m \to \infty} \langle T(s, t_0)(\Phi(m))_{i,j}x, x \rangle = \|V(s, t_0)(\cdot, \cdot P)\|_i \).

The conclusion follows.

REFERENCES

