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Abstract. Many of the engineering developments often occur as a result of the intersection between 

scientific communities with system of differential equations. They, although discussed in many 

papers from the specialized literature, still are not completely solved.  The state of fact is expected 

because practical applications reveal complexity and aspects that allow new approaches. From this 

point of view and from these reasons such problems shall continue to be characteristic feature of 

activities and tasks taken by scientific research, of major significance in mathematics. Related to the 

context and with a rough processing of the information taken from many bibliographic titles, this 

article develops or generalizes certain previous results regarding systems of the Schrödinger type.   
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1. INTRODUCTION AND THE MAIN RESULT 
 

Let Nx R  and xr : . Consider the following quasilinear elliptic system  
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where p  is the p -laplacian operator defined by   
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div   for   p1 , 

3N ,  1d   is integer,  
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,    


,0,0:
,1 di

ia   are radial continuous functions and  

di
if

,1

  satisfy the following hypotheses 

(C1)      


,0,0:
,1

d

i
di

f   are continuous in each variable; 

(C2)  
di

if
,1

  are increasing on   d
,0   in each variable. 

The topic of the existence of solutions to the elliptic system (1.1.) with boundary blow-up is 

of interest to many researchers (see [1]-[7] and their references).  

The questions of solutions existence in the case of problem (1.1.) has received an increased 

interest with Zhang-Liu recent paper [7]. In [7] the author considered problem (1.1.) when  

2 pd   and    1
,1




rh
di

i . Our purpose is to generalize the results of [7] to a larger class of 

systems (1.1.).  
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We introduce the following notations  
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The following is our main result. 

Theorem 1. (i) Assume that    
 di
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Then the system (1.1.) has infinitely many positive entire large solutions. 

(ii) Furthermore, if    
 di
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then the system (1.1.) has infinitely many positive entire bounded solutions. 

    

We observe from [6] that such coupled nonlinear Schrődinger systems (1.1.) arise in the 

description of several physical phenomena such as the propagation of pulses in birefringent 

optical fibers and Kerr-like  photorefractive media. 

2. Proof of the Theorem 1. We first see that radial solutions of (1.1.) are solutions  duu ,...,1  

of the differential equations system 
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Since the radial solutions of (1.1.) are solutions of the differential equations system (2.1.) it 

follows that the radial solutions of (1.1.) with   

dduu   )0(,...,)0( 11  
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Define  .0for  ,..., 0
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 Let   1
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We remark that, for all  ,0r    dj ,1   and  Nk   we have   .j
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Let  0R   be arbitrary. It is easy to see that (2.4.) implies 
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Moreover, taking into account the monotonicity of    ,
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We prove that   RL   is finite. Indeed, if not, we let  k , in (2.5.) and the assumption 

(1.2.) leads us to a contradiction. Since   Ru k

i   are increasing functions, it follows that the 

map      ,0,0:L   is nondecreasing and         .1,,0,
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Thus the sequences     1
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i Ru   are bounded from above on bounded sets. We now define the 
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Next, we show that  
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 , is a large solution of (2.2.). Let us remark that by (2.3.) we have 

the following estimate  
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It follows from the assumption  f i   are positive functions and    iA  , that  
di

iu
,1

  is a 

large solution of (2.2.) and so  
di

iu
,1

  is a positive entire large solution of  (1.1.). Thus any 

large solution of (2.2.) provides a positive entire large solution of (1.1.) with   
di

iiu
,1

0


   . 

Since   


,0
,1 di

i   was chosen arbitrarily, it follows that (1.1.) has infinitely many positive 

entire large solutions. 
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Let      .,1 and 0 allfor  lim: dirruru k

i
k

i 


 Then   rui  ,   di ,1   is a positive solution of 

(2.2.). It follows from (2.4.) that   rui ,   di ,1   is bounded, which implies that (1.1.) has 

infinitely many positive entire bounded solutions. This concludes the proof of Theorem 1. 

We will finish the article with some remarks. For this we note  
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Then, we can easily see from [1,2] that the following holds: 

Remark 1. Assume that (C1)-(C2) hold and that   F  . Then the system (1.1.) possesses 

at least one positive radial solution   duu ,...,1  . If, in addition,    
 dj

jA
,1

 , the positive 

radial solution   duu ,...,1   is bounded. Moreover, when    
 dj
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  the positive solution  
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Remark 2. Assume that (C1)-(C2) hold and that 
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Then, the system (1.1.) possesses at least one positive bounded radial solution   duu ,...,1   

satisfying 
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The author wish to say that the results from [1,2] are obtained independently that the results 

developed in [7]. 
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