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Abstract: In this paper we discuss existence and uniqueness problems for the solutions of a class of infinite
dimensional stochastic differential equations (SDEs) with infinite Markovian jumps (MJs). The term "infinity"
used with the notion of Markov process means that the state space of the Markov process is countably infinite.
This type of equations model different real world processes which experience abrupt changes of their states.
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1. INTRODUCTION

Recently, the SDEs with infinite MJs have attracted the interest of researchers, due to the
new areas where they apply. We mention here the telecommunications and the economic field
(see [1], [3], [4] and the references therein). In this paper we give sufficient conditions for the
existence and the uniqueness of the solutions for this class of stochastic differential equations.
The obtained result is an infinite-dimensional version of Theorem 5.1.1 from [5], which solve
a similar problem for finite dimensional SDEs without jumps.

2. PRELIMINARIES

Let QF, P: be a probability space and let 2z be an interval of integers, which may
be finite or infinite. Assume that » !;t €R + is a right continuous homogeneous Markov
chain on Q with the state space ZZ and the infinitesimal matrix A = &; ez having the

property that 4; >0 for all i,je2Z, j=i and there are the constants c,c, €R. such that

X Ay =-4;<c, X A;<c,ieZ. It is known that the transition probabilities

jez, j=i jez, j=i
{p;; u}i, iz Satisfy the first system of Kolmogorov equations
pi,j i:: Z/lik Py !:
kez
p; © =5,;,t=0

Let reN*=N/{0} be given. We consider a standard r —dimensional Wiener process on
Q, we«=w«_, teR such that the o-algebras o ws,0<s<t_ and
G —oc#4¢,0<s<t areindependent.

Let us denote by #,t >0 the smallest o -algebra containing all sets M € ¥ with the property

P(M) =0 and with respect to which all random vectors w(s),s <t are measurable. It is easy
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to see that the Wiener process {w(t)},., is adapted to the filtration ¥, =% v &,t>0 and

for every s>0, the process W #+s - W!ADO is independent of the Zo= algebra #,. Such a
o -algebra is called an admissible filtration for the Wiener processw# . We note that ¥#,

contains all P -neglijable sets from ¥ . )
In this paper, the mean (expectation) of & will be denoted by E¢&. For any ieZ,

E &, 4= Is the conditional mean of the integrable random variable & on the event 7 =i,
Denoting by %, the normal filtration ., £, , we have the following.

Proposition 1. The Wiener process w1 _is 7, adaptedand o w#+h —w#,h>0 is ¥,
independent for all t>0.

Proof. The first assertion of the theorem is a consequence of the inclusion# — 7, . We

shall prove that the process o w#+h —w#,h>0 is #, -independent for all t>0. For any

neN" weset C, R" ;:{f :R >R, f is continuous and vanishes to infinity\. It is known

that the o -algebra generated by C, R" coincides with the Borel o -algebra .5 R".
Moreover, if f,geC, R" then fgeC, R" .
Let neN*t>0 and h <h, <..<h,  be arbitrary, but fixed. We shall prove that, for
any ?ﬂ -measurable and bounded random variable zand feC, R" ,— we have
E € wt+h W!, L WHE+h —wi z =

1
@) E€wt+h —W!, LWie+h —we Eg.

Indeed, since the Wiener process has continuous trajectories we can apply the Lebesque
Dominated Convergence Theorem to deduce that
E€wit+h —W!, SWH+h —Wt z =

IlrrolEf wi+h —W1l+q, S WHE+h —Wl+q z
q >

—IlmEEHWHh —Wl+q, SWH+h —Wl+q z| =
CHOO —
q>

Forany ge O,h  the random variable W #+h —w#+q,. wH+h, —w#+q _ is

¢

.., -independent and, therefore, it is ?ﬂ -independent, too. We get
Ef{weth —wesq,..,we+h —we+q_z|, =
Efweth —werq,. ,werh, —werg_E¢|,
and

«-E€wuaih —wHe,. ., we+h —we Eq.
Consider the linear space H of all bounded and measurable functions from R",.5 R" to

R,.B R _, which satisfies (1). We observe that C, R" % .If f :R" —R is bounded
and there is a sequence of nonnegative functions f, increasing pointwise to f , then, by the
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Monotone Convergence Theorem of Lebesque, it follows that f e ¥ . Obviously, the
constant functions belong to ## . Applying a version of the monotone class theorem it follows
that ¥ contains the set of all bounded and .5 R" -measurable functions f :R" >R .
Hence (1) holds for any bounded Borel function. The conclusion follows.

The above proposition shows that the filtration ?ft and the Wiener process Wl: satisfy

the usual conditions from the Ito's integral theory. Therefore, in this paper the Ito integral will
be considered with respect to this filtration and the Wiener process w .

For any real separable Hilbert space H , we denote by L;W Kk, T].H : the space of all H -
valued processes X(t), te[t,,T], t, <T which are nonanticipative [5] with respect to the

.
filiration %, and have the property that E(I”X iﬂzdt]mo; it is known that any

f
X e L;W kK, T].H is stochastically integrable on [t,, T] [6]. We note here that 7 Ij is
right continuous and adapted to ?ft ; therefore, it is nonanticipative.

3. THE MAIN RESULT

In this section we assume the following hypothesis
(H1) i) The functions a :R, xZxH —>H,b, :R, xZxH — H are such that for each

ie, adi,.,b 9i. k=1.,r is measurable with respect to .5 R xH , where
B R_xH denotesthe o -algebra of Borel setsin R, x H .
ii) For each T >0 there exists ¥ >0 such that, for all te[0,T], x,X,€H,
e Z,
lact,i,x,) - a(t,i, x2)||2 <yT[x - x2||2;
b (61, %) = b (61, %) <7 T Jxe = %[ " k =1,
lacti, )" <7 T a+|x %o @i, 0| <» T a+]x * k=17
Let now consider the stochastic system
() dx!::at,nt;xt:dwzr:bk L7e,xe dwi

k=1

3) x4 =&, >0t>t,

where & isa H valued and ##, -measurable random variable on Q such that E ||(1F||2 <o .
By a solution of (2)-(3) we mean a function x(.) < LfLW kt,, T]H which satisfies the

stochastic integral equation

t r t _ * _
(4) x!::§+jas,ns:xs:ds+ZJ‘bk $76,x8 dw, ¢,

t k=1t,

0
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Theorem 1 Under the above hypotheses there is a unique continuous solution
x@OEXD X0, 2, t Xty from L2, K, T] H _ of (2)-(3). Moreover, we have
2 2

®) sup EJ AL,y <K EN L
where K is a positive constant which depends on y T ;T and r. Here the uniqueness is
understood in the sense that if x () and x,(.) are two solutions of (2)-(3) from
L2, K& TLH_, then E |||<l w-—x, [ =0.
Proof First we shall prove the uniqueness. Let x,(.), X,(.) € wa ft,, T H be two solutions
of (2)-(3). Taking into account (4), we get

t
(6) ||x11l:—x2lﬂsj”as,ns;xls:—as,n $,% ¢ |[ds

t

0

D)

k=1

t
[t sns.x s —b sns.x, ¢ dw, QN.

t

It is known [2] that forany @<L, |t,, T, H _ we have

2 2
t t t
(7) E“qn@lwkstﬂ <E j@s}lwksw —E o[ ds
t, t L
From (6), (H1) and the above inequality we obtain successively

_ t _
(8) E|H<1 t-x < i+r{tIE||41 €ns.x ¢ —asns,x s | ds+

t

0

2
r t
S E||[ b 9,7 9,% ¢ =b, 4,79, ¢ dw, stﬁ
k=1 t,

t r t _ .
<141 P THE I||X1 $ X, sﬂz dS:|+Z E{ % & —x, sﬂzds}}
t, k=1 0

t

- t
(9) E||{<1 Cx <7 T:l-i-r:T-i-rJE”Xl s —x, ¢[’ds,
[

for all t <t < T. From Gronwall's lemma it follows that E|H<l X, 1!][2 =0. Hence

E |k «=x, [ =0 forall te[t,,T]. The uniqueness of the solution is proved.

For the existence part we shall use the method of successive approximations [5]. Let
X, $=¢ and
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t
Xpa 4 =E+[asns x, ¢ ds
t

(10) o
+> [b, s s, x, s dw, s,

k:lt0
for all meN . Arguing exactly as in [5], we can prove by induction on me N" that
X, € L2, By, T1,H _and there is a positive constant M depending only on » ¥ and E ||<H|2 .
such that
Mt P
p+11

(11) pr+1 — X, 1!]1 <

forall p<m-1,meN".
Replacing x, and x, in (6) with x,,, and X,,, respectively, arguing as in (8) and taking
the supremum and the mean we get

t _
e ol ¥ 0T u@e{supf henel e Tannen o T ds}
to=t=T { -

to<t<T

t

2
E[sup|[ b, 7 9.x ¢ —b, ¢ne.x ¢ dw sﬁ

k=1 to=st<T t,

Let us denote fy (T) = E[sup ||xm+l — X iﬂz] An infinite dimensional version of Theorem
to=t<T

4.36 from [5] ensures that f T i+r y/T T +4r jf sds From (11) we obtain

0

T ™
fo T <yT2a+r T+4r ] Ms~‘dsgyT71+r:rT+4r‘MT:.
- =T P m+1l - “m+11

Hence
~MT "
- +1

{sup”xm+1 — X, iﬂ}q/ T 41 42 44Tr

to<t<T

Denoting o € :: y°q 4!+ r j 2+ 4Tr and using the Chebyshev's Inequality we get

- 1 —4MT ™
— | <ad =
e e R

Obviously the series Z}M—H converges and the Borel-Cantelli’s Lemma ensures that

oAU ol = 501 2 |-

n=1 k=n \ to=<t<T
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— — m-1 — =
Arguing as in [5], we conclude that the sequence X, ¥ =X, lj—z L% v
p=0

converges uniformly in te tL,T “to a function x i: which is a continuous and nonanticipative
process from L, ft,,T], H . Passing to the limit for m — o in (10) we see that x @ isa

solution of (2)-(3). The existence part is proved.
Now let us prove (5). From (4) we have

t
I II[Z < 2+ rK||§||2 4T I||a €176 ,X s][zds
tU

>

k=1

2
t
[b, s.m s, x 6 dw, sN ,
tD
Taking the conditional mean we obtain

- - t —_
EN O L g = R+ EE gz +72 TIT [#E ks 1, - 0
[

+Zr:j!+E||4( sﬂz |nq)§i ES]}

k=1 t,

— t —
< e {EW |,y 47 T:MEHIEn#sr e @s}}-
tD
Taking K, = max{2 + r,y> ¥ ¥ +r T} we see that

- - t
EK T g <Ky €I L g #1477 Tr JEIk ST 4o ds.
t

Another appeal to Gronwall’s Lemma ensures that
- A A Ttds

EIkOl s <K €JFFL o 41

Now it is clear that (5) follows. The proof is complete.
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