CALCULATION ALGORITHM FOR STUDYING EFFORTS IN THE 4R SPHERICAL QUADRILATERAL MECHANISMS BECAUSE OF TECHNICAL DEVIATIONS

Ion BULAC
Doctorand, Universitatea din Pitești, email: ionbulac57@yahoo.com

Abstract: Due to technical deviations, in the elements of the 4R spatial spherical mechanism appear efforts that additionally loads the mechanism, efforts that can be determined with the calculation algorithm that will be presented in this paper.

Keywords: elastic calculation, cardan transmission.

1. THEORETICAL ASPECTS

On the basis of the mathematical model presented in paper [7], and using the expression of technical deviations in pluckerian coordinates, a calculation algorithm is elaborated for determining the efforts from the 4R mechanism.

The 4R spherical spatial mechanism (see Figure 1.), with the axes OA, OB, OC, OD concurrent in O, and with \(\widetilde{\Delta}_A, \widetilde{\Delta}_B, \widetilde{\Delta}_C \) the technical deviations of elements AB, BC, CD.

![Figure 1.](image)

Taking into account the relations between efforts and displacements [9], [11]., and notating with \(\mathbf{A}_A, \mathbf{A}_D \) the efforts from the both ends of the mechanism expressed in pluckerian coordinates, the stability equation can be written like:

\[
\mathbf{A}_A \frac{3}{3} \mathbf{A}_D \frac{3}{3} \mathbf{F}
\]

if noted with:

\[
\mathbf{A}_{AD} \frac{3}{3} \mathbf{A}_{AB} \frac{3}{3} \mathbf{A}_{BC} \frac{3}{3} \mathbf{A}_{CD} \frac{3}{3} \mathbf{\Delta}_A \frac{3}{3} \mathbf{\Delta}_B \frac{3}{3} \mathbf{\Delta}_C \frac{3}{3} \mathbf{H}_{AD}
\]

(2)

the total relative displacements, caused by external loads, with technical deviations, and with \(\mathbf{H}_{AD}, \mathbf{K}_{AD} \) the flexibility matrixes. The rigidity can be written with the relation:

\[
\mathbf{A}_A \frac{3}{3} \mathbf{K}_{AD} \frac{3}{3} \mathbf{A}_D \frac{3}{3} \mathbf{2}_{AD} \frac{3}{3} \mathbf{\Delta}_{AD}
\]

(3)

from where

\[
\mathbf{A}_{AD} \frac{3}{3} \mathbf{A}_{AD} \frac{3}{3} \mathbf{H}_{AD} \frac{3}{3} \mathbf{\Delta}_{AD}
\]

(4)
If the A joint is considered blocked, the following formal diagram is obtained. (see Figure 2.)

![Diagram](image)

Figure 2.

From the stability condition of the cinematic couples it results:

$$A_0 \neq \frac{3}{3} A_1 \neq \frac{3}{3} A_D.$$ \hspace{1cm} \text{(5)}

By writing the relation (4) for all isolated elements the equations are obtained:

$$A_{AB} \neq \frac{3}{3} A_{AB} \neq \frac{3}{3} A_{AB} ; A_{BC} \neq \frac{3}{3} A_{BC} \neq \frac{3}{3} A_{BC} ; A_{CD} \neq \frac{3}{3} A_{CD} \neq \frac{3}{3} A_{CD} ;$$ \hspace{1cm} \text{(6)}

By summing the relations (6) and using the notations D, C, B, the equations are obtained:

$$D = \left[\begin{array}{ccc} A_{AB} & A_{AB} & A_{AB} & A_{AB} & A_{AB} \\ A_{CB} & A_{CB} & A_{CB} & A_{CB} & A_{CB} \\ A_{CD} & A_{CD} & A_{CD} & A_{CD} & A_{CD} \\ A_{DC} & A_{DC} & A_{DC} & A_{DC} & A_{DC} \\ A_{DB} & A_{DB} & A_{DB} & A_{DB} & A_{DB} \end{array}\right] ;$$ \hspace{1cm} \text{(7)}

and observing that the matrices D, C, B are formed like 0, the unknown is deducted

$$\hat{A} = \left[\begin{array}{ccc} A_{AB} & A_{AB} & A_{AB} & A_{AB} & A_{AB} \\ A_{CB} & A_{CB} & A_{CB} & A_{CB} & A_{CB} \\ A_{CD} & A_{CD} & A_{CD} & A_{CD} & A_{CD} \\ A_{DC} & A_{DC} & A_{DC} & A_{DC} & A_{DC} \\ A_{DB} & A_{DB} & A_{DB} & A_{DB} & A_{DB} \end{array}\right] ;$$ \hspace{1cm} \text{(8)}

And by taking into account the condition [12],

$$\hat{A} = \left[\begin{array}{ccc} A_{AB} & A_{AB} & A_{AB} & A_{AB} & A_{AB} \\ A_{CB} & A_{CB} & A_{CB} & A_{CB} & A_{CB} \\ A_{CD} & A_{CD} & A_{CD} & A_{CD} & A_{CD} \\ A_{DC} & A_{DC} & A_{DC} & A_{DC} & A_{DC} \\ A_{DB} & A_{DB} & A_{DB} & A_{DB} & A_{DB} \end{array}\right] ;$$ \hspace{1cm} \text{(9)}

If the matrixes K_{AD}, K_{AB} are expressed under the form:

$$K_{AD} = \left[\begin{array}{cc} K_{11} & K_{12} \\ K_{21} & K_{22} \end{array}\right] ; K_{AB} = \left[\begin{array}{cc} K_{11} & K_{12} \\ K_{21} & K_{22} \end{array}\right] ,$$ \hspace{1cm} \text{(11)}

and observing that the matrices K_{AD}^T are formed like

$$K_{AD}^T = \left[\begin{array}{cc} K_{11} & K_{12} \\ K_{21} & K_{22} \end{array}\right] ;$$ \hspace{1cm} \text{(12)}

and by using the notations

$$A = \left[\begin{array}{ccc} \tilde{\theta}_y, \tilde{\theta}_x, \tilde{\theta}_z, \tilde{\theta}_y, \tilde{\theta}_x, \tilde{\theta}_z \\ \tilde{\theta}_y, \tilde{\theta}_x, \tilde{\theta}_z, \tilde{\theta}_y, \tilde{\theta}_x, \tilde{\theta}_z \end{array}\right] ; \ A^0 = \left[\begin{array}{ccc} \tilde{\theta}_y, \tilde{\theta}_x, \tilde{\theta}_z, \tilde{\theta}_y, \tilde{\theta}_x, \tilde{\theta}_z \end{array}\right] ;$$ \hspace{1cm} \text{(13)}

$$R_A = \frac{3}{3} \left[\begin{array}{ccc} 0, F_{AY}, F_{AZ}, M_{AX}^0, M_{AY}^0, M_{AZ}^0 \end{array}\right] ; A_0 = \frac{3}{3} \left[\begin{array}{ccc} 0, F_{AY}, F_{AZ}, M_{AX}^0, M_{AY}^0, M_{AZ}^0 \end{array}\right] ;$$ \hspace{1cm} \text{(14)}

there are obtained [5],[6]. The results

$$\hat{A} = \left[\begin{array}{ccc} A_{AB} & A_{AB} & A_{AB} & A_{AB} & A_{AB} \\ A_{CB} & A_{CB} & A_{CB} & A_{CB} & A_{CB} \\ A_{CD} & A_{CD} & A_{CD} & A_{CD} & A_{CD} \\ A_{DC} & A_{DC} & A_{DC} & A_{DC} & A_{DC} \\ A_{DB} & A_{DB} & A_{DB} & A_{DB} & A_{DB} \end{array}\right] ;$$ \hspace{1cm} \text{(15)}
The representations (15), (16) are in the general reference system. In the local systems also appear the moments:

\[
\begin{bmatrix}
A'_{A} \\
A''_{A}
\end{bmatrix} = \begin{bmatrix}
-F^T \\
F^T
\end{bmatrix} \begin{bmatrix}
\theta' \\
\theta''
\end{bmatrix} + \begin{bmatrix}
A'_{0} \\
A''_{0}
\end{bmatrix}
\] (17)

2. CALCULATING THE EFFORTS

The deviations are first locally defined and then in one of the three reference systems O_XY_0Z, O_XY_0Z[10], that do not depend on θ_1, θ_2 and then in the system $O_XY_0Z_0$ and under this form by summing:

\[
A_A \equiv \frac{1}{3} \begin{bmatrix}
A_{A_1}, \theta_{A_1}'; \theta_{A_1}' \\
A_{A_2}, \theta_{A_2}' \\
A_{A_3}, \theta_{A_3}'
\end{bmatrix}
\] (18)

The calculation of A_{A_0}

(see Figure 3.)

\[
X_A = -OA, Y_A = 0, Z_A = 0 ;
\] (20)

\[
F_A = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & -X_A \\
0 & X_A & 0
\end{bmatrix}
\] (21)

\[
A_A = \frac{1}{3} \begin{bmatrix}
F_A^T \\
F_A^T
\end{bmatrix} \begin{bmatrix}
\theta_A' \\
\theta_A''
\end{bmatrix}
\] (22)

\[
A_A \equiv \frac{1}{3} \begin{bmatrix}
A_{A_1} \\
A_{A_2} \\
A_{A_3}
\end{bmatrix}
\] (23)

\[
T_{AB} = \begin{bmatrix}
F_{AB}^T \\
F_{AB}^T \\
F_{AB}^T
\end{bmatrix} ;
\] (24)
\[A_B = \begin{bmatrix} x_b, \theta_{b1}, \theta_{b2}, \theta_{b3}, \delta_{b1}, \delta_{b2} \end{bmatrix} \]

\[X_B = 0, Y_B = 0, Z_B = OB \]

\[\mathbf{F}_B = \begin{bmatrix} 0 & 0 & Y_B \\ 0 & 0 & 0 \end{bmatrix} \]

\[A_B = \frac{1}{3} \begin{bmatrix} 1 & -1 \\ \mathbf{F}_B & -\mathbf{F}_B \end{bmatrix} \mathbf{F}_B^T \]

\[A_B = \frac{1}{3} \begin{bmatrix} 1 & -1 \\ \mathbf{F}_B & -\mathbf{F}_B \end{bmatrix} \mathbf{F}_B^T \]

The calculation of A_{bc}
(see Figure 4.)

\[A_c = \begin{bmatrix} x_c, \theta_{c1}, \theta_{c2}, \theta_{c3}, \delta_{c1}, \delta_{c2} \end{bmatrix} \]

\[X_C = 0, Y_C = OC, Z_C = 0 \]

\[\mathbf{F}_C = \begin{bmatrix} 0 & 0 & -Y_C \\ Y_C & 0 & 0 \end{bmatrix} \]

\[A_C = \frac{1}{3} \begin{bmatrix} 1 & -1 \\ \mathbf{F}_C & -\mathbf{F}_C \end{bmatrix} \mathbf{F}_C^T \]

\[A_C = \frac{1}{3} \begin{bmatrix} 1 & -1 \\ \mathbf{F}_C & -\mathbf{F}_C \end{bmatrix} \mathbf{F}_C^T \]

The calculation of A_{cd}
(see Figure 5.)
3. CALCULATION ALGORITHM

1. For a given θ_i and chosen A_1, A_2, A_3, A_4, A_5, A_6, A_7, A_8 it is determined A_{1i}, A_{2i}, A_{3i}, A_{4i}, A_{5i}, A_{6i}, A_{7i}, A_{8i} with the relations (19)-(41) and

$$ A_{1i}, A_{2i}, A_{3i}, A_{4i}, A_{5i}, A_{6i}, A_{7i}, A_{8i} = \left[\frac{\partial \theta_i}{\partial \xi} \right] $$

(42)

2. The \mathbf{V} matrix is calculated with the relation

$$ \mathbf{V} = \begin{bmatrix} 0 & s\theta_1 s\alpha & c\alpha \\ -s\theta_1 & c\theta_2 & 0 \\ c\theta_1 & s\theta_2 c\alpha & -s\alpha \end{bmatrix} $$

(43)

3. The rigidity matrices \mathbf{K}_{ij}, \mathbf{K}_{ij}, \mathbf{K}_{ij}, \mathbf{K}_{ij}, \mathbf{K}_{ij}, \mathbf{K}_{ij}, \mathbf{K}_{ij}, \mathbf{K}_{ij} are calculated from the equation
4. The reactions are calculated in the own reference system knowing that:

\[\mathbf{R}_A = \begin{bmatrix} \mathbf{R}_A^0 \\ \mathbf{R}_A^1 \\ \mathbf{R}_A^2 \\ \mathbf{R}_A^3 \end{bmatrix} \]

5. The graphs

\[\zeta_B, \zeta_C, \zeta_D, R_{A_1}, R_{A_2}, M_{A_1}, M_{A_2}, \]

\[R_{B_1}, R_{B_2}, R_{B_3}, M_{B_1}, M_{B_2}, M_{B_3}, R_{C_1}, R_{C_2}, M_{C_1}, M_{C_2}, M_{C_3}, \]

\[R_{D_1}, R_{D_2}, M_{D_1}, M_{D_2}, M_{D_3} \]

6. CONCLUSIONS

The calculation algorithm established after the mathematical model presented in paper [7], makes possible the study of technological deviations influence over the 4R spherical quadrilateral mechanism.

Using the relative displacement method and the elastic calculation made possible the elaboration of such algorithm that by numerical simulation can highlight the influence of different technical deviations that appear in the mechanism elements.

REFERENCES

1. BULAC, I., Vibrations of the bicardanic transmissions with elastic supports, 5th „Durability and Reliability of Mechanical Systems”, Târgu-Jiu, Romania, 18-19 may 2012.

2. BULAC, I., PANDREA, N., Vibrations of the tricardanic transmissions with elastic supports, SISOM 2012, Bucharest, 30-31 may.

4. BULAC, I., PANDREA, N., Variations of kinematic parameters of the cardanic joints according to technical deviations, Internaţional Symposium ISBTEH, Bucharest, November 2012.

5. BULAC, I., The numerical study of efforts from a RRRR spherical mechanism (în curs de publicare), Annals of the Oradea University, 2013.

6. BULAC, I., The influence of elasticity of some sections over the efforts from the 4R spherical spatial mechanism, (în curs de publicare), Annals of the Oradea University, 2013.

