SOME PROPERTIES OF \((\alpha, \beta)\)-CUTS FOR INTUITIONISTIC FUZZY SETS

Iuliana Carmen BĂRBĂCIOIU, Lecturer Ph. D.
"Constantin Brâncuși” University, Tg. Jiu

Abstract. In this article, we give some basic definitions from Intuitionistic fuzzy set theory, we introduced the notion of a complete system of events in intuitionistic fuzzy sets theory with examples and characterizations.

Keywords: Intuitionistic fuzzy sets, \((\alpha, \beta)\)-cut, decomposition theorems, and complete system of events of a intuitionistic fuzzy sets.

1. INTRODUCTION
Zadeh introduced the notion of the \(\alpha\) cut of fuzzy set (FS) and decomposition theorems [7],[8],[11]. The concept of intuitionistic fuzzy sets (IFS) was introduced by K.T. Atanassov [1] as a generalization of the notion of a fuzzy set. Starting from the decomposition theorems from Intuitionistic fuzzy sets described in [7],[8],[11], I will try to develop this theory by showing that IFS not forming a complete system of events, similar to the classical theory of probabilities.

2. PRELIMINARIES

Definition 1.[11] Let \(X\) the non-empty set. A fuzzy subset \(A\) of \(X\) is

\[A = \left\{ (x, \mu_A(x)) | x \in X \right\} \] (1)

Definition 2.[1] An intuitionistic fuzzy set (IFS) \(A\) in \(X\) is given by

\[A = \left\{ (x, \mu_A(x), \nu_A(x)) | x \in X \right\} \] (2)

where \(\mu_A : X \rightarrow [0,1]\) is called the membership function, \(\mu_A(x)\) is called degree of membership, \(\nu_A : X \rightarrow [0,1]\) is called non-membership, \(\nu_A(x)\) is called degree of non-membership, with the condition

\[0 \leq \mu_A(x) + \nu_A(x) \leq 1, \quad \forall x \in X \] (3)

Definition 3.[11] In the case of fuzzy set theory a \(\alpha\)-cut or a set of level \(\alpha\), \(\alpha \in [0,1]\). of fuzzy set \(A\) is:

\[[A]^\alpha = \begin{cases} \{ x \in X | \mu_A(x) \geq \alpha \} & \text{if } 0 < \alpha \leq 1 \\ \{ x \in X | \mu_A(x) > 0 \} & \text{if } \alpha = 0 \end{cases} \] (4)

and

\[[A]^\ast\alpha = \begin{cases} \{ x \in X | \mu_A(x) > \alpha \} & \text{if } 0 < \alpha \leq 1 \\ \{ x \in X | \mu_A(x) > 0 \} & \text{if } \alpha = 0 \end{cases} \] (5)

is called strong \(\alpha\)-cut as the IFS.
Theorem 1. [7] First Decomposition Theorem of FS. For any fuzzy sets A,
\[A = \bigcup_{\alpha \in [0,1]} [A]_{\alpha} \]

Theorem 2. [7] Second Decomposition Theorem of FS. For any fuzzy sets A,
\[A = \bigcup_{\alpha \in [0,1]} [A]_{\alpha^+} \]

3. \((\alpha,\beta)\)-CUT AS THE INTUITIONISTIC FUZZY SETS

In the case of IFS we have:

Definition 4. [3] We consider \(\alpha, \beta \in [0,1] \) then, for any IFS set \(A \)
\[[A]^{(\alpha,\beta)} = \begin{cases} \{ x \in X : \mu_A(x) \geq \alpha, \nu_A(x) \leq \beta, 0 \leq \mu_A(x) + \nu_A(x) \leq 1 \} & \text{if } 0 < \alpha, \beta \leq 1 \\ \{ x \in X : \mu_A(x) > 0, \nu_A(x) < 0, 0 \leq \mu_A(x) + \nu_A(x) \leq 1 \} & \text{if } \alpha = 0, \beta = 0 \end{cases} \] (6)

is called \((\alpha,\beta)\)-cut as the IFS A.

\[[A]^{+(\alpha,\beta)} = \begin{cases} \{ x \in X : \mu_A(x) > \alpha, \nu_A(x) < \beta, 0 \leq \mu_A(x) + \nu_A(x) \leq 1 \} & \text{if } 0 < \alpha, \beta \leq 1 \\ \{ x \in X : \mu_A(x) > 0, \nu_A(x) < 0, 0 \leq \mu_A(x) + \nu_A(x) \leq 1 \} & \text{if } \alpha = 0, \beta = 0 \end{cases} \] (7)

is called strong \((\alpha,\beta)\)-cut as the IFS.

Definition 5. [6] For \(\alpha, \beta \in [0,1] \) with \(\alpha + \beta \leq 1 \) through \([A]^{(\alpha,\beta)}\) and \([A]^{+(\alpha,\beta)}\) we understand
\[[A]_{(\alpha,\beta)} = \begin{cases} (\alpha, \beta) & \text{if } x \in [A]^{(\alpha,\beta)} \\ (0,1) & \text{if } x \notin [A]^{(\alpha,\beta)} \end{cases} \] (8)

Respectively
\[[A]^{+(\alpha,\beta)} = \begin{cases} (\alpha, \beta) & \text{if } x \in [A]^{+(\alpha,\beta)} \\ (0,1) & \text{if } x \notin [A]^{+(\alpha,\beta)} \end{cases} \] (9)

Definition 6. [3] Given two IFSs A and B over an universe of discourse X, one can define the following relations:
\(A \subset B \) iff \(\forall x \in X \), \(\mu_A(x) \leq \mu_B(x) \) and \(\nu_A(x) \geq \nu_B(x) \)
\(A = B \) iff \(A \subset B \) and \(B \subset A \)
as well as the following operations [1]:
\(\overline{A} = \{ (x, \nu_A(x), \mu_A(x)) | x \in X \} \)
\(A \cap B = \{ (x, \mu_{A\cap B}(x), \nu_{A\cap B}(x)) | x \in X \} \), where
\[\mu_{A \cap B} = \min \{ \mu_A(x), \mu_B(x) \} \] and
\[\nu_{A \cap B} = \max \{ \nu_A(x), \nu_B(x) \} \]

\[A \cup B = \{ (x, \mu_{A \cap B}(x), \nu_{A \cap B}(x)) | x \in X \} \], where
\[\mu_{A \cap B} = \max \{ \mu_A(x), \mu_B(x) \} \] and
\[\nu_{A \cap B} = \min \{ \nu_A(x), \nu_B(x) \} \]

Theorem 3. [3] Let A and B two IFS and one \(\alpha, \beta, \gamma, \delta \in [0.1] \). Then following are true:

1) \([A]^{\alpha\beta} \subseteq [A]^{\gamma\delta}\)
2) If \(\alpha \leq \gamma \) and \(\beta \leq \delta \) then \([A]^{\gamma\delta} \subseteq [A]^{\alpha\beta}\)
3) \([A \cup B]^{\alpha\beta} = [A]^{\alpha\beta} \cup [B]^{\alpha\beta} \cup [D_{A \cup B}]^{\alpha\beta} \cup [D_{B \cup A}]^{\alpha\beta}\)
4) \([A \cap B]^{\alpha\beta} = [A]^{\alpha\beta} \cap [B]^{\alpha\beta}\)
5) \([A \cup B]^{(\alpha\beta)} = [A]^{(\alpha\beta)} \cup [B]^{(\alpha\beta)}\)
6) \([A \cap B]^{(\alpha\beta)} = [A]^{(\alpha\beta)} \cap [B]^{(\alpha\beta)}\)
7) \([A \cap B]^{\alpha\beta} \neq ([A]^{(1-\alpha,1-\beta)})^{\alpha\beta}\)

Where

\[
\begin{align*}
[D_{A \cup B}]^{(\alpha\beta)} &= \left\{ \begin{array}{ll}
\{ x \in X | \mu_A(x) \geq \alpha, \nu_B(x) \leq \beta, 0 \leq \mu_A(x) + \nu_B(x) \leq 1 \} & \text{if } 0 < \alpha, \beta \leq 1 \\
\{ x \in X | \mu_A(x) > 0, \nu_B(x) > 0, 0 \leq \mu_A(x) + \nu_B(x) \leq 1 \} & \text{if } \alpha = 0, \beta = 0
\end{array} \right.
\end{align*}
\]

\[
\begin{align*}
[D_{B \cup A}]^{(\alpha\beta)} &= \left\{ \begin{array}{ll}
\{ x \in X | \mu_B(x) \geq \alpha, \nu_A(x) \leq \beta, 0 \leq \mu_B(x) + \nu_A(x) \leq 1 \} & \text{if } 0 < \alpha, \beta \leq 1 \\
\{ x \in X | \mu_B(x) > 0, \nu_A(x) > 0, 0 \leq \mu_B(x) + \nu_A(x) \leq 1 \} & \text{if } \alpha = 0, \beta = 0
\end{array} \right.
\end{align*}
\]

Theorem 4. [3] Let A and B two IFS and one \(\alpha, \beta, \gamma, \delta \in [0.1] \). Then:

1) \(A \subseteq B \) if and only if \([A]^{(\alpha\beta)} \subseteq [B]^{(\alpha\beta)}\)
2) \(A \subseteq B \) if and only if \([A]^{(\gamma\delta)} \subseteq [B]^{(\gamma\delta)}\)
3) \(A = B \) if and only if \([A]^{(\alpha\beta)} = [B]^{(\alpha\beta)}\)

4. THE DECOMPOSITION THEOREMS OF INTUITIONISTIC FUZZY SETS

Theorem 5. [6] First Decomposition Theorem of IFS. Let \(X \) the non- empty set. For any intuitionistic fuzzy subset \(A \) in \(X \),

\[
A = \bigcup_{\alpha, \beta \in [0,1]} [A]^{(\alpha\beta)}
\]

Where \(\bigcup \) denotes union given in Definition 8 and \([A]^{(\alpha\beta)}\) given in Definition.

Theorem 6. [6] Second Decomposition Theorem of IFS. Let \(X \) the non- empty set. For any intuitionistic fuzzy subset \(A \) in \(X \),
\[A = \bigcup_{\alpha, \beta \in [0.1]} [A]_{[\alpha, \beta]} \]

Where \(\cup \) denotes union given in Definition 8 and \([A]_{[\alpha, \beta]} \) given in Definition.

Theorem 7. Let \(X \) the non-empty set, \(\alpha, \beta \in [0.1] \) with \(\alpha + \beta \leq 1 \). For any intuitionistic fuzzy subset \(A \) in \(X \), \([A]_{[\alpha, \beta]} \) not form a complete system of events of \(A \).

Proof: The fact that \(A = \bigcup_{\alpha, \beta \in [0.1]} [A]_{[\alpha, \beta]} \) is demonstrated by [6]. Still need to show that \([A]_{[\alpha, \beta]} \cap [A]_{(\gamma, \delta)} \neq \emptyset \), \(\forall (\alpha, \beta) \neq (\gamma, \delta), \alpha, \beta, \gamma, \delta \in [0.1], \alpha + \beta \leq 1, \gamma + \delta \leq 1 \) (10)

If the absurd relationship were true, then \(\exists (\alpha, \beta) \neq (\gamma, \delta), \alpha, \beta, \gamma, \delta \in [0.1], \alpha + \beta \leq 1, \gamma + \delta \leq 1 \) so that \([A]_{[\alpha, \beta]} \cap [A]_{(\gamma, \delta)} = \emptyset \). But \([A]_{[\alpha, \beta]} \cap [A]_{(\gamma, \delta)} = \emptyset \).

Example 1. Let \(X = \{a, b, c, d, e, f\} \) and

\[A = \{(a, 0.2, 0.4), (b, 0.8, 0.2), (c, 0.6, 0.3), (d, 0.4, 0.5), (e, 0.1), (f, 1, 0)\} \]

Let us denote \(A \) for convenience as

\[A = \left(\begin{array}{c}
0.2, 0.4 \\
0.8, 0.2 \\
0.6, 0.3 \\
0.4, 0.5 \\
0.1, 0.1 \\
1, 0
\end{array}\right) \]

Then

\[[A]_{(0.2, 0.4)} = \left(\begin{array}{c}
0.2, 0.4 \\
0.8, 0.2 \\
0.6, 0.3 \\
0.4, 0.5 \\
0.1, 0.1 \\
1, 0
\end{array}\right) \]

And, by Definition 6

\[[A]_{(0.2, 0.4)} = \left(\begin{array}{c}
0.2, 0.4 \\
0.8, 0.2 \\
0.6, 0.3 \\
0.4, 0.5 \\
0.1, 0.1 \\
1, 0
\end{array}\right) \]

Similarly

\[[A]_{(0.6, 0.2)} = \left(\begin{array}{c}
0.1 \\
0.8, 0.2 \\
0.6, 0.3 \\
0.4, 0.5 \\
0.1, 0.1 \\
0.8, 0.2
\end{array}\right) \]

\[[A]_{(0.6, 0.3)} = \left(\begin{array}{c}
0.1 \\
0.6, 0.3 \\
0.6, 0.3 \\
0.4, 0.5 \\
0.1, 0.1 \\
0.6, 0.3
\end{array}\right) \]
Theorem 8. Let X the non-empty set, $\alpha, \beta \in [0,1]$ with $\alpha + \beta \leq 1$. For any intuitionistic fuzzy subset A in X, $[A]_{(\alpha, \beta)}$ does not form a complete system of events of A.

Proof of Theorem 8 are exactly similar to those of Theorem 7. Only difference is instead of inequality here we will have $> \ inequality$.

5. CONCLUSIONS

Starting from the definition of a complete system of events in probability theory, I tried to show that the set of parts of (α, β)-cuts and strong (α, β)-cuts does not form a complete system of events.

REFERENCES