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1.INTRODUCTION  
        In our previous work we proved that general matrix equation of motion has the form. 

   
   

 
 

 
 

    


























qBC

F
q

R

q

0B

Bm




T

. (1.1) 

        The equilibrium equations are given by 
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2. VIBRATIONS OF THE PLANAR SYSTEMS WITH ROTATIONAL KINEMATIC 

LINKS WITH CLEARANCES 

2.1. Nonlinear vibrations. 

The motion of the system relative to an equilibrium position, position defined by the 

generalized coordinates having the values 0
iq , ni  ,1 , values obtained from the system (1.2), 

(1.3), is given by the equations (1.1) in which, if we make the substitution      zqq  0 , one 

obtains the matrix equations         FRBzm 
T ,        zBCzB   . By numerical solving 

of this system, we obtain the time histories both of the displacements )(tzz ii  , ni  ,1 , and 

of the reactions )(tRR ii  , 212 ,1 nni  . 

 

2.2. Linear vibrations 

In the case of the linear vibrations we make the development into the series of the 

functions  B ,  F  and by  
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retaining only the linear terms and using the notations    
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 The eigenpulsations for such a system are obtained from the n th degree equation in 
2p  

     0det 2  mK p , (2.1) 

equation that has 1n  roots equal to zero, where 1n  is the number of the constraint equations, 

number which is equal to the number of lines of the matrix  B . 
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Fig.1. Vibrations of the bar articulated at O  acted only by its own weight 

  

As example, for the vibrations of the homogenous bar articulated at O , of length l2 , Fig.1, at 

which the equilibrium position corresponds to lX  , 0Y , 0 , one successively deduces 

the expressions    
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 and, as easily can be seen, it has two roots equal 

to zero and the third given by 
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 In the general case, if we consider that the independent variables define the column 

matrix  1q , and the dependent variables define the column matrix 2q , then in the linear 

calculus when     0qB  , keeping into account the diagonal form of the matrix  m , the 

system (1.1), can be brought to the form         11111 FRBqm 
T , 
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the matrix equation 
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For the system drawn in Fig. 6.1 we successively obtain the expressions   
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becomes 00  mglJ  and from here we obtain the eigenpulsation given by the relation 

(2.2). 

 

3. EQUILIBRIUM OF THE PLANAR SYSTEMS WITH ROTATIONAL 

KINEMATICAL JOINTS WITH CLEARANCES 

 The equilibrium equations are obtained from the equalities (1.1), and from the 

equations 
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form (1.2) and (1.3). 

 Thus, for a system with n  elements, 1n  rotational kinematical joints without clearance 

and 2n  rotational kinematical joints with joints, one obtains nnn 32 21   equations ( 212 nn   

equations from (1.1) and n3  equations from (1.2)) with nnn 32 21   unknowns, name them: 

12n  reactions for the kinematical joints without clearance, 2n  reactions for the kinematical 

joints with clearance and n3  kinematical parameters of the type iX , iY , i , ni  ,1 , for the n  

elements. By solving the system of equations (1.1), (1.2), we determine the values of the 

generalized coordinates 1q , 2q , …, nq3 , and the reactions generically denoted by 1 , 2 , …, 



 Fiabilitate si Durabilitate - Fiability & Durability    No 1/ 2015 
 Editura “Academica Brâncuşi” , Târgu Jiu, ISSN 1844 – 640X 

 

 

 

 

157 

212 nn  , values that correspond to the equilibrium positions. 

 In the case when the matrix of the forces  F  does not depend on the coordinates iX , 

iY , ni  ,1 , then the matrix equation (1.2), using the expressions 
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n3  equations with 21 22 nnn   unknowns ( n  angular parameters i , 12n  reactions in the 

kinematical joints without clearance, 2n  reactions in the kinematical joints with clearance and 

2n  angular parameters k ). 

 For open kinematical chains there exists the relation 21 nnn   and, as a 

consequence, for these, the equilibrium position can be determined from the matrix equation 

(1.2). 

 

4. CONCLUSIONS 
 Based on the differential matrix equation of motion, we obtained the equations of the 

vibrations for a planar chain with rotational linkages with clearances. This equation is treated 

both in the nonlinear case as well as in the linear case. We also determined the equilibrium 

positions. 
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