
 Fiabilitate şi Durabilitate - Fiability & Durability Supplement No 1/ 2016
 Editura “Academica Brâncuşi” , Târgu Jiu, ISSN 1844 – 640X

244

SIMULATION TOOLS IN MAPLE FOR A FRACTIONAL ORDER

DISCRETE SYSTEM PERTURBED BY A SEQUENCE OF REAL

RANDOM VARIABLES

Mădălina Roxana BUNECI, University Constantin Brâncuşi of Târgu-Jiu, ROMÂNIA

Viorica Mariela UNGUREANU, University Constantin Brâncuşi of Târgu-Jiu,

ROMÂNIA

Abstract. The purpose of this paper is provide a set of Maple procedures to simulate a general fractional order

discrete systems perturbed by a sequence of real random variables.

Keywords: fractional order operator; fractional order discrete system; discrete-time stochastic system.

.

 1. INTRODUCTION

It is well known that fractional order discrete systems have notable applications in

various areas and can be utilized in control and systems modeling (for instance, in some

recent results and simulation tools (in Matlab) in the area of application of fractional order

system models can be found in [1-2] and [4]). The aim of this paper is to provide a set of

Maple procedures to simulate fractional order discrete systems perturbed by sequences of real

random variables. We use symbolic manipulations by Statistics package of Maple. The

reference indicated in documentation of the Statistics package is [5].

Let us start by presenting the mathematical model that we will use. The fractional

order operator 

 is given according Grünwald-Letnikov's definition:

 
k 1

i

k 1 k 1 i

i 0

i1
x 1 x ,

h




  


 
    

 


where h>0 is the sampling period or the time increment and

    *

1, i 0
i

1 ... i 1
, i .

i!


  

     
   



We consider a probability space (, F, P), where  is the sample space, F is the -

algebra of the events and P is a probability measure on F. If (xk)k is a sequence of measurable

functions xk=(xk,1, xk,2,…, xk,d) : 
d

with respect to -algebra F on  and the Borel

structure on
d

, =(1, 2, …, d)
d

and h=(h1, h2, …, hd)
d

(hj>0 for all j{1,2, …,

d}), then by
 

k 1x



 we mean the function y=(y1,y2,..:, yd): 

d
defined by

yj()=      j

j

k 1
i

k 1, j k 1 i, j

i 0 jj

i1
x 1 x ,

h




  


 
     

 
 for all  and all j{1,2, …, d}.

 Fiabilitate şi Durabilitate - Fiability & Durability Supplement No 1/ 2016
 Editura “Academica Brâncuşi” , Târgu Jiu, ISSN 1844 – 640X

245

Obviously, y : 
d

 is measurable with respect to -algebra F on  and the Borel structure

on
d

.

 The general discrete-time fractional order system that we treat has the form:
   k 1 k kx f x , ,k , k ,


   

where =(1, 2, …, d)
d

, f=(f1,f2,..:, fd):
d 2


d

is a measurable function, (k)k is a

sequence of random variables on (, F, P) (real measurable functions on ) modelling the

stochastic perturbations and the function  k kf x , ,k :
d

 is defined by

       k k k kf x , ,k f x , ,k ,      for all .

2. MAPLE PROCEDURES FOR SIMULATING DISCRETE-TIME FRACTIONAL

ORDER SYSTEMS PERTURBED BY SEQUENCES OF RANDOM VARIABLES

 The purpose of this section is to provide Maple procedures to simulate general

discrete-time fractional order systems. As a matter of fact, the first procedure that we provide

can be used to simulate more general discrete-time stochastic systems perturbed by sequences

of real random variables. More precisely, the considered systems have of the form

   
k 1

k 1, j i, j k 1 i, j j k k

i 1

x c x f x , ,k , j 1,2,...,d , k ,


  



     (2.1)

where (ci,1, c i,2, …, c i,d)
d

for all i
*

, f=(f1,f2,..:, fd):
d 2


d

is a measurable function

and (k)k is a sequence of random variables on (, F, P). For computational purposes it is

useful to consider samples drawn from the same distributions as of the random variables k,
k . Thus we will start with a structure w=(w[i][j])i,j , where for all i,

{w[i][1], w[i][1], …, w[i][m]}

is a random sample of size m drawn from the same distribution as i. Consequently, for each k

instead of each scalar component xk,j in (2.1) we shall obtain a sample

[x[k,j,1],x[k,j,2],…,x[k,j, m]]

In the below procedure DiscreteStochasticSyst we take an index p{1,2,…,m} and a natural

number n and we compute x[k,j,p] for all k{0,1,…,n} and all j{1,2,…,d}. The formal

parameters of the procedure DiscreteStochasticSyst have the following signification:

- p is the index in the sample.

- n is the number of iterations using (2.1)

- w is the structure containing random samples drawn from the same distributions as of

stochastic perturbations i

- f=[f1,f2,…,fd] is the list of the scalar components of the function f in (2.1)

- x0 is a list containing the components of the initial state of the system (2.1) :

x0[j]=x[0,j,p].

 Fiabilitate şi Durabilitate - Fiability & Durability Supplement No 1/ 2016
 Editura “Academica Brâncuşi” , Târgu Jiu, ISSN 1844 – 640X

246

- c is an array containing the coefficients (ci,1, c i,2, …, c i,d)
d in (2.1) for

i{1,2,…,n} (c[j,i]= c i,j).

>DiscreteStochasticSyst := proc (c, x0, f, w, n, p)

local j, k, i, x, d, halpha;

d := nops(x0);

x := array(0 .. n, 1 .. d);

for i to d do

 x[0, i] := x0[i];

 x[1, i] := c[i, 1]*x0[i]+f[i](seq(x0[j], j = 1 .. d), w[1][p], 1)

end do;

for k to n-1 do

 for i to d do

 x[k+1, i] := sum(c[i, j]*x[k+1-j, i], j = 1 .. k+1)+f[i](seq(x[k, j], j = 1 .. d), w[k+1][p], k+1)

 end do

end do;

return x

end proc;

Let us consider the general discrete-time fractional order system
   k 1 k kx f x , ,k , k ,


    (2.2)

where =(1, 2, …, d)
d

, f=(f1,f2,..:, fd):
d 2


d

is a measurable function and (k)k is

a sequence of random variables on (, F, P) modelling the stochastic perturbations. Using

the definition of
 

k 1x



 and taking h=(h1, h2, …, hd)

d
(hj>0 for all j{1,2, …, d}) as the

vector of sampling periods or the time increments, the system (2.2) can be written as

   
k 1

k 1, j i, j k 1 i, j j k k

i 1

x c x g x , ,k , j 1,2,...,d , k ,


  



     (2.3)

where for all for i
*

 and jd},

   
   i 1 i 1 j j j

i, j

j

1 ... i 1i
c 1 1

i!

        
    

 

 gj=
j

jh


 fj .

 Fiabilitate şi Durabilitate - Fiability & Durability Supplement No 1/ 2016
 Editura “Academica Brâncuşi” , Târgu Jiu, ISSN 1844 – 640X

247

The following procedure GenFractCoeff generates the coefficients in (2.3). More

precisely, it returns an array c such that c[j,k]= c k,j for all k{1,2,…,n} and jd}. Its

formal parameters are the list [1, 2, …, d] and n.

> GenFractCoeff := proc (alpha, n)

local i, k, x, c, d;

d := nops(alpha);

c := array(1 .. d, 1 .. n);

for i to d do c[i, 1] := alpha[i] end do;

 for k to n-1 do for i to d do c[i, k+1] := -c[i, k]*(alpha[i]-k)/(k+1) end do

end do;

return c

end proc;

> evalm(GenFractCoeff([1/2], 4));

The procedure hpower (alpha, h) computes d1 2

1 2 dh ,h ,...,h
  

  :

> hpower := proc (alpha, h)

local d, i, halpha;

d := nops(alpha); halpha := [seq(1, i = 1 .. d)];

for i to d do halpha[i] := h[i]^alpha[i] end do;

return halpha

end proc;

The following procedure DFStochasticSyst computes the samples

[x[k,j,1],x[k,j,2],…,x[k,j, m]]

for all k{0,1,…,n} and all j{1,2,…,d} associated to xk=(xk,1, xk,2,…, xk,d) from the general

discrete-time fractional order system (2.1) written in the equivalent form (2.3).

 Fiabilitate şi Durabilitate - Fiability & Durability Supplement No 1/ 2016
 Editura “Academica Brâncuşi” , Târgu Jiu, ISSN 1844 – 640X

248

The formal parameters of the procedure DFStochasticSyst have the following sense:

- alpha is the list [1, 2, …, d], where 1, 2, …, d are the fractional orders in (2.2)

- h is the list [h1, h2, …, hd], where (h1, h2, …, hd) is the vector of sampling periods in

(2.2)

- [f1,f2,…,fd] is the list of the scalar components of the function f in (2.2)

- S is the structure containing random samples drawn from the same distributions as of

stochastic perturbations i

- x0 is a list containing the components of the initial state of the system (2.2)

- m is the common size of the random samples.

DFStochasticSyst := proc (alpha, h, f, S, x0, n, m)

local i, j, k, c, halpha, g, gi, x, xp, p, d;

d := nops(alpha);

c := GenFractCoeff(alpha, n);

halpha := hpower(alpha, h);

g := [];

for i to d do

 gi := unapply(halpha[i]*f[i](seq(varx[j], j = 1 .. d), w, k), seq(varx[j], j = 1 .. d), w, k);

 g := [op(g), gi]

end do;

x := array(0 .. n, 1 .. d, 1 .. m);

for p to m do

 xp := DiscreteStochasticSyst(c, x0, g, S, n, p);

 for k from 0 to n do

 for i to d do x[k, i, p] := xp[k, i] end do

 end do

end do;

return x

end proc;

The procedure GenStP generates for each k{1,2,…,n} a random sample of size m drawn

from the same distribution as the random variables k. It returns the list of the generated

random samples. Its formal parameters are the natural numbers n, m and the list of the

distributions of 1, 2, …, n.

>GenStP := proc (n, m, distribution)

 local i, j, S, Xi, Samples;

 Fiabilitate şi Durabilitate - Fiability & Durability Supplement No 1/ 2016
 Editura “Academica Brâncuşi” , Târgu Jiu, ISSN 1844 – 640X

249

 Samples := [seq(array(1 .. m), i = 1 .. n)];

 for i to n do

Xi := Statistics:-RandomVariable(distribution[i]);

S := Statistics:-Sample(Xi, m);

for j to m do Samples[i][j] := S[j] end do

end do;

return Samples

end proc;

>GenStP(2, 5, [Normal(0, 1), Laplace(0, 2)]);

[[.229736818053089, -2.35415622029595, -1.06135420331567}],

 [.905157006340350, .453739519868418, -1.00238320871061]]

Now we can write a variant of the procedure DFStochasticSyst, using the of the distributions

of 1, 2, …, n instead of the structure S:

DFStochasticSystD := proc (alpha, h, f, distribution, x0, n, m)

local i, j, k, c, S, halpha, g, gi, x, xp, p, d;

d := nops(alpha);

c := GenFractCoeff(alpha, n);

halpha := hpower(alpha, h); g := [];

for i to d do

 gi := unapply(halpha[i]*f[i](seq(varx[j], j = 1 .. d), w, k), seq(varx[j], j = 1 .. d), w, k);

 g := [op(g), gi]

end do;

S := GenStP(n, m, distribution);

x := array(0 .. n, 1 .. d, 1 .. m);

for p to m do

 xp := DiscreteStochasticSyst(c, x0, g, S, n, p);

 for k from 0 to n do

 for i to d do x[k, i, p] := xp[k, i] end do

 end do

end do;

return x

 Fiabilitate şi Durabilitate - Fiability & Durability Supplement No 1/ 2016
 Editura “Academica Brâncuşi” , Târgu Jiu, ISSN 1844 – 640X

250

end proc;

> x := DFStochasticSystD([3/4], [1], [proc (x, w, k) options operator, arrow; -

x^2/(4+k)+(1/20)*w*x end proc], [seq(Normal(0, 1), i = 1 .. 5)], [1], 5, 8):

> for i to 8 do printf("%f ", x[4, 1, i]) end do;

0.435149 0.394981 0.408017 0.351033 0.345522 0.338785 0.394070 0.370531

(the sample corresponding to x4)

3. LINEAR CASE

Let us consider the linear discrete-time fractional order system with multiplicative

noise
 

k 1 k k k k kx A x W x , k ,


    (3.1)

where =(1, 2, …, d)
d

, Ak, Wk   d,dM for all k , and (k)k is a sequence of

random variables on (, F, P) modelling the stochastic perturbations.

 The following procedure FLinear returns the list [f1,f2,…,fd] of the scalar

components of the function f so that the system (3.1) can be equivalently written
   k 1 k kx f x , ,k , k .


    Its formal parameters are: the lists: d1 2

1 2 dh ,h ,...,h
  

  , [A0, A1,

…,An-1] and [W0,W1,…,Wn-1].

>FLinear := proc (halpha, A, W)

local i, j, k, f, fj, d;

d := nops(halpha); f := [];

for j to d do

 fj := unapply(halpha[j]*(sum((A[k][j, i]+w*W[k][j, i])*varx[i], i = 1 .. d)), seq(varx[i], i = 1

.. d), w, k);

 f := [op(f), fj]

end do;

return f

end proc;

Thus we can provide a variant of the procedure DFStochasticSystD for the linear case:

>DFLSyst := proc (alpha, h, A, W, distribution, x0, n, m)

local i, j, k, c, halpha, f, S, x, xp, p, d;

 Fiabilitate şi Durabilitate - Fiability & Durability Supplement No 1/ 2016
 Editura “Academica Brâncuşi” , Târgu Jiu, ISSN 1844 – 640X

251

 d := nops(alpha);

c := GenFractCoeff(alpha, n);

halpha := hpower(alpha, h);

f := FLinear(halpha, A, W);

S := GenStP(n, m, distribution);

x := array(0 .. n, 1 .. d, 1 .. m);

for p to m do

xp := DiscreteStochasticSyst(c, x0, f, S, n, p);

for k from 0 to n do

for i to d do x[k, i, p] := xp[k, i] end do

end do

end do;

return x

end proc;

BIBLIOGRAPHY

 [1] A. Dzielinski and D. Sierociuk, Simulation and experimental tools for fractional order

control education, Proceedings of the 17th World Congress The International Federation of

Automatic Control Seoul, Korea, July 6-11, 2008.

[2] A. Dzielinski, D. Sierociuk and G. Sarwas, Some applications of fractional order calculus,

Bulletin of The Polish Academy of Sciences Technical Sciences, Vol. 58, No. 4, 2010.

[3] Z. A. Karian and E. A. Tanis, Probability and Statistics Explorations with MAPLE,

Second Edition, Pearson Prentice Hall, 2008

[4] P. W. Ostalczyk, Fractional-order linear digital 1D and 2D filter response

calculation using Matlab, Int. J. Dynam. Control, 2016. DOI 10.1007/s40435-016-0227-0.

[5] A. Stuart and K. Ord, Kendall's Advanced Theory of Statistics. Vol. 1: Distribution

Theory. 6th ed. London: Edward Arnold, 1998.

