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Abstract.  The purpose of this paper is provide a set of Maple procedures to simulate a general fractional order 

discrete systems perturbed by a sequence of real random variables.  
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  1. INTRODUCTION  

 

It is well known that fractional order discrete systems have notable applications in 

various areas and can be utilized in control and systems modeling (for instance, in some 

recent results and simulation tools (in Matlab) in the area of application of fractional order 

system models can be found in [1-2] and [4]). The aim of this paper is to provide a set of 

Maple procedures to simulate fractional order discrete systems perturbed by sequences of real 

random variables. We use symbolic manipulations by Statistics package of Maple. The 

reference indicated in documentation of the Statistics package is [5].  

Let us start by presenting the mathematical model that we will use. The fractional 

order operator 

 is given according Grünwald-Letnikov's definition:  
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where h>0 is the sampling period or the time increment and  

    *

1, i 0
i

1 ... i 1
, i .

i!


  

     
   



 

We consider a probability space (, F, P), where  is the sample space, F is the -

algebra of the events and P is a probability measure on F. If  (xk)k is a sequence of measurable 

functions xk=(xk,1, xk,2,…, xk,d) : 
d

with respect to -algebra F on  and the Borel 

structure on 
d

,  =(1, 2, …, d)
d

and h=(h1, h2, …, hd)
d

(hj>0 for all j{1,2, …, 

d}), then by 
 

k 1x
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 we mean the function y=(y1,y2,..:, yd): 

d
defined by 
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  for all  and all j{1,2, …, d}. 
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Obviously, y : 
d

 is measurable with respect to -algebra F on  and the Borel structure 

on 
d

. 

  The general discrete-time fractional order system that we treat has the form: 
   k 1 k kx f x , ,k , k ,


   
 

where =(1, 2, …, d)
d

, f=(f1,f2,..:, fd): 
d 2


d

is a measurable function, (k)k is a 

sequence of random variables on (, F, P) (real measurable functions on ) modelling the 

stochastic  perturbations and the function  k kf x , ,k :
d

 is defined by 

       k k k kf x , ,k f x , ,k ,       for all . 

 

2.  MAPLE PROCEDURES FOR SIMULATING DISCRETE-TIME FRACTIONAL 

ORDER SYSTEMS PERTURBED BY SEQUENCES OF RANDOM VARIABLES 
 

 The purpose of this section is to provide Maple procedures to simulate general 

discrete-time fractional order systems. As a matter of fact, the first procedure that we provide 

can be used to simulate more general discrete-time stochastic systems perturbed by sequences 

of real random variables. More precisely, the considered systems have of the form 

   
k 1

k 1, j i, j k 1 i, j j k k

i 1

x c x f x , ,k , j 1,2,...,d , k ,


  



      (2.1) 

where (ci,1, c i,2, …, c i,d)
d

for all i
*

, f=(f1,f2,..:, fd): 
d 2


d

is a measurable function 

and (k)k is a sequence of random variables on (, F, P). For computational purposes it is 

useful to consider samples drawn from the same distributions as of the random variables k, 
k . Thus we will start with a structure w=(w[i][j])i,j , where for all i, 

{w[i][1], w[i][1], …, w[i][m]} 

is a random sample of size m drawn from the same distribution as i. Consequently, for each k  

instead of each scalar component xk,j  in (2.1) we shall obtain a sample  

[x[k,j,1],x[k,j,2],…,x[k,j, m]] 

In the below procedure DiscreteStochasticSyst we take an index p{1,2,…,m} and a natural 

number n and we compute x[k,j,p] for all k{0,1,…,n} and all j{1,2,…,d}. The formal 

parameters of the procedure DiscreteStochasticSyst have the following signification: 

- p is the index in the sample. 

- n is the number of  iterations using (2.1)  

- w is the structure containing random samples drawn from the same distributions as of 

stochastic perturbations i 

- f=[f1,f2,…,fd] is the list of the scalar components of the function f in (2.1) 

- x0 is a list containing the components of the initial state of the system  (2.1) : 

x0[j]=x[0,j,p]. 
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- c is an array containing the coefficients (ci,1, c i,2, …, c i,d)
d in (2.1) for 

i{1,2,…,n} (c[j,i]= c i,j). 

>DiscreteStochasticSyst := proc (c, x0, f, w, n, p) 

local j, k, i, x, d, halpha; 

d := nops(x0); 

x := array(0 .. n, 1 .. d);  

for i to d do 

 x[0, i] := x0[i];  

 x[1, i] := c[i, 1]*x0[i]+f[i](seq(x0[j], j = 1 .. d), w[1][p], 1)  

end do;  

for k to n-1 do  

 for i to d do 

  x[k+1, i] := sum(c[i, j]*x[k+1-j, i], j = 1 .. k+1)+f[i](seq(x[k, j], j = 1 .. d), w[k+1][p], k+1)  

 end do  

end do;  

return x  

end proc; 

Let us consider the general discrete-time fractional order system  
   k 1 k kx f x , ,k , k ,


     (2.2)  

where =(1, 2, …, d)
d

, f=(f1,f2,..:, fd): 
d 2


d

is a measurable function and (k)k is 

a sequence of random variables on (, F, P) modelling the stochastic  perturbations. Using 

the definition of 
 

k 1x



 and taking h=(h1, h2, …, hd)

d
(hj>0 for all j{1,2, …, d}) as the 

vector of sampling periods or the time increments, the system (2.2) can be written as 
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The following procedure GenFractCoeff generates the coefficients in (2.3). More 

precisely, it returns an array c such that c[j,k]= c k,j for all k{1,2,…,n} and jd}. Its 

formal parameters are the list [1, 2, …, d] and n. 

> GenFractCoeff := proc (alpha, n)  

local i, k, x, c, d;  

d := nops(alpha);  

c := array(1 .. d, 1 .. n); 

for i to d do c[i, 1] := alpha[i] end do;  

 for k to n-1 do for i to d do c[i, k+1] := -c[i, k]*(alpha[i]-k)/(k+1) end do  

end do; 

return c  

end proc; 

> evalm(GenFractCoeff([1/2], 4)); 

 

The procedure hpower (alpha, h) computes d1 2

1 2 dh ,h ,...,h
  

  : 

> hpower := proc (alpha, h)  

local d, i, halpha;  

d := nops(alpha); halpha := [seq(1, i = 1 .. d)];  

for i to d do halpha[i] := h[i]^alpha[i] end do;  

return halpha  

end proc; 

The following procedure DFStochasticSyst computes the samples  

[x[k,j,1],x[k,j,2],…,x[k,j, m]] 

for all k{0,1,…,n} and all j{1,2,…,d}  associated to xk=(xk,1, xk,2,…, xk,d) from the general 

discrete-time fractional order system (2.1) written in the equivalent form (2.3). 
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The formal parameters of the procedure DFStochasticSyst have the following sense: 

- alpha is the list [1, 2, …, d], where 1, 2, …, d are the fractional orders in (2.2) 

- h is the list [h1, h2, …, hd], where (h1, h2, …, hd) is the vector of sampling periods in 

(2.2)  

- [f1,f2,…,fd] is the list of the scalar components of the function f in (2.2) 

- S is the structure containing random samples drawn from the same distributions as of 

stochastic perturbations i 

- x0 is a list containing the components of the initial state of the system  (2.2)  

- m is the common size of the random samples. 

DFStochasticSyst := proc (alpha, h, f, S, x0, n, m) 

local i, j, k, c, halpha, g, gi, x, xp, p, d; 

d := nops(alpha);  

c := GenFractCoeff(alpha, n);  

halpha := hpower(alpha, h);  

g := [];  

for i to d do  

 gi := unapply(halpha[i]*f[i](seq(varx[j], j = 1 .. d), w, k), seq(varx[j], j = 1 .. d), w, k);  

 g := [op(g), gi]  

end do;  

x := array(0 .. n, 1 .. d, 1 .. m);  

for p to m do  

 xp := DiscreteStochasticSyst(c, x0, g, S, n, p);  

 for k from 0 to n do  

  for i to d do x[k, i, p] := xp[k, i] end do  

 end do  

end do;  

return x  

end proc; 

The procedure GenStP generates for each k{1,2,…,n} a random sample of size m drawn 

from the same distribution as the random variables k. It returns the list of the generated 

random samples. Its formal parameters are the natural numbers n, m and the list of the 

distributions of 1, 2, …, n.  

>GenStP := proc (n, m, distribution) 

 local i, j, S, Xi, Samples; 
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 Samples := [seq(array(1 .. m), i = 1 .. n)]; 

 for i to n do  

Xi := Statistics:-RandomVariable(distribution[i]);  

S := Statistics:-Sample(Xi, m);  

for j to m do Samples[i][j] := S[j] end do  

end do;  

return Samples  

end proc; 

>GenStP(2, 5, [Normal(0, 1), Laplace(0, 2)]); 

[[.229736818053089,  -2.35415622029595, -1.06135420331567}],  

  [.905157006340350, .453739519868418,  -1.00238320871061]] 

Now we can write a variant of the procedure DFStochasticSyst, using the of the distributions 

of 1, 2, …, n instead of the structure S: 

DFStochasticSystD := proc (alpha, h, f, distribution, x0, n, m)  

local i, j, k, c, S, halpha, g, gi, x, xp, p, d;  

d := nops(alpha); 

c := GenFractCoeff(alpha, n);  

halpha := hpower(alpha, h); g := []; 

for i to d do  

 gi := unapply(halpha[i]*f[i](seq(varx[j], j = 1 .. d), w, k), seq(varx[j], j = 1 .. d), w, k);  

 g := [op(g), gi]  

end do;  

S := GenStP(n, m, distribution);  

x := array(0 .. n, 1 .. d, 1 .. m);  

for p to m do  

 xp := DiscreteStochasticSyst(c, x0, g, S, n, p);  

 for k from 0 to n do  

  for i to d do x[k, i, p] := xp[k, i] end do  

 end do 

end do;  

return x  
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end proc; 

> x := DFStochasticSystD([3/4], [1], [proc (x, w, k) options operator, arrow; -

x^2/(4+k)+(1/20)*w*x end proc], [seq(Normal(0, 1), i = 1 .. 5)], [1], 5, 8): 

> for i to 8 do printf("%f  ", x[4, 1, i]) end do; 

0.435149  0.394981  0.408017  0.351033  0.345522  0.338785  0.394070  0.370531   

(the sample corresponding to x4) 

 

3. LINEAR CASE 

 

Let us consider the linear discrete-time fractional order system with multiplicative 

noise 
 

k 1 k k k k kx A x W x , k ,


     (3.1)  

where =(1, 2, …, d)
d

, Ak, Wk   d,dM  for all k , and (k)k is a sequence of 

random variables on (, F, P) modelling the stochastic  perturbations. 

 The following procedure FLinear returns the list [f1,f2,…,fd]  of the scalar 

components of the function f so that the system (3.1) can be equivalently written 
   k 1 k kx f x , ,k , k .


    Its formal parameters are: the lists: d1 2

1 2 dh ,h ,...,h
  

  , [A0, A1, 

…,An-1] and  [W0,W1,…,Wn-1]. 

 

>FLinear := proc (halpha, A, W)  

local i, j, k, f, fj, d;  

d := nops(halpha); f := [];  

for j to d do 

  fj := unapply(halpha[j]*(sum((A[k][j, i]+w*W[k][j, i])*varx[i], i = 1 .. d)), seq(varx[i], i = 1 

.. d), w, k);  

  f := [op(f), fj]  

end do;  

return f  

end proc; 

Thus we can provide a variant of the procedure DFStochasticSystD for the linear case: 

>DFLSyst := proc (alpha, h, A, W, distribution, x0, n, m)  

local i, j, k, c, halpha, f, S, x, xp, p, d; 
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 d := nops(alpha);  

c := GenFractCoeff(alpha, n);  

halpha := hpower(alpha, h);  

f := FLinear(halpha, A, W);  

S := GenStP(n, m, distribution);  

x := array(0 .. n, 1 .. d, 1 .. m);  

for p to m do  

xp := DiscreteStochasticSyst(c, x0, f, S, n, p);  

for k from 0 to n do  

for i to d do x[k, i, p] := xp[k, i] end do  

end do  

end do;  

return x  

end proc; 
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