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Abstract.To "non-compliant" contacts in which deformations are sufficiently small compared to the size of 

bodies, elasticity theory applies to closed contact defined by the contact area. Stresses and displacements in 

elastic semispaces can cause tractions of the surface, being deducted for the first time by Boussinesq (1885) and 

Cerruti (1882) 
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1. INTRODUCTION 

To "non-compliant" contacts in which deformations are sufficiently small compared to 

the size of bodies, elasticity theory applies to closed contact defined by the contact area [1], 

[2]. Contact voltage is concentrated, registered in the contact region and decreasing rapidly 

with distance from the point of contact. Thus the region of interest is practically closed at the 

contact interface. 

Thereby the size of the bodies, needs to be greater than the size of the contact area, the 

pressure of the contact region does not depend criticallyon the distance between the metallic 

surface and bodies. The voltage can be calculated by considering each as a solid body, almost 

infinit, limited by a flat surface, in other words an elastic semi-space. This idealization, where 

the bodies have arbitrary surface profile and are seen as an extended semiinfinit is almost 

universal for elastic contacts. [3] 

 

2. POINT CONTACT CHARGED BY A TANGENTIAL CONCENTRATED 

FORCES 

We consider elastic semispace shown in Figure 1. If you let C(, ) an area within the 

loaded area S, and A (x, y, z) represents a general point located inside the solid body, the 

distance CA will be: 

     2
1

222
zyxCA       (1) 

Stresses acting on the surface S to be p(, ), qx(, ) şi qy(, ). 

 The stresses satisfy the Laplace equation and can be determined on the basis of their 

potential functions. 

     dd  ,qF
s

x1
 

     dd  ,qG
s

y1
      (2) 

     dd  ,pH
s

1
 

where:   

 )zln(z        (3) 

Love (1957) indicates that the components of the elastic displacements ux, uy, use a point A 

(x, y, z) of the solid are given by the expressions[4], [5]: 
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These relationships are decreasing by 


1
for great distances from loaded region. 

Analysis of a nonconforming contact subjected to shear forces qx(,) allows 

determining the stresses and displacements of contact. Tangential traction parallel to the y 

axis, qy, and normal pressure p will be considered void. 

So in (2) and (4) we will have:G1=H1=G=H=0 

Therefore:
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where:   ddzzqF
s

x   })ln(){,(1
 

and:  2222 )()( zyx    

 

Replacing the derivatives in equation (5) we 
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Fig. 1. Elastic semispace [6] 

 

 Tangential function will be deemed to be concentrated on a very small area near the 

origin, so that   dd),(q
s

x
reduces the force concentrated Qx at a force acting in origin 

(==0) in the parallel direction to the x-axis, the equation (6) for journeys solid is reduced 

to: 
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where:  
2
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2
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2
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2
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By differentiating the equation (7)corresponding to movements will be written as: 
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Tensions and surface movements (excluding the origin) are calculated replacing z=0 

and =. 

 

2.1.Unidirectional tangential traction applied to the circular regions 

A. If circular region  
2

1n  

 Consider a distribution of the form:  
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acting parallel to the axis Ox in the region of the radius of the circle shown in Figure 

2.Constant pressure distribution produces normal displacement within the area of the circle. 

By the above presented analogy for  = 0, tangential traction given by (9) produces a 

uniform tangential displacement xu ,at the surface, in the direction of traction. 

It can be shown that nonzero values of result in uniform tangential deflections. 

For a point inside the circle loaded (ra), equation (6) reduces to 
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where: 222 )y()x(s   

These expressions for surface movements can also be derived, obtaining from 

equation (7) the displacements to any point B (x, y) stemming from a concentrated tangential 

force  ddqQ xx acting at a point C(,)[7], [8],[9],. 

Making a change of variable, moving from coordinates (,)  at (s,) where 
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The equations become: 
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Fig.2.Tractions distribution for a circular region 

 

S1 limit is given by point D on the edge of the circle to which: 
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 b.The case of circular region  
2
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 For a traction distribution like: 
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acting in a circular region, can be treated in the same manner by substituting equation (14) 

into the equation (12)[10],.  

By integrating in compliance with s we have: 
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 In this case xu  is not constant at any point in the circle loaded and yu is not canceled. 

It may be noted that normal movements are not zero, but can not be expressed 

explicitly. Loaded tangential movements outside the circle (r> a) given by the thrust (14) were 

investigated by Illingworth with the results: 
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Investigation of tensions within the solid given by the thrust (14) was treated by 

Hamilton and Goodman (1966). 

 

3.CONCLUSION 

The fact that elastic semispace stresses and displacements can cause traction of the 

surface was deducted for the first time by Boussinesq and Cerruti. 

For a point contact loaded by a tangential force concentrated on issues Boussinesq-

Cerruti we can deduce displacements and stresses at the contact level. 
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