
Fiabilitate si Durabilitate - Fiability & Durability   No 1/ 2018 
 Editura “Academica Brâncuşi” , Târgu Jiu, ISSN 1844 – 640X 

 

 

161 

KINEMATIC SCHEMES OF CUTTING IN MILLING 
 

Assoc. Prof. PhD. Eng. Evstati LEFTEROV
1
, Assist. Prof. PhD. Eng. Tanya 

AVRAMOVA
2
, Lecturer PhD. Catalina IANASI

3
 

1
Technical University of Varna, Bulgaria evstati@tu-vatna.bg 

2
Technical University of Varna, Bulgaria tanya_avramova@tu-vatna.bg 

3
"Constantin Brancusi" University of Targu-Jiu, Romania ianasicatalina@gmail.com 

 
Abstract: The presented article analyzes the used kinematic schemes of cutting in milling. With 

their change and the change in the kinematic ratio of the velocities of the elementary movements, 

the type of the work surface can be changed. 

The mathematical dependences presented in the article, describing the trajectory of the relative 

work motion of a cutting edge point, are used to conduct theoretical studies of the geometric 

parameters of the milling cutter performed by simulation modeling in the environment of the 

software SolidWorks. 
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1. Introduction and actuality of the problem 

The machining of the parts by cutting is based on certain movements performed by the 

tool relative to the workpiece. In order to perform a particular processing, the executive units 

of the respective machine need to transmit to the tool and the workpiece such movements that 

at the end of the working process result in a part with a certain accuracy of the shape and 

dimensions and the quality of the treated surface. In this sense, the movements of the tool and 

the workpiece for each particular processing are carried out according to a strictly regularity, 

observance of which is of decisive importance for the construction of a particular method of 

machining and if it is required for a particular processing machine [3]. 

Milling is one of the most productive cutting processes and therefore, the present work 

analyzes the used kinematic cutting patterns.  

 

2. Task staging 

The main concepts and definitions used are mainly taken up by the terminology of 

Acad. Grenovski GI, an active member of the Latvian Academy of Sciences [1]:  

 A principal kinematic cutting scheme - this is a combination of the absolute 

movements of the tool and the workpiece during cutting; 

 Trajectory of the relative working movement - when the points of the cutting edge of 

the tool are moved relative to the workpiece at a velocity and a sequence predetermined by 

the kinematic pair "tool-part"; 

 Forming scheme - illustrates the kinematic pair in working position, with the type 

and relation between the linear and angular velocities of the movements predetermined by the 

selected principle kinematical cutting scheme, providing quality indicators of the surface to be 

treated; 

 Cutting scheme – the preliminary adopted sequential order to remove the additive 

from the workpiece to obtain the finished part. 

The above requires the development of a complex approach to the development of 

processes for machining arising from the capabilities of CNC machines.  
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3. Kinematic features of the milling process 

By changing the principle of the kinematical cutting schemes and the kinematic ratio of 

the velocities of the elementary movements the shape of the work surface of the workpiece 

changes [2].  

The friction and the wear on the contact surfaces of the tool also largely depends on the 

suitably selected kinematic machining schemes.  

Gerbert Ivanovich Granovski has classified the principle kinematics schemas in 8 

groups, the main ones used in milling are in 4, 5, 7 groups [1, 2]. Fig. 1 shows the scheme for 

determining the number of principal kinematic cutting schemes (PKCS) of group 4. 

 
Fig.1 A scheme for determining the number of principal kinematic cutting schemes 

(PKCS) of group 4 

 

The number of kinematic schemes in Group 4 is determined by the characteristic 

positions of the rectilinear motion A at a fixed rotational motion B and an axis parallel to the 

axis X of the coordinate system. 

The third PKCS of the fourth group includes: a rectilinear uniform motion A carried out 

along the Y axis of a spatial coordinate system XYZ and evenly rotationally B with axis 

coinciding with axis X of the coordinate system (fig.2 a)). 

In this case, two variants are possible, depending on who the two elementary 

movements belong to: 

 I variant – movement A is on the tool, and B is the workpiece. In this kinematic 

scheme, the trajectory of the relative working movement is a helix (Fig. 2 b)) and cannot be 

used in milling; 

 II variant – movement B belongs to the tool and the uniform rectilinear motion A of 

the workpiece. Ratio ε between the velocities of the movements of the kinematic scheme of 

cutting is in the range: 

0,05÷0,005=
V

V

B

A                                                     (1) 

The trajectory of the relative movement of a point on the cutting edge of the tool is a 

plane curve described in the YOZ plane [4], i.e. in the same coordinate plane in which both 

movements of the kinematic scheme operate. The relative trajectory is defined as a point 

associated with a circle that rolls without sliding on straight line. If point A is a point of a 

circle with radius r (Fig. 2 c)) and it is rolling on a straight line, then the same point A 

describes the trajectory sought. Its character is determined in the following order: 
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)-(sin

y
=r)-r.(sin=yr.sin-r.=y-


                            (2) 




cos

z
=rosc-r.=zoscr.=z-                                   (3) 

where θ - the angle of which the center of the circle moves, to its initial position. 

Therefore: 

0=)-z.(sin+y.cos                                           (4) 

 

 
 

                             a)                          b)                                 c) 

 

                       
        d)                                                                         e) 

Fig.2 Principal kinematic cutting schemes and trajectories of the relative working 

movement 

 

This expression represents the equation of the cycloid.  

If the point associated with the circle is outside it (AB = a), then the trajectory of the 

relative work movement is described by point B (Fig. 2 d)). The character of this trajectory is 

determined in the following way: 

)-(sin

a.sin-y
=ra.sin)-r.(sin=ya).sin(r-r.=y-




                  (5) 






cos

a.cosz
-=rcos.aosc-r.=zosca).(r=z-                        (6) 

Therefore:  

0=)-).(sina.cos(z+).cosa.sin-(y                                 (7) 

This expression represents the equation of the extended cycloid. 

The third possible case is when the point A describing the relative trajectory is a point 

of the radius of the circle (Fig. 2 e)) and if a = r-AO the character of trajectory is determined 

in the following order: 
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)-(sin

a.siny
=ra.sin)-r.(sin=ya).sin(r-r.=y-




                  (8) 






cos

a.cosz
-=rcos.aosc-r.=zosca).(r=z-                         (9) 

Therefore: 

0=)-).(sina.cos(z+).cosa.sin(y                                (10) 

This is the equation of a shortened cycloid.  

 

4. Technological aspects of milling of planar surfaces 

Depending on the position of the front of the milling cutter in relation to the width of 

the workpiece, there are three possible ways of face milling (fig. 3 а) and b)). 

 

 
              a)            b)        c) 

Fig. 3 Three ways for face milling 

a) the tool start to cut with zero thickness of the chip; b) incompletely symmetrical 

milling; c) incomplete asymmetrical face milling 

 

The teeth of the milling cutter (Fig. 3 a)) begin to cut a material with a zero thickness of 

the chip, which gradually increases to its maximum value at an angle ψ = 90 ° [5]. With a 

further increase in the contact angle (ψ> 90 °), the chip thickness decreases. At an angle δ = 

90 °, the chip thickness is greatest. At incomplete symmetrical face milling the teeth of the 

milling cutter cut a chip of considerable thickness and with a cross-section corresponding to 

the section for the corresponding angle of the momentary position of the milling cutter's teeth: 

δ> 0 and t <D (Fig. 3b)). 

At incomplete symmetrical face milling t≤D/2 (фиг.3 c)). The teeth of the milling cutter 

at the beginning also cut a zero-thickness chip [6]. The area of cross-section of the cut metal 

layer is a multiplication of the width and thickness of the milling: 

f=B.a, mm
2
                                                             (11) 

From the trajectory of movement of the tool mainly depend on the working angles of 

the tool, such as the clearance angle must have the required maximum value at milling [7]. 

It is known that the angles of the tool change in the cutting process. 

Fig. 4 illustrates the principle of variation at angle ψ> 90 °: 

2

0

22

0
kin

sD

s
 arctg=


                                                      (12) 

where: αkin - kinematic clearance angle, °; D - diameter of the milling cutter, mm; s0 – 

feeding per one revolution of the milling cutter, mm/rev. 

The working clearance angle αw is equal to: 

kinw                                                               (13) 
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where: α – static clearance angle, °;  

 
Fig.4 Changing tool angles 

 

The rake angle is determined by the clearance angle: 

kinkin  , and kinw                                               (14) 

where: γw – working rake angle, °. 

 

5. Results of theoretical research  

The research was performed using simulation modeling using SolidWorks. Fig. 5 shows a 

scheme for determining of angle θ, diameter 50 mm on the milling cutter is selected (D = 15 

mm, 22 mm, 36 mm, 50 mm), at R = 25 mm, K = 7. The parameter K represents the position 

of a certain point t from the cutting edge. 

 

 
Fig.5 A scheme for determining of angle θ 

 

The results for the change of angle α for different diameters of disposal at a point of the 

cutting edge (K) are shown in Tables 1 to 4.  

 

Tabl.1 Change of angle α at D=15 mm                          Tabl.2 Change of angle α at D=22 mm 

K 
Chip area, 

mm
2
 

Angel θ, ° 
Angel 

α, ° 

1 1,80 4 5° 

2 2,20 5 4°55‘ 

3 2,60 6 4°53‘ 

4 3,50 8 4°50‘ 
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5 4,20 10 4°48‘ 

6 6,00 15 4°46‘ 

7 8,00 27 4°43‘ 

 

 

Tabl.3 Change of angle α at D=36 mm                           Tabl.4 Change of angle α at D=50 mm 

K 
Chip area, 

mm
2
 

Angel θ, ° 
Angel 

α, ° 

1 3,40 4 5° 

2 4,40 5 4°52‘ 

3 5,30 6 4°44‘ 

4 7,00 8 4°35‘ 

5 9,00 10 4°27‘ 

6 14,00 15 4°19‘ 

7 25,00 27 4°12‘ 

 

 

6. Conclusions 

6.1. In planar milling trajectory of the relative working motion is entirely dependent 

on the position of motion A (Figure 1), in each case the tool performs rotational movement. 

6.2. The trajectory of the relative working motion is a planar curve, the variants are 

extended and shortened cycloid. 

6.3. A suitable method for study the geometric parameters of the milling cutter is the 

virtual modeling and simulation approach describing the real movements of the milling cutter. 

6.4. The change of the clearance angles at different points of the cutting edge of 

milling cutters with diameters D = 15, 22, 36, 50 mm is minimal and on the efficiency of the 

tool is influenced by the different cutting speed from the center towards the periphery.  
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K 
Chip area, 

mm
2
 

Angel θ, ° 
Angel 

α, ° 

1 2,40 4 5° 

2 2,60 5 4°52‘ 

3 3,70 6 4°44‘ 

4 4,80 8 4°36‘ 

5 5,80 10 4°33‘ 

6 7,80 15 4°30‘ 

7 15,00 27 4°21‘ 

K 
Chip area, 

mm
2
 

Angel θ, ° 
Angel 

α, ° 

1 5,10 4 5° 

2 6,30 5 4°52‘ 

3 7,50 6 4°44‘ 

4 11,00 8 4°35‘ 

5 13,00 10 4°25‘ 

6 19,70 15 4°15‘ 

7 36,30 27 4°05‘ 
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