CONSIDERATIONS ON COMPUTER ASSISTED WEIBULL FUNCTION FITTING TO EXPERIMENTAL RELIABILITY DATA ## Dr.ing. Adrian Stere PARIS Univ. Politehnica Bucharest, email: adrian.paris@upb.ro **Abstract** The mechanical reliability uses many statistical models to fit experimental data. Weibull distribution offer a flexible and practical instrument in this domain, but implies extended use of specialized applications, from simple freeware to complex, expensive software; the paper proposes an investigation of the capabilities of some useful software, applying the regression analysis of experimental data. **Keywords:** reliability data, Weibull software solution #### 1.Introduction Reliability has emerged as an extension of quality and safety in operation. In the 1950s, with the accelerated development of electronics, a rigorous study of products behavior over time was required, complemented by related areas of maintainability and availability. The reliability theme exploded immediately in all engineering activities. Mechanical systems, especially subject to wear patterns, were initially covered by normal distribution, a well-known model through its wide spread. With the strong impact of electronics reliability, the exponential model was imposed, as model of the useful life of products. A possible overview of the methods developing in reliability engineering is presented in table 1 [1]. | 1945 | 1945-1950 | 1952 | 1953 | 1960s | 1970s | 1980s | 1990s | 2000s | |---|---|--|---|---|--|--|---|---| | V-1 missile is
developed | U.S. Armed
Forces Only 30% of
the electronic | U.S. DOD | Exponential
distribution is
popular
approach | Exponential distribution declines in popularity because: | Birth of fault
tree analysis is
motivated by
nuclear safety
considerations | analysis and
modeling
dependencies | Physics of
failure
approach is
widespread | | | \$ | devices are
successful in
missions | (Advisory
Group of the
Reliability of
Electronic
Equipment) is | Infant
mortalities are
screened out
to get almost | It is not
practical in
many
applications | Monte Carlo
methods for
finding
minimum cut
sets are | are
implemented
System-level
reliability
assessment is | processes are | The age of
hybrid physics-
statistics
approaches | | Quantitative
measure for
reliability is | Cost of
maintenance
and repair is | formed | rate | It is sensitive to
departure from
the initial | avoided | needed | used to
prevent the
failure of the | begins | | established | 10 times the
original cost
Dec. 7, 1950 | System RMA
is established
to meet the
government
procurement | Degradation
was not an
issue for
electronic
systems | It leads to high
chance of
accepting
systems with | analyzing very
large fault | s are statistics
ad for become more
yvery advanced
ault | Robust design
approaches | Simulations
are performed
instead or in | | "Weakest Link"
reliability
design concept
is developed | are established | ,,,,,, | poor mean
time to failure | Bayesian
approach | | implemented | | | | | Reliability
engineering for
electronics
begins | RMA
requirement
specification is
standardized | Analyses are
simple | Other
statistical
distributions
are used to get
more realistic
hazard rate | allows
development of
new state of
knowledge
form prior
experience | real cause of
failure is used
in statistical
models | Better
manufacturing
practices are
implemented | | Tab. 1:History of the methods in reliability engineering [1] #### 2. The Weibull Era However, to accommodate a wider range of product performance, the need for a more complex function for reliability with 2-3 parameters has been introduced, compared to the unique lambda parameter of the exponential function, which remains a particular case, as well as the Rayleigh distribution. In January 1951 Wollodi Weibull proposed a new distribution function (1) with the parameters x_u , x_0 and m [8]: with this he modelated yield strength of a Bofors steel and many others real processes including manufacturing [5, 6]. $$F(x) = 1 - e^{-\frac{(x - x_u)^m}{x_0}} \tag{1}$$ The Weibull distribution is the most frequently used model for time (or strength via pressure) to failure [4] and has a very important place between the reliability models [7] and many specialised books [2]. For the moment the Weibull function has two basic notations, due to the lack of standardization, and even her parameters can have different symbols upon many authors, with the general acceptant significations for β as shape and η as scale factor. Even if apparently this is a small difference, actually the data processing is modified and is important to fix the formula from the beginning. $$F(t) = 1 - e^{-\frac{(t-\gamma)^{\beta}}{\eta}} \tag{2}$$ $$F(t) = 1 - e^{-\left(\frac{t-\gamma}{\eta}\right)\beta} \tag{3}$$ Usually it should consider $\gamma = 0$, as it will be considerate further, and it eliminates the case of the earliest failures, before t=0. The MTBF expression will vary, depending on the used expression (2 or 3): for a better understanding it will be use (3), with the statistical defining measures: $$MTBF = \eta \Gamma (1 + \frac{1}{\beta}) \tag{4}$$ $$variance = \eta^{2} \left[\Gamma\left(1 + \frac{2}{\beta}\right) - \left(\Gamma\left(1 + \frac{1}{\beta}\right)\right)^{2}\right]$$ (5) In the industrial practice for the study of the reliability it useful to analyze the field data, respective times between failures [3]. Having this data, and possibly after a elimination of outliers, the question is to fitting the data to the Weibull model. Here the problem becomes complicated because, unlike the normal and exponential distributions, the Weibull parameters of the distribution function, β and η , cannot be calculated directly from the data. The original solution, in the '70s, '80s, and '90s, was the graphical solution, namely the use of double logarithmic scales that arranges experimental data on a line, if the Weibull model is adequate (fig 1) [11]. To plot the observations on probability paper it is necessary to use an estimate of $F(x_i)$, where the variable x_i is usually time between failures (TBF_i), being the i-th order statistic in the sample. Several methods were proposed as estimates for $F(x_i)$, described and compared in [14], and frequently it should be used median or mean rank. Fig. Example of Weibull probability paper [11] Some professional statistical software solutions of the data processing companies such as Weibull, Reliasoft, Unistat, Minitab, OriginLab [12], etc. were developed, but assuming affordable costs only to businesses with intense activity in the field. The accelerated use of reliability studies imposed the development of new, cheaper software, like CurveExpert [10] or LAB Fit [13], started even as freeware [3]. The growing pressure of Linux applications has led to an increasingly fierce battle, forcing even the usual spreadsheet software (eg MSExcel) to explain computational models. The impact of smart phones implied the transfer of Weibull application too: an example for iOS is [15]. A new trend is introduced by Open Source software, like the statistical environment and language R: with a few programming knowledge is possible to make the most complicated data processing for free [4, 9], applying maximum likelihood, moment or quantile matching estimations, even for censored data. ### 3.Practical approach For a more complete explanation of the Weibull data fitting below will be explain a practical utilization of the calculus methods. The maximum likelihood approach is a useful way to estimate the parameters of the Weibull distribution, starting with the probability density function: $$f(x) = \frac{\beta}{\eta} \left(\frac{x}{\eta}\right)^{\beta - 1} e^{-\left(\frac{x}{\eta}\right)^{\beta}}$$ $$L(\beta, \eta) = \prod_{i=1}^{n} \frac{\beta}{\eta} \left(\frac{x_i}{\eta}\right)^{\beta - 1} e^{-\left(\frac{x_i}{\eta}\right)^{\beta}}$$ $$(6)$$ For the processing of data is more practical to maximize the logarithm of the above expression: $$LL(\eta, \beta) = \ln L(\eta, \beta)$$ (8) It results an implicit equation, with two parameters to determine, β and η . It exist many applications for this kind of problem, inclusive for smart phones, and an accessible example is the function SOLVER of MSExcel. Similar i t is possible to apply the method of moments, based on estimates of the mean μ and standard deviation σ of the population from the data with the function GOAL SEEK of MSExcel. Any way it is match easier to use an specialized software, but for the few reliability evaluations remains to expensive. #### 4. Conclusions The extended use of quality and reliability imposed the development of more and more new software applications for specific practical problems and mathematical models. Weibull distribution is an important one. It is obvious the necessity to pass, in reliability statistical calculus, from the use of mathematical tables or probability papers to the computer assisted reliability data processing for Weibull models fitting. The extend pallet of such software, with more and more freeware, gives a good chance for students or single researchers to fructify any set of reliability data, to model a diversity of processes and phenomena. The present paper offers only a small overview of the explosion in reliability software and models. #### References - 1. **Azarkhail M., Modarres M.**, *The Evolution and History of Reliability Engineering: Rise of Mechanistic Reliability Modeling*, International Journal of Performability Engineering, Vol. 8, No. 1, January 2012, pp. 35-47. - 2. Murthy, P., Xie, D., N., Jiang, M., R., Weibull Models, Published by John Wiley & Sons, Inc., Hoboken, New Jersey, 2004. - 3. **Paris A. S.,** *Software applications for field reliability data*, 4th Symposyum ,, *DURABILITY AND RELIABILITY OF MECHANICAL SISTEMS*" Univ C. Brancusi, mai 2011, Fiability and Durability, no. 1(7)/2011, Ed.Acad., Tg. Jiu, ISSN 1844 640X p.75-80 - 4. **Shaffer L. B., Young T. M., Guess F. M., Bensmail H., León R. V.,** *Using R Software for Reliability Data Analysis*, International Journal of Reliability and Applications Vol. 9, No. 1, 2008, pp. 53-70, - 5. **Târcolea, C., Paris, A., S., Tănase, I.** *Models for the reliability of the manufacturing Systems* (MENP-4) October 2006, Bucharest, BSG Proceedings 14, Geometry Balkan Press ISSN 1843-2654 (printed version) ISSN 1843-2859 (online version), 2007, pp. 175-178 - 6. **Târcolea, C., Paris, A., Târcolea, A.** *Statistical Models Applied to Manufacturing Systems*, BSG PROCEEDINGS 12 (MENP-3), October 2004, Bucharest, Geometry Balkan Press, ISBN 973-8381-11-8, 2005, pp. 259-264. - 7. **Târcolea, C., Paris, A., Andreescu, C.** *A comparison of reliability models*, (DGDS-2008) and (MENP-5), September 2008, Mangalia, Geometry Balkan Press ISSN 1843-2654 (printed version) ISSN 1843-2859 (online version), 2009, .150-155 - 8. **Weibull W.**, A Statistical Distribution Function of Wide Applicability, ASME Journal of Applied Mechanics, Sept. 1951, pp.293-297. - 9. ***R Development Core Team, *R*: *A language and environment for statistical computing*. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL: http://www.r-project.org., 2004 - 10. *** http://curveexpert.software.informer.com/1.3/ - 11. *** http://faculty.washington.edu/fscholz/DATAFILES498B2008/WeibullPaper.pdf - 12. *** http://www.originlab.com/ - 13. *** http://zeus.df.ufcg.edu.br/labfit/ - 14.*** http://www.barringer1.com/wa_files/The-plotting-of-observations-on-probability-paper.pdf - 15. ***<u>http://download.cnet.com/Weibull/3000-2094_4-75573196.html</u>