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Abstract. The aim of this paper is to obtain few results for p-Laplace�s
operator and these representation an extension of the very know results for
laplacian.
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1.THE p-LAPLACE EQUATION

The equation

4pu = 0 on 
; 1 < p <1; (1:1:)

is called p-Laplace�s equation.
Here, 
 � RN is an open set, u : 
 �! R is the unknown, and 4p is the

p-Laplace operator de�ned by

4pu := div(jrujp�2ru); (1:2:)

The previous investigations have led to the equation�s critical points

Dp(u; 
) =
1

p

Z



jrujp dx (1:3:)

are weak solutions for (1:1:) ; thus they can be named p-harmonic functions.
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2.FUNDAMENTAL SOLUTIONS FOR p-LAPLACE EQUATION

We will �rst construct a simple radial solution of p-Laplace�s equation. To
look for radial solutions of p-Laplace�s equation on 
 = RN of the form

u(x) = v(r); r = jxj := 2

q
x21 + :::+ x

2
N ; (2:1:)

Here, v : [0;1) �! R
We note that

uxi =
@v(r)

@xi
= v

0
(r)
xi
r
; (2:2:)

and

uxixi =
@2v(r)

@x2
i

=
x2
i

r2
v
00
(r) +

1

r
v
0
(r)�

x2
i

r3
v
0
(r);81 � i � N; (2:3:)

and summation yields

�2u(x) = v
00
(r) +

N � 1
r

v
0
(r); r 6= 0: (2:4:)

We have

jruj = 2

r�
@u
@x1

�2
+ :::+

�
@u
@xN

�2
= 2

q�
v0(r)x1

r

�2
+ :::+

�
v0(r)xN

r

�2
=

2
p
(v0(r))2 =

��v0(r)�� ;
(2:5:)

and

@
@xi

��v0(r)��p�2 = @
@xi

�
2

q
(v0(r))2

�p�2
=

(p� 2)
�

2

q
(v0(r))2

�p�3
v
0
(r)

xi
r
v
00
(r)

jv0 (r)j ;

(2:6:)

But (1:1:) equivalently

jrujp�2�2u+r
�
jrujp�2

�
� ru = 0: (2:7:)
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We have

r
�
jrujp�2

�
� ru = r

����v0(r)���p�2� � rv(r) =�
@

@x1

���v0(r)���p�2 ; :::; @

@xN

���v0(r)���p�2� � �@v(r)
@x1

; :::;
@v(r)

@xN

�
=

(p� 2)
��v0(r)��p�3 v0(r)x1

r
v
00
(r)

jv0(r)j
v
0
(r)x1
r

+:::+
(p� 2)

��v0(r)��p�3 v0(r)xN
r
v
00
(r)

jv0(r)j
v
0
(r)xN
r

=

(p� 2)
��v0(r)��p�3 �v0(r)�2 v00(r)

jv0(r)j r2
�
x21 + :::+ x

2
N

�
=

(p� 2)
��v0(r)��p�3 �v0(r)�2 v00(r)

jv0(r)j : (2:8:)

So (2:7:) equivalently���v0(r)���p�2 �(p� 1)v00(r) + N � 1
r

v
0
(r)

�
= 0: (2:9:)

Assume
��v0(r)�� 6= 0:

Hence, we have
�pu = 0 for x 6= 0

if and only if

(p� 1)v00(r) + N � 1
r

v
0
(r) = 0; (2:10:)

In the case (2:10:) note v
0
= z; follows

(p� 1)z0 + N�1
r
z = 0()

(p� 1)dz
z
= 1�N

r
dr ()

(p� 1) ln jzj = (1�N) ln r + ln jCjp�1 ()
z(r) =

p�1
q

jCjp�1
rN�1 =

jCj

r
N�1
p�1
:

(2:11:)

We conclude that

v
0
(r) =

C

r
N�1
p�1

; (2:12:)
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for an arbitrary constant C 2 R+ and thus

v(r) =

(
C ln r+C1; if N = p

C p�1
p�N r

p�N
p�1 + C1; if N � p+ 1 ; r > 0; (2:13:)

with constants C1 2 R:

3.Gauss-Green, Gauss-Ostrogradski and Green0s formulas for
the p-Laplace0 operator

De�nition 3.1. Let 
 � RN be open and bounded
i) We say that 
 has a Ck-boundary, k 2 N [ f1g; if for any x 2 @


there exists r > 0 and a function � 2 Ck(RN) such that


 \B(x; r) = fy 2 B(x; r) : yN > �(y1; :::; yN�1)g ;

ii)If @
 is Ck then we can de�ne the unit outer normal �eld � : @
 �!
RN ; where, �(x); j�(x)j = 1; is the outward pointing unit normal of @
 at x.
iii)Let @
 be Ck: We call the directional derivative

@u

@�
(x) := �(x) � ru(x); x 2 @
;

the normal derivative of u.
In addition to Ck(
) we de�ne the function space

Ck(
) :=
�
u 2 Ck(
) : D�u can be continuously extended to @
 for j�j � k

	
;

where

D�u =
@�1+:::+�N

@x�11 :::@x
�N
N

u; j�j =
NX
i=1

�i:

We recall the Gauss-Green theorem.
Theorem 3.2. Let 
 � RN be open and bounded with C1-boundary.

Then for all u 2 C1(
)Z



uxi(x)dx =

Z
@


u(x)�i(x)d�(x):
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Remark(Gauss-Ostrogradscki): Let 
 � RN be open and bounded
with C1-boundary. Then for all

�!
f : 
 �! RN such that

�!
f 2 C(
) \ C1(
):

We have Z



div
�!
f dx =

Z
@


�!
f � �d�(x):

Theorem 3.3. If u 2 C2(
) such that �pu 2 C(
) thenZ



�pudx =

Z
@


@u

@�
jrujp�2 d�(x): (3:1:)

Proof. In theorem Gauss-Ostrogradscki let
�!
f = jrujp�2ru:

We have

R



div
�
jrujp�2ru

�
dx =

R
@


�
jrujp�2ru

�
� �d�(x) =

R



�pudx =R



jrujp�2�2udx+
R



r
�
jrujp�2

�
� rudx =R

@


@u
@�
jrujp�2 d�(x)�

R



r
�
jrujp�2

�
� rudx+R




r
�
jrujp�2

�
� rudx =

R
@


@u
@�
jrujp�2 d�(x)

Moreover, we easily obtain Green�s formulas for the p-Laplace operator:
Theorem 3.4. Let 
 � RN be open and bounded with C1-boundary.

Then for all u; v 2 C2(
) such that �pu 2 C(
); we have

G1)
R



(�pu) vdx =
R
@


v jrujp�2 @u
@�
d�(x)�

R



rv �
�
jrujp�2ru

�
dx

G2)
R



[(�pu) v � (�pv)u] dx =
R
@


�
v jrujp�2 @u

@�
� u jrvjp�2 @v

@�

�
d�(x):

(3:2:)
Proof. G1) Let

�!
f = v

�
jrujp�2ru

�
:We have

div
�
v
�
jrujp�2ru

��
= vdiv

�
jrujp�2ru

�
+rv �

�
jrujp�2ru

�
:

So Z



�
v�pu+rv �

�
jrujp�2ru

��
dx =

Z
@


v jrujp�2 @u
@�
d�(x):
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Proof. G2) By G1) we haveZ



(�pu) vdx =

Z
@


v jrujp�2 @u
@�
d�(x)�

Z



rv �
�
jrujp�2ru

�
dx (3:3:)

we inverse the role u and v;soZ



(�pv)udx =

Z
@


u jrvjp�2 @v
@�
d�(x)�

Z



ru �
�
jrvjp�2rv

�
dx (3:4:)

Using (3:3:) and (3:4:) we deduce G2)

4.Green function, Kelvin transform, or Poisson Kernel?

The following ideas are from [3]: From a physical standpoint equation
(1:1:); or rather its generalizations, arises naturally, e.g., in the steady rectilin-
ear motion of incompressible non-Newtonian �uids or in phenomena of phase
transition. A glimpse at (1:1:) immediately reveals two unfavorable features:
(i) the operator is badly nonlinear;
(ii) ellipticity is lost at points where ru = 0:
The strong nonlinearity makes it impossible to develop a potential theory

along the lines of classical one. p-harmonic functions do not enjoy integral
representation formulas such as

u(x) =

I
@Br(x)

ud� =

I
Br(x)

udy;

there is no Green function, or Kelvin transform, or Poisson Kernel. p-subharmonicity
is not preserved by the clasical molli�cation processes, as is the case for sub-
harmonic functions. This makes it impossible to regularize p-subharmonic
functions. In retrospect, this obstruction is also deeply connected with (ii)
above. The lack of ellipticity results in loss of regularity of p-harmonic func-
tions.
By results of Lewis [4]; solutions to the p-Laplacian are C1;� for some � > 0;

for instance the function
u(x) = jxj

p
p�1

satis�es the equation

�pu = const; but u =2 C2;when p > 2:
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In particular jruj is C� in any region where u satis�es the p-Laplace equation

�pu = 0:

However the operator �pu; de�ned above, may fail to have the maxi-
mum/comparison principle. The weak maximum principle for the p-Laplace
operator is well known and can be �nd in standard literature in this �led; see
[3], [5] and [1], the latter treats the parabolic case.

5.The existence of positive solutions in C2(RN) for the problem
with p-Laplacian

Consider the problem8<:
��pu = p(x)f(u) in RN

u > 0 in RN

u(x)! 0 as j x j! 1 ;
(5:1:)

where N > 2; �pu (1 < p � 2) is the p-Laplacian operator and
-the function p(x) ful�lls the following hypotheses:
(p1) p(x) 2 C(RN) and p(x) > 0 in RN :
(p2) we have

Z 1

0

r
1

p�1�
1

p�1 (r)dr <1 if 1 < p � 2

where �(r) := max
jxj=r

p(x).

-the function f 2 C1((0;1); (0;1)) satis�es the following assumptions:
(f1) mapping u �! f(u)

up�1 is decreasing on (0;1);
(f2) lim

u&0
f(u)
up�1 = +1;

(f3) lim
u!0+

inf f(u) > 0:

It easy to prove that
Theorem 5.1. If j : I � R �! R is a integrable nonnegative function,

then �
1

b� a

Z b

a

j(x)dx

�h
� 1

b� a

Z b

a

jh(x)dx

8 a; b 2 I; a < b and 1 < h < +1

7



Covei C. Dragos-Patru - A FEW RESULTS ABOUT THE P-LAPLACE�S
OPERATOR

Theorem 5.2. Under hypotheses (f1)�(f3); (p1); (p2), the problem (5:1:)
has a radially symmetric solution u 2 C2(RNnf0g) \ C1(RN).
Proof. By Theorem 1.3. in [2] the problem�

��pU = p(x)f(U); if jxj < k;
U = 0; if jxj = k:

has a radially symmetric solution in C
�
Bk
�
\ C1 (Bk) \ C2 (Bkn(0))

We now prove the existence of a positive function u 2 C2
�
RN
�
: As in [2]

we construct �rst a positive radially symmetric function w such that ��pw =
�(r); (r = jxj) on RN and lim

r�!1
w(r) = 0:

We obtain

w(r) := K �
Z r

0

�
�1�N

Z �

0

�N�1�(�)d�

� 1
p�1

d�;

where

K �
Z 1

0

�
�1�N

Z �

0

�N�1�(�)d�

� 1
p�1

d�:

We �rst show that (p2) implies thatZ +1

0

�
�1�N

Z �

0

�N�1�(�)d�

� 1
p�1

d�;

is �nite.
Let 1 < p � 2, so 0 < p� 1 � 1; follows that 1 � 1

p�1 < +1:
Using Theorem 5.1. for any r > 0; we have

R r
0
�
1�N
p�1

h
�
�

R �
0
�N�1�(�)d�

i 1
p�1
d� =

R r
0
�
1�N
p�1 �

1
p�1

h
1
�

R �
0
�N�1�(�)d�

i 1
p�1
d� �R r

0
�
2�N
p�1 1

�

R �
0
�
N�1
p�1 �

1
p�1 (�)d�d� =

R r
0
�
2�N
p�1 �1

R �
0
�
N�1
p�1 �

1
p�1 (�)d�d� =

� p�1
N�2

R r
0

d
d�
�
2�N
p�1

R �
0
�
N�1
p�1 �

1
p�1 (�)d�d� =

p�1
N�2

h
�r

2�N
p�1

R r
0
�
N�1
p�1 �

1
p�1 (�)d� +

R r
0
�

1
p�1�

1
p�1 (�)d�

i
� p�1

N�2
R r
0
�

1
p�1�

1
p�1 (�)d�;

so Z r

0

�
�1�N

Z �

0

�N�1�(�)d�

� 1
p�1

d� <1
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as r �!1:
Then we obtain

K � p� 1
N � 2 �

Z 1

0

�
1

p�1�
1

p�1 (�)d� if 1 < p � 2;

clearly, we have

w(r) � p� 1
N � 2 �

Z 1

0

�
1

p�1�
1

p�1 (�)d� if 1 < p � 2:

An upper-solution to (5:1:) will be constructed.
Consider the function

f(t) = (f(t) + 1)
1

p�1 ; t > 0:

Note that
f(t) � f(t)

1
p�1

f(t)
tp�1 ; is decreasing; (f

0
1)

lim
t�!0

f(t)
t
=1; (f

0
2)

Let v be a positive function such that

w(r) =
1

C

Z v(r)

0

tp�1

f(t)
dt where C > 0

will be chosen such that

KC �
Z C

1
p�1

0

tp�1

f(t)
dt:

We prove that we can �nd C > 0 with this property. By our hypothesis (f
0
2)

we obtain that

lim
x�!+1

Z x

0

tp�1

f(t)
dt = +1:

Now using L�Hopital�s rule we have

lim
x�!1

R x
0
tp�1

f(t)
dt

xp�1
= lim

x�!1

x

(p� 1) f(x)
= +1:
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From this we deduce that there exists x1 > 0 such thatZ x

0

tp�1

f(t)
dt � Kxp�1; for all x � x1:

It follows that for any C � x1 we have

KC �
Z C

1
p�1

0

tp�1

f(t)
dt:

But w is a decreasing function, and this implies that v is a decreasing function
too.
ThenZ v(r)

0

tp�1

f(t)
dt �

Z v(0)

0

tp�1

f(t)
dt = Cw(0) = CK �

Z C
1

p�1

0

tp�1

f(t)
dt:

It follows that v(r) � C
1

p�1 for all r > 0: From w(r) �! 0 as r �! +1
we deduce v(r) �! 0 as r �! +1:
By the choice of v we have

rw = 1

C
� v

p�1

f(v)
rv

follows that

�pw =
1

Cp�1

�
vp�1

f(v)

�p�1
�pv + (p� 1)

1

Cp�1
jrvjp

�
vp�1

f(v)

�p�2�
vp�1

f(v)

�0

:

(5:2:)
From (5:2:) and u �! f(u)

up�1 is a decreasing function on (0;+1), we deduce
that

�pv � Cp�1
�
f(v)

vp�1

�p�1
�pw = �Cp�1

�
f(v)

vp�1

�p�1
�(r) � �f(v)�(r): (5:3:)

It follows that v is a radially symmetric solution of the problem:8<:
��pu � p(x)f(u) in RN

u > 0 in RN

u(x)! 0 as j x j! 1 ;
(5:4:)
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By the proof of Theorem 1.1. in [2] the problem (5:1:) has positive
solutions.

Now using

u0(r) =
�
r1�N

R r
0
�N�1p(�)f(u(�))d�

� 1
p�1

u
00
(r) = �p(r)f(u(r))+(1�N)r�N

R r
0 �

N�1p(�)f(u(�))d�

p�1
�
r1�N

R r
0
�N�1p(�)f(u(�))d�

� 2�p
p�1 ;

2�p
p�1 � 0() 1 < p � 2

lim
r�!0

R r
0 �

N�1p(�)f(u(�))d�

rN
= p(0)f(u(0))

N

lim
r�!0

R r
0 �

N�1p(�)f(u(�))d�

rN�1 = 0

we deduce lim
r�!0

u
00
(r) is �nite, so u(r) 2 C2(RN).
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