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A FEW RESULTS ABOUT THE P-LAPLACE’S OPERATOR
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ABSTRACT. The aim of this paper is to obtain few results for p-Laplace’s
operator and these representation an extension of the very know results for
laplacian.
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1.THE p-LAPLACE EQUATION
The equation

Apu=0 on , 1<p<oo, (1.1,

is called p-Laplace’s equation.
Here, Q C RY is an open set, u : @ — R is the unknown, and A, is the
p-Laplace operator defined by

Ayu = div(|Vul"~? Vu), (1.2.)

The previous investigations have led to the equation’s critical points

1
D, (u; Q) = ]—)/|Vu|p dx (1.3.)
Q

are weak solutions for (1.1.), thus they can be named p-harmonic functions.
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2.FUNDAMENTAL SOLUTIONS FOR p-LAPLACE EQUATION

We will first construct a simple radial solution of p-Laplace’s equation. To
look for radial solutions of p-Laplace’s equation on Q = R" of the form

uw(x) =v(r); r=|z| = {/22 4+ ... + 2%, (2.1.)

Here, v : [0,00) — R
We note that

w= B = )2, (22)
and
OPu(ry a? » 1, z? )
Ugyw; = o oL (r) + v (r) — 35U (r),v1<i<N, (2.3.)

and summation yields

Aqu(z) =v" (1) + N1

We have

V(W' ()2 = (r)],
(2.5.)
and
9 ../ P—2 9 2/ 2 P .
ox; v (’l“)‘ — 9z; (U (7“)) -
s ] (2.6.)
w-2 (oer) e
But (1.1.) equivalently
IV’ Agu + V (|Vul[f?) - Vu = 0. (2.7.)
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We have .
V (|Vul’™?) - Vu=V ( v () ) -Vo(r) =
o |, p2 o |, p-2 ov(r) ov(r)
<(‘3_x1 v (r) R v ‘v (r) ) . ( 3o Do
(p—2) v (7")|p v (r)””r—lv" (1) v (r)z N (p—2) ‘vl (7")!1773 v
V' (r)] roo V' (r)]
=" () 0)
v’ (1)] 72 (#1+ - + o)
(p=2) ') (v ()" ()
V' (r)] '
So (2.7.) equivalently
o -0+ 0] <o

Assume [v'(r)| # 0.
Hence, we have
Apu=0forxz #0

if and only if

(p— 10" (r) +

In the case (2.10.) note v" = z, follows

(p—1)z + 52 =0+
(p—1)%=Ldr =
(p—Dn|z|=(1=N)lnr+h|C] ! <
_ p—1
2(r) = "9 = L
rp-1
We conclude that
p C
v(r)=—x-,
-l

(2.8.)

(2.9.)

(2.10.)

(2.11.)

(2.12.)
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for an arbitrary constant C' € R, and thus

o(r) = Clnr—i—C}v, ifN=p P 0 (2.13)
Tl oEk i s, i Nzprl T i

with constants C; € R.

3.GAUSS-GREEN, GAUSS-OSTROGRADSKI AND (GREEN’S FORMULAS FOR
THE P-LAPLACE’ OPERATOR

Definition 3.1. Let Q C RY be open and bounded
i) We say that Q has a C*-boundary, k € N U {oo}, if for any x € 99
there exists r > 0 and a function 8 € C*(RN) such that

QN B(a;r) ={y € B(x;7) 1 ynv > By, - ynv-1)} 5

i)If OS) is C* then we can define the unit outer normal field v : 0 —
RY | where, v(x), |v(z)| = 1, is the outward pointing unit normal of 9 at x.
iii) Let 92 be C*. We call the directional derivative

ou
%(x) =v(z) - Vu(r),z € 0Q,

the normal derivative of wu.
In addition to C*(2) we define the function space

C*(©) := {u € C*(Q) : D*u can be continuously extended to S for |a| <k},

where

8a1+.“+a1\] N
D= —————u, |a|= g o
ai any b i
0.0z —

We recall the Gauss-Green theorem.
Theorem 3.2. Let ) C RY  be open and bounded with C*-boundary.
Then for all u € C'(Q)

/ wy (2)d = / w(@)or(z)do (x).

Q onN
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Remark(Gauss-Ostrogradscki): Let Q@ C RY be open and bounded
— — J—
with C*-boundary. Then for all f : Q — RY such that f € C(Q)NCYHQ).

We have
— —
/divfdx = /f ~vdo (z).
o)

Q
Theorem 3.3. If u € C%(Q) such that Ayu € C(Q) then

ou -
/Apudx = /a_v \Vul" 2 do(z). (3.1.)
Q 20

Proof. In theorem Gauss-Ostrogradscki let 7 = |Vul[""* Vu.
We have

fdw (|Vul”” 2VU) drx = f (|Vul"™ 2 Vu) - vdo(x fA udr =
f|vu|p ZAgudx+fV (|Vu|p %) - Vudr =
ou | Vul"~? do(x fv (IVulP~?) - Vudz+
fV (IVul™®) - Vudz = [ 9% |Vulf~* do(x)
) o0
Moreover, we easily obtain Green’s formulas for the p-Laplace operator:

Theorem 3.4. Let © C RN be open and bounded with C-boundary.
Then for all u,v € C?*(Q) such that A,u € C(Q), we have

G1) [ (Apu)vde = [v|Vul’? 2do(z va (IVul’2 Vu) dx
b0

G2) [ [(Apu) v — (Ap) u] de = an (v |Vu|p % du o |VolP7? 8Y) do(a).
(3.2.)

D—D

- -2
Proof. G1) Let f = v (|Vul[""" Vu) .We have
div [v (|Vul’? Vu)] = vdiv (|Vul’ Vu) + Vo - (|VulP~* Va) .

So

p2 O

/ [vAu+ V- (|Vul’ V)] do = /u |Vu do(z).

onN
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Proof. G2) By G1) we have

/(Apu) vdx = /v |Vl %da(m) — /Vv (IVul'~? Vu) dx (3.3.)

Q o0 Q

we inverse the role u and v,so

/(A,,v) uda::/ ol a /Vu (Vo 2Vo)de (3.4

Q o0N

Using (3.3.) and (3.4.) we deduce G2)
4.GREEN FUNCTION, KELVIN TRANSFORM, OR P0OI1SSON KERNEL?

The following ideas are from [3]: From a physical standpoint equation
(1.1.), or rather its generalizations, arises naturally, e.g., in the steady rectilin-
ear motion of incompressible non-Newtonian fluids or in phenomena of phase
transition. A glimpse at (1.1.) immediately reveals two unfavorable features:

(7) the operator is badly nonlinear;

(17) ellipticity is lost at points where Vu = 0.

The strong nonlinearity makes it impossible to develop a potential theory
along the lines of classical one. p-harmonic functions do not enjoy integral
representation formulas such as

u(z) :7{ udo :7{ udy,
637‘(1) BT(CB)

there is no Green function, or Kelvin transform, or Poisson Kernel. p-subharmonicity
is not preserved by the clasical mollification processes, as is the case for sub-
harmonic functions. This makes it impossible to regularize p-subharmonic
functions. In retrospect, this obstruction is also deeply connected with (i7)
above. The lack of ellipticity results in loss of regularity of p-harmonic func-
tions.

By results of Lewis [4], solutions to the p-Laplacian are C* for some a > 0,
for instance the function

u(x) = |27

satisfies the equation

A,u = const,but u ¢ C* when p > 2.
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In particular |Vul| is C* in any region where u satisfies the p-Laplace equation
Ayu = 0.

However the operator A,u, defined above, may fail to have the maxi-
mum/comparison principle. The weak maximum principle for the p-Laplace
operator is well known and can be find in standard literature in this filed; see
3], [5] and [1], the latter treats the parabolic case.

5. THE EXISTENCE OF POSITIVE SOLUTIONS IN CQ(RN) FOR THE PROBLEM
WITH P-LAPLACIAN

Consider the problem

~Ayu=p(e)f(u) i RY
u>0 in RY (5.1.)
u(zr) — 0 as |z|— o0,

where N > 2, A,u (1 < p <2) is the p-Laplacian operator and
-the function p(x) fulfills the following hypotheses:
(p1) p(z) € C(RN) and p(x) >0 in RY.
(p2) we have

/ rﬁfbrll(r)dr<oo if 1<p<2
0

where ®(r) := ﬁfpr(x)'

-the function f € C'((0,00),(0,00)) satisfies the following assumptions:
(f1) mapping u — 1{,53)1 is decreasing on (0, 00);
2N i f(u) — .
(f )ul{'%upfl +OO,
(f3) lirglJr inf f(u) > 0.
It easy to prove that
Theorem 5.1. If j: I C R — R is a integrable nonnegative function,

then
1 S DL

Vabel,a<b and 1 < h < 4o
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Theorem 5.2. Under hypotheses (f1)—(f3), (pl), (p2), the problem (5.1.)
has a radially symmetric solution u € C*(RN\{0}) N C*(RY).
Proof. By Theorem 1.3. in [2] the problem

—AU = p(@)f(U), if || < k.
U =0, if |z| = k.

has a radially symmetric solution in C' (By) N C* (By,) N C? (B, \(0))

We now prove the existence of a positive function u € C? (RY). As in [2]
we construct first a positive radially symmetric function w such that —A,w =
®(r), (r=|z|) on RY and lim w(r) =0.

We obtain

1

[T a-n ¢ N r_l
=K /0 [5 /00' ®(0)do dg,

where )

Kg/ooo {gl—N/ogaN—lcp( )da} e

We first show that (p2) implies that

1

+oo 3 p—1
/ {glN / aleb(a)da} d,
0 0
is finite.

Let 1<p<2,s00<p—1<1, follows that 1§]ﬁ<+oo.
Using Theorem 5.1. for any r» > 0, we have

1

S S g o ato)dn] ™ de = P e [1 oM a(o)ao] e <

Jo €7
R oot oy = {54 i s -
=2 dfgp lfg X T Ho)dodS =

2L [ 3 7o e (0)do + [ €70 (€)de| < S fi 6Bt (6)de,
SO

/OT [glN /Ofaqu)( )da} de <o

8
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as r — 00.
Then we obtain

K<d—s [ emertnga it 1<p<2,
0

clearly, we have

p—1 a1 .
w(r)g—-/ Er1dr-1(&)de if 1 <p<2.
N_2J,

An upper-solution to (5.1.) will be constructed.
Consider the function

Ft) = (f(t) + 1)71,t > 0.

Note that _ 1
f(t) > f(t)rt
tJ; ®) , is decreasing, (f 1)

Let v be a positive function such that

1 o) -1
w(r) = —= =——dt where C' >0
Clo f(1)

will be chosen such that

C’ﬁ tp—l
KC < / —dt.
o f(t)

We prove that we can find C' > 0 with this property. By our hypothesis (f,)

we obtain that

v—too Jo f(t)
Now using L’Hopital’s rule we have
T ¢p—1
Jo St x

lim ——— = lim — = +00.
e (p— 1) J(7)
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From this we deduce that there exists x; > 0 such that

T tp_l )
——dt > KaP™ " for all x > x;.

o [f(t)

It follows that for any C' > x; we have

1
Ccpr-1 p—1

KC < /0 %dt.

But w is a decreasing function, and this implies that v is a decreasing function

too.
Then
v(r) -1 v(0) -1 Cp%l p—1
o [f(1) o f(t) 0 f(t)

It follows that v(r) < C#1 forall r > 0. From w(r) — 0 asr — +o0

we deduce v(r) — 0 as r — +o0.
By the choice of v we have

1
Vw = b ) Vo
follows that
Ayw = 1<f4>pJAﬂw4p—1) 1\vmp(f4)%a<f4)
e\ f(v) ot fv) fv)
(5.2.)

From (5.2.) and v — ZI@I is a decreasing function on (0,400), we deduce

that
— -1 — p—1
(@Y 1 (S
Ajp <ot (F Apjw = —CP71 prss O(r) < —f(v)®(r). (5.3.)
It follows that v is a radially symmetric solution of the problem:
~Ayu=p(a)f(u) in RV
u>0 in RY (5.4.)

uwx) - 0 as |z |— o0,
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By the proof of Theorem 1.1. in [2] the problem (5.1.) has positive
solutions.

Now using
1
u(r) = [rN [§ oV p(o) f(u(o))da] 7
7z ) f(u(r 1=N)r=N [T oN=1p(o) f(u(o))do _ r _ 2-p
W' (r) = _ p(r)f(u(r))+(1-N) p_{o p(o)f(u(o)) [7"1 Nfo oN lp(a)f(u(a))da] =
SR> 0¢e=>1<p<2
. ;o tp(o) f(u(o))do p(0)f(u(0))
rlﬁlo : v =" N
r _N-—
Tlinofo d 11;5\?2{(”(0))% —0
we deduce limou" (r) is finite, so u(r) € C*(RY).
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