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Capitolul 2

Muļtimi. Rela̧tii. Funçtii
(continuare din cursul 1)

2.3 Funçtii

De�ni̧tia 2.3.1 Fie X şi Y dou¼a mulţimi. Se numeşte funcţie de�nit¼a pe

X cu valori în Y , şi se noteaz¼a cu f : X ! Y sau X
f! Y sau x 7!

f (x) [: X ! Y ] o relaţie f � X � Y cu proprietatea c¼a pentru orice x 2 X
exist¼a şi este unic y 2 Y a.î (x; y) 2 f . Unicul element y ce îi corespunde
lui x se noteaz¼a cu f (x). X se numeşte domeniul funcţiei f iar Y se
numeşte codomeniul funcţiei f .
Dac¼a A � X, funcţia h : A ! Y , de�nit¼a prin h (x) = f (x) pentru

orice x 2 A, se numeşte restricţia funcţiei f la A şi se noteaz¼a cu f jA.

Dac¼a f şi g sunt dou¼a funcţii, atunci f = g
def, f şi g au acelaşi

domeniu, acelaşi codomeniu şi f (x) = g (x) pentru orice x din domeniu.

De�ni̧tia 2.3.2 O funcţie f : X ! Y se numeşte

� injectiv¼a def, 8x1; x2 2 X, x1 6= x2 ) f (x1) 6= f (x2) (, 8x1; x2 2 X cu
f (x1) = f (x2)) x1 = x2);

� surjectiv¼a def, 8y 2 Y 9x 2 X a.î. y = f (x);
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� bijectiv¼a def, f este injectiv¼a şi surjectiv¼a (, 8y 2 Y exist¼a un unic x 2 X
a.î. y = f (x))

De�ni̧tia 2.3.3 Fie f : X ! Y şi g : Y ! Z dou¼a funcţii. Se numeşte
compunerea funcţiei g cu f funcţia h : X ! Z de�nit¼a prin

h (x) = g (f (x)) 8x 2 X.

Funcţia h de�nit¼a mai sus se noteaz¼a cu g � f .

Se poate ar¼ata uşor c¼a dac¼a A
f! B, B

g! C şi C h! D sunt trei funçtii
(ce pot � compuse), atunci

(h � g) � f = h � (g � f) .

Propozi̧tia 2.3.4 Fie f : X ! Y o funcţie.

1. Dac¼a f este injectiv¼a, atunci exist¼a o funcţie g : Y ! X a.î. g�f (x) =
x pentru orice x 2 X.

2. Dac¼a f este surjectiv¼a, atunci exist¼a o funcţie g : Y ! X a.î. f �
g (y) = y pentru orice y 2 Y .

Demonstra̧tie. 1. Presupunem c¼a f este injectiv¼a şi alegem un element
arbitrar x0 2 X. De�nim g : Y ! X prin g (y) = x dac¼a exist¼a x a.î.
y = f (x), şi prin g (y) = x0 în caz contrar. Se observ¼a c¼a dac¼a presupunem
c¼a pentru un y 2 Y exist¼a dou¼a elemente x1; x2 2 X astfel încât f (x1) =
f (x2) = y, atunci x1 = x2 deoarece f este injectiv¼a. Ca urmare g este bine
de�nit¼a, şi în plus g � f (x) = g (f (x)) = x pentru orice x 2 X.
2. Presupunem c¼a f este surjectiv¼a. Atunci pentru orice y 2 Y exist¼a

xy 2 X astfel încât y = f (xy). De�nim g : Y ! X prin g (y) = xy pentru
orice y 2 Y şi obsev¼am c¼a f � g (y) = f (g (y)) = f (xy) = y pentru orice
y 2 Y .

Propozi̧tia 2.3.5 Fie f : X ! Y şi g : Y ! Z dou¼a funcţii.

1. Dac¼a f şi g sunt injective, atunci g � f este injectiv¼a:
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2. Dac¼a f şi g sunt surjective, atunci g � f este surjectiv¼a:

3. Dac¼a f şi g sunt bijective, atunci g � f este bijectiv¼a:

4. Dac¼a g � f este injectiv¼a, atunci f este injectiv¼a:

5. Dac¼a g � f este surjectiv¼a, atunci g este surjectiv¼a:

6. Dac¼a g � f este bijectiv¼a, atunci f este injectiv¼a şi g este surjectiv¼a:

7. Dac¼a X = Y , atunci f � f este bijectiv¼a , f este bijectiv¼a:

Demonstra̧tie. 1. Fie x1; x2 2 X a.î. g �f (x1) = g �f (x2), sau echivalent
g (f (x1)) = g (f (x2)). Deoarece g este injectiv¼a, rezult¼a c¼a f (x1) = f (x2),
iar deoarece f este injectiv¼a, rezult¼a c¼a x1 = x2. În conseciņt¼a g � f este
injectiv¼a.
2. Fie z 2 Z. Deoarece g este surjectiv¼a, rezult¼a c¼a exist¼a y 2 Y astfel

încât z = g (y), iar deoarece f este surjectiv¼a, rezult¼a c¼a exist¼a x 2 X astfel
încât y = f (x). În conseciņt¼a g � f (x) = g (f (x)) = g (y) = y, şi deci g � f
este surjectiv¼a.
3. Este conseciņta a lui 1 şi 2.
4:Fie x1; x2 2 X a.î. f (x1) = f (x2). Atunci g (f (x1)) = g (f (x2)) sau

echivalent g�f (x1) = g�f (x2). Cum g�f este injectiv¼a, rezult¼a c¼a x1 = x2.
În conseciņt¼a f este injectiv¼a.
5:Fie z 2 Z. Deoarece g � f este surjectiv¼a, rezult¼a c¼a exist¼a x 2 X

astfel încât z = g � f (x). Dac¼a not¼am y = f (x) atunci y 2 Y şi g (y) =
g (f (x)) = z. Deci g este surjectiv¼a.
6: Este conseciņta a lui 4 şi 5.
7:Este conseciņta a lui 6.

De�ni̧tia 2.3.6 Funcţia f : X ! Y se numeşte funcţie inversabil¼a
def,

exist¼a o funcţie g : Y ! X a.î.

g � f (x) = x 8x 2 X
f � g (y) = y 8y 2 Y .

Se poate ar¼ata c¼a dac¼a funçtia f este inversabila exist¼a o unic¼a funçtie g
care satisface de�ni̧tia de mai sus. În acest caz funçtia g se numeşte inversa
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funcţiei f şi se noteaz¼a cu f�1. Dac¼a pentru o muļtime A se noteaz¼a cu idA
funçtia idA : A ! A de�nit¼a prin idA (a) = a pentru orice a 2 A, atunci
inversa funçtiei f : X ! Y este de�nit¼a de rela̧tiile

f�1 � f = idX

f � f�1 = idY .

Teorema 2.3.7 Funcţia f : X ! Y este funcţie inversabil¼a dac¼a şi numai
dac¼a f este bijectiv¼a.

Demonstra̧tie. �)�Presupunem f inversabil¼a. Atunci exist¼a f�1 : Y !
X a.î.

f�1 � f = idX

f � f�1 = idY .

Cum funçtia idX este bijectiv¼a, şi din particular injectiv¼a, din propozi̧tia
2.3.4 (punctul 4) rezult¼a c¼a f este injectiv¼a. Deoarece funçtia idY este
bijectiv¼a, şi din particular surjectiv¼a, din propozi̧tia 2.3.5 (punctul 5) rezult¼a
c¼a f este surjectiv¼a. Deci f este bijectiv¼a.
�(�Presupunem f este bijectiv¼a. Atunci pentru orice y 2 Y exist¼a un

unic xy 2 X a.î. f (xy) = y. De�nim g : Y ! X prin g (y) = xy pentru
orice y 2 Y şi obsev¼am c¼a

g � f (x) = x 8x 2 X
f � g (y) = y 8y 2 Y .

În conseciņt¼a f este inversabil¼a.

De�ni̧tia 2.3.8 Se spune c¼a dou¼a mulţimi A şi B au acelaşi cardinal
def,

exist¼a o funcţie bijectiv¼a f : A! B.

Se spune c¼a mulţimea A are cardinalul n 2 N def, exist¼a o funcţie bijectiv¼a
f : A! f1; 2; :::; ng (, A are n elemente).

Mulţimea A se numeşte num¼arabil¼a
def, exist¼a o funcţie bijectiv¼a f : A!

N.
Mulţimea A se numeşte cel mult num¼arabil¼a

def, A este num¼arabil¼a sau
�nit¼a (exist¼a n 2 N a.î A are cardinalul n) .
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De�ni̧tia 2.3.9 (Imaginea şi preimaginea unei muļtimi printr-o funçtie)
Fie f : X ! Y o funcţie.

� Pentru orice A � X imaginea (direct¼a) a lui A prin f se noteaz¼a cu f (A)
şi de�neşte prin

f (A) = fy 2 Y : 9x 2 X a.î. y = f (x)g
= ff (x) : x 2 Ag .

� Pentru orice B � Y imaginea invers¼a sau preimaginea lui B prin f se
noteaz¼a cu f�1 (B) şi de�neşte prin

f�1 (B) = fx 2 X : f (x) 2 Bg .

Propozi̧tia 2.3.10 Fie f : X ! Y o funcţie inversabil¼a şi �e B � Y .
Atunci imaginea direct¼a a lui B prin inversa funcţiei f şi preimaginea lui
B prin f coincid:

Demonstra̧tie. Pentru a evita confuziile not¼am inversa funçtiei f prin g
şi demonstr¼am c¼a g (B) = f�1 (B) prin dubl¼a incluziune.
Fie x 2 g (B). Atunci exist¼a y 2 B a.î. x = g (y) şi ca urmare f (x) =

f (g (y)) = y 2 B. Cum f (x) 2 B rezult¼a c¼a x 2 f�1 (B).
Fie x 2 f�1 (B). Atunci f (x) 2 B şi în conseciņt¼a g (f (x)) 2 g (B).

Cum x = g (f (x)) rezult¼a c¼a x 2 B.

Propozi̧tia 2.3.11 Fie f : X ! Y o funcţie, fAigi2I o familie de submulţimi
ale lui X, iar fBjgj2J o familie de submulţimi ale lui Y . Atunci:

1. f�1
 S
j2J
Bj

!
=
S
j2J
f�1 (Bj);

2. f
�S
i2I
Ai

�
=
S
i2I
f (Ai);

3. f�1
 T
j2J
Bj

!
=
T
j2J
f�1 (Bj);
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4. f
�T
i2I
Ai

�
�
T
i2I
f (Ai);

5. Dac¼a f este injectiv¼a, atunci f
�T
i2I
Ai

�
=
T
i2I
f (Ai).

Demonstra̧tie. 1. ���: Fie x 2 f�1
 S
j2J
Bj

!
. Atunci f (x) 2

S
j2J
Bj, de

unde rezult¼a c¼a exist¼a j 2 J a.î. f (x) 2 Bj. Ca urmare x 2 f�1 (Bj) şi în
particular x 2

S
j2J
f�1 (Bj).

���: Fie x 2
S
j2J
f�1 (Bj). Atunci exist¼a j 2 J a.î. x 2 f�1 (Bj)

şi ca urnare f (x) 2 Bj. În particular, f (x) 2
S
j2J
Bj şi în conseciņt¼a

x 2 f�1
 S
j2J
Bj

!
.

2. ��: Fie y 2 f
�S
i2I
Ai

�
. Atunci exist¼a x 2

S
i2I
Ai a.î. y = f (x), de

unde rezult¼a c¼a exist¼a i 2 I a.î.x 2 Ai şi y = f (x). Ca urmare exist¼a i 2 I
a.î. y 2 f (Ai). În particular y 2

S
i2I
f (Ai).

���: Fie y 2
S
i2I
f (Ai). Atunci exist¼a i 2 I a.î. y 2 f (Ai) şi ca urnare

exist¼a x 2 Ai a.î. y = f (x). Deci exist¼a x 2
S
i2I
Ai a.î. y = f (x) şi în

conseciņt¼a y 2 f
�S
i2I
Ai

�
.

3. ��: Fie x 2 f�1
 T
j2J
Bj

!
. Atunci f (x) 2

T
j2J
Bj, de unde rezult¼a c¼a

f (x) 2 Bj pentru orice j 2 J . Ca urmare x 2 f�1 (Bj) pentru orice j 2 J
şi deci x 2

T
j2J
f�1 (Bj).

���: Fie x 2
T
j2J
f�1 (Bj). Atunci x 2 f�1 (Bj) pentru orice j 2 J şi ca

urnare f (x) 2 Bj pentru orice j 2 J . În conseciņt¼a, f (x) 2
T
j2J
Bj de unde
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rezult¼a x 2 f�1
 S
j2J
Bj

!
.

4:Fie y 2 f
�T
i2I
Ai

�
. Atunci exist¼a x 2

T
i2I
Ai a.î. y = f (x), de unde

rezult¼a c¼a .x 2 Ai şi y = f (x) pentru orice i 2 I. Ca urmare y 2 f (Ai)
pentru orice i 2 I şi deci y 2

T
i2I
f (Ai).

5. Deoarece f
�T
i2I
Ai

�
�
T
i2I
f (Ai) pentru orice funçtie f , r¼amâne s¼a

ar¼at¼am c¼a dac¼a f este injectiv¼a
T
i2I
f (Ai) � f

�T
i2I
Ai

�
. Fie y 2

T
i2I
f (Ai).

Atunci y 2 f (Ai) pentru orice i 2 I, de unde rezult¼a c¼a pentru orice i 2 I
exist¼a xi 2 Ai a.î. y = f (xi). Fie i; k 2 I doi indici arbitrari. Avem
f (xi) = y = f (xk). Din faptul c¼a f este injectiv¼a rezult¼a c¼a xi = xk.Deci
toate elementele xi sunt egale între ele. Not¼am cu x0 valoarea lor comun¼a.
Atunci x0 = xi 2 Ai pentru orice i 2 I şi y = f (x0). Ca urmare x0 2

T
i2I
Ai

şi y = f (x0), de unde rezult¼a c¼a y 2 f
�T
i2I
Ai

�
.

De�ni̧tia 2.3.12 Fie A;B � R şi f : A ! B o funcţie. Funcţia f se
numeşte

� cresc¼atoare def, 8x1; x2 2 A cu x1 � x2 ) f (x1) � f (x2);

� descresc¼atoare def, 8x1; x2 2 A cu x1 � x2 ) f (x1) � f (x2);

� strict cresc¼atoare def, 8x1; x2 2 A cu x1 < x2 ) f (x1) < f (x2);

� strict descresc¼atoare def, 8x1; x2 2 A cu x1 < x2 ) f (x1) > f (x2);

� monoton¼a def, f este cresc¼atoare sau descresc¼atoare;

� strict monoton¼a def, f este strict cresc¼atoare sau strict descresc¼atoare.

� m¼arginit¼a superior def, 9M 2 R a.î. f (x) �M 8x 2 A;

� nem¼arginit¼a superior f nu este m¼arginit¼a superior;
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� m¼arginit¼a inferior def, 9M 2 R a.î. f (x) �M 8x 2 A;

� nem¼arginit¼a inferior def, f nu este m¼arginit¼a inferior;

� m¼arginit¼a def, f este m¼arginit¼a superior şi m¼arginit¼a inferior (, 9m;M 2
R a.î. m � f (x) �M 8x 2 A , 9C 2 R a.î. jf (x)j � C 8x 2 A);

� nem¼arginit¼a def, f nu este m¼arginit¼a.

Pentru orice S � A, se noteaz¼a cu sup
S
f (respectiv, inf

S
f) sau sup

x2A
f (x)

(respectiv, inf
x2A

f) marginea superioar¼a (respectiv, marginea inferioar¼a) a

mulţimii f (S).

De�ni̧tia de mai sus are sens nu doar pentru submuļtimi A şi B de
numere reale ci pentru orice muļtimi A şi B înzestrate cu o rela̧tie de ordine

� considerând c¼a x � y def, y � x, x < y def, x � y şi x 6= y, x > y def, y < x.

10



Capitolul 3

Şiruri şi serii de numere reale

3.1 Şiruri de numere reale

De�ni̧tia 3.1.1 Fie X o mulţime. Se numeşte şir de elemente din X o
funcţie f : N ! X şi se noteaz¼a cu f = (f (n))n sau f = (xn)n sau (xn)n,
unde xn = f (n) pentru orice n. xn = f (n) se numeşte termen general al
şirului f = (xn)n :
Se numeşte subşir al şirului f = (xn)n şirul f � g unde g : N! N este o

funcţie strict cresc¼atoare. Notând kn = g(n), obţinem f �g (n) = f (g (n)) =
f (kn) = xkn. Notaţia uzul¼a pentru un subşir f � g este (xkn)n.

Se numeşte şir de numere reale un şir de elemente din R adic¼a o funçtie
f : N! R:

De�ni̧tia 3.1.2 Şirul (xn)n de numere reale se numeşte

� cresc¼ator def,funcţia n 7! f (n) [: N! R] este cresc¼atoare (, 8n 2 N
xn � xn+1);

� descresc¼ator def,funcţia n 7! f (n) [: N! R] este descresc¼atoare (, 8n 2
N xn � xn+1);

� strict cresc¼ator def,funcţia n 7! f (n) [: N! R] este strict cresc¼atoare (,
8n 2 N xn < xn+1);
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� strict descresc¼ator def,funcţia n 7! f (n) [: N! R] este strict descresc¼atoare
(, 8n 2 N xn > xn+1);

� monoton def, (xn)n este cresc¼ator sau descresc¼ator;

� strict monoton def, (xn)n este strict cresc¼ator sau strict descresc¼ator;

� m¼arginit superior def, mulţimea fxn : n 2 Ng este m¼arnit¼a superior în R
(, 9M 2 R a.î. xn �M 8n 2 N);

� nem¼arginit superiordef, (xn)n nu este m¼arginit superior;

� m¼arginit inferior def, mulţimea fxn : n 2 Ng este m¼arnit¼a inferior în R
(, 9m 2 R a.î. xn � m 8n 2 N);

� nem¼arginit inferior def, (xn)n nu este m¼arginit¼a inferior;

� m¼arginit def, (xn)n este m¼arginit superior şi m¼arginit inferior (, 9M;m 2
R a.î. m � xn �M 8n 2 N , 9C 2 R a.î. jxnj � C 8n 2 N );

� nem¼arginit def, (xn)n nu este m¼arginit.

Se noteaz¼a cu sup
n
xn (respectiv, inf

n
xn) marginea superioar¼a (respectiv,

marginea inferioar¼a) a mulţimii fxn : n 2 Ng.

De�ni̧tia 3.1.3 Se numeşte vecin¼atate a unui num¼ar real x o mulţime V �
R cu proprietatea c¼a exist¼a " > 0 astfel încât (x� "; x+ ") � V (, 9a; b 2
R a.î. x 2 (a; b) � V ).
Se numeşte vecin¼atate a lui 1 o mulţime V cu proprietatea c¼a exist¼a

a 2 R astfel încât (a;1) � V .
Se numeşte vecin¼atate a lui �1 o mulţime V cu proprietatea c¼a exist¼a

a 2 R astfel încât (�1; a) � V .

Dac¼a x; y 2 R, x 6= y atunci exist¼a o vecin¼atate Vx a lui x şi a vecin¼atate
Vy a lui y a.î. Vx \ Vy = ; (într-adev¼ar, dac¼a x 6= y atunci " = jx�yj

3
> 0, iar

(x� "; x+ ")\ (y � "; y + ") = ;).
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Dac¼a x 2 R, aunci exist¼a o venin¼atate Vx a lui x şi a vecin¼atate V1 a
lui 1 şi o vecin¼atate V�1 a lui 1 a.î. Vx \ V1 = ;, Vx \ V�1 = ; şi V1 \
V�1 = ; (într-adev¼ar, (x� "; x+ ")\ (x+ "+ 1;1) = ;, (x� "; x+ ")\
(�1; x� "� 1) = ; şi (�1; x� "� 1)\ (x+ "+ 1;1) = ; ).

De�ni̧tia 3.1.4 Se spune c¼a şirul (xn)n are limita a 2 R şi se scrie limn!1xn =

a sau xn ! a (n!1) def, pentru orice vecin¼atate V a lui a exist¼a nV 2 N
a.î. xn 2 V pentru orice n � nV .
Şirul (xn)n se numeşte convergent dac¼a exist¼a a 2 R a.î. lim

n!1
xn = a

şi divergent în caz contrar (adic¼a dac¼a nu are limit¼a sau limita este 1 sau
�1).

Teorema 3.1.5 (Unicitatea limitei) Limita unui şir de numere reale dac¼a
exist¼a este unic¼a.

Demonstra̧tie. Fie (xn)n un şir de numere reale. Presupunem prin absurd
c¼a a; b cu a 6= b sunt dou¼a limite ale lui (xn)n. Deoarece a 6= b atunci exist¼a
o venin¼atate Va a lui a şi a vecin¼atate Vb a lui b a.î. Va \ Vb = ;. Deoarece
a (respectiv b) este limita lui (xn)n, rezult¼a c¼a exist¼a na 2 N (respectiv,
nb 2 N) a.î. xn 2 Va pentru orice n � na (respectiv, xn 2 Vb pentru orice
n � nb). Deci pentru n = na + nb avem xn 2 Va \ Vb, ceea ce contrazice
faptul c¼a Va \ Vb = ;.

Teorema 3.1.6 (Caracterizarea limitelor) Fie (xn)n un şir de numere
reale.

� Şirul (xn)n are limita a 2 R , pentru orice " > 0 exist¼a n" 2 N a.î.
jxn � aj < " pentru orice n � n".

� Şirul (xn)n are limita 1 , pentru orice c 2 R exist¼a nc 2 N a.î. xn > c
pentru orice n � nc.

� Şirul (xn)n are limita �1 , pentru orice c 2 R exist¼a nc 2 N a.î. xn < c
pentru orice n � nc.

Demonstra̧tie. Demonstra̧tia este evident¼a dac¼a se ţine cont de decrierea
vecin¼at¼a̧tilor pentru a 2 R, 1 şi �1.
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Propozi̧tia 3.1.7 Fie (xn)n un şir de numere reale.

1. Dac¼a lim
n!1

xn = a, atunci lim
n!1

jxnj = jaj (cu convenţia j1j = j�1j =
1)

2. lim
n!1

xn = 0 dac¼a şi numai dac¼a lim
n!1

jxnj = 0.

Demonstra̧tie. 1. Presupunem a 2 R. Deoarece lim
n!1

xn = a, pentru orice

" > 0 exist¼a n" 2 N a.î. jxn � aj < " pentru orice n � n". Ca urmare

jjxnj � jajj � jxn � aj < " pentru orice n � n".

În conseciņt¼a, lim
n!1

jxnj = jaj :
Presupunem c¼a a = 1. Deoarece lim

n!1
xn = 1, pentru orice c 2 R

exist¼a nc 2 N a.î. xn > c pentru orice n � nc. Ca urmare

jxnj � xn > c pentru orice n � nc.

În conseciņt¼a, lim
n!1

jxnj =1:
Presupunem c¼a a = �1. Deoarece lim

n!1
xn = �1, pentru orice c 2 R

exist¼a nc 2 N a.î. xn < c pentru orice n � nc. În particular, exist¼a n0 2 N
a.î. xn < 0 pentru orice n � n0. Ca urmare

jxnj = �xn > c pentru orice n � max fn�c; n0g .

În conseciņt¼a, lim
n!1

jxnj =1:
2. R¼amâne s¼a demonstr¼am c¼a dac¼a lim

n!1
jxnj = 0, atunci lim

n!1
xn = 0.

Deoarece lim
n!1

jxnj = 0, pentru orice " > 0 exist¼a n" 2 N a.î. jxnj =
jjxnj � 0j < " pentru orice n � n". Ca urmare

jxn � 0j = jxnj < " pentru orice n � n".

şi deci lim
n!1

xn = 0:

Propozi̧tia 3.1.8 Dac¼a (xn)n are limita a 2 R, atunci orice subşir al s¼au
(xkn)n are limita a.

14
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Demonstra̧tie. Deoarece lim
n!1

xn = a, pentru orice vecin¼atate a lui a exist¼a

nV 2 N a.î. xn 2 V pentru orice n � nV . Din faptul c¼a pentru orice n
kn � n, rezult¼a c¼a xkn 2 V pentru orice n � nV şi deci lim

n!1
xkn = a.

Propozi̧tia 3.1.9 Orice şir de numere reale convergent este m¼arginit.

Demonstra̧tie. Fie (xn)n un şir de numere reale cu limita a 2 R. Atunci
exist¼a n1 2 N a.î. jxn � aj < 1 pentru orice n � n1, de unde rezult¼a c¼a

jxnj � jxn � aj+ jaj < 1 + jaj pentru orice n � n1.

Notând
M = max fjx1j ; ::: jxn1�1j ; jaj+ 1g ,

ob̧tinem jxnj �M pentru orice n

Propozi̧tia 3.1.10 (Criterii de convergeņt¼a) Fie (xn)n un şir de numere
reale.

1. Dac¼a exist¼a a 2 R, n0 2 N şi exist¼a un şir (yn)n cu limita 0 a.î.
jxn � aj � yn pentru orice n � n0, atunci lim

n!1
xn = a.

2. Dac¼a exist¼a n0 2 N şi exist¼a un şir (yn)n cu limita 1 a.î. xn � yn
pentru orice n � n0, atunci lim

n!1
xn =1.

3. Dac¼a exist¼a n0 2 N şi exist¼a un şir (yn)n cu limita �1 a.î. xn � yn
pentru orice n � n0, atunci lim

n!1
xn = �1.

Demonstra̧tie. 1. Deoarece lim
n!1

yn = 0, pentru orice " > 0 exist¼a n" 2 N
a.î. jynj < " pentru orice n � n". Ca urmare

jxn � aj � yn � jynj < " pentru orice n � n".

şi deci lim
n!1

xn = a:

2. Deoarece lim
n!1

yn = 1, pentru orice c 2 R exist¼a nc 2 N a.î. yn > c
pentru orice n � nc. Ca urmare

xn � yn > c pentru orice n � nc.

15
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În conseciņt¼a, lim
n!1

xn =1:
3. Deoarece lim

n!1
yn = �1, pentru orice c 2 R exist¼a nc 2 N a.î. yn < c

pentru orice n � nc. În particular, exist¼a n0 2 N a.î. xn < 0 pentru orice
n � n0. Ca urmare

xn � yn < c pentru orice n � nc.

şi deci lim
n!1

xn = �1:

Propozi̧tia 3.1.11 Fie A � R.

1. Dac¼a A este m¼arginit¼a superior (respectiv, m¼arginit¼a inferior), atunci
exist¼a un şir convergent (xn)n cu proprietatea c¼a xn 2 A pentru orice
n şi lim

n!1
xn = supA (respectiv, lim

n!1
xn = inf A).

2. Dac¼a A este nem¼arginit¼a superior (respectiv, nem¼arginit¼a inferior),
atunci exist¼a un şir convergent (xn)n cu proprietatea c¼a xn 2 A pentru
orice n şi lim

n!1
xn = +1 (respectiv, lim

n!1
xn = �1).

Demonstra̧tie. 1. Fie M = supA (respectiv, m = inf A). Pentru orice
n 2 N� exist¼a xn 2 A astfel încât xn � M � 1

n
(respectiv, xn � m + 1

n
).

Atunci jxn �M j � 1
n
(respectiv, jxn �M j � 1

n
) şi ca urmare lim

n!1
xn = M

(respectiv, lim
n!1

xn = m).

2:Dac¼a A este nem¼arginit¼a , superior (respectiv, nem¼arginit¼a inferior),
atunci pentru orice n 2 N exist¼a xn 2 A astfel încât xn � n (respectiv,
xn � �n). În acest caz avem lim

n!1
xn = +1 (respectiv, lim

n!1
xn = �1).

Extindem operaţiile de adunare, sc¼adere, înmulţire şi împ¼arţire de la R
la R :
1+1 =1;�1�1 = �1;
a+1 =1+ a =1 pentru orice a 2 R,
a�1 =1� a = �1 pentru orice a 2 R,
11 =1; (�1) (�1) =1; (�1)1 =1 (�1) = �1;

a1 =1a =
�

1, dac¼a a > 0
�1, dac¼a a < 0

a (�1) = (�1) a =
�
�1, dac¼a a > 0
1, dac¼a a < 0
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a
1 = a

�1 = 0 pentru orice a 2 R,
1
a
= 1

a
1 =

�
1, dac¼a a > 0
�1, dac¼a a < 0

�1
a
= 1

a
(�1) =

�
�1, dac¼a a > 0
1, dac¼a a < 0

11 =1, 1�1 = 0, 01 = 0,

a1 =

�
1, dac¼a a > 1
0, dac¼a 0 < a < 1

1a =

�
1, dac¼a a > 0
0, dac¼a a < 0

Nu se acord¼a nici un sens scrierii:
1�1, �1+1, 01, 10, 0 (�1), (�1) 0, 11 ,

�1
1 , 1

�1 ,
�1
�1 ,

0
0
,

11, 1�1, 10, 00.

Teorema 3.1.12 (Opera̧tii cu limite de şiruri) Fie (xn)n şi (yn)n dou¼a
şiruri de numere reale care au limit¼a: lim

n!1
xn = a şi lim

n!1
yn = b.

1. Dac¼a a+b are sens, atunci şirul (xn + yn)n are limit¼a şi limn!1
(xn + yn) =

a+ b;

2. Dac¼a c 2 R şi ca are sens, atunci şirul (cxn)n are limit¼a şi limn!1 (cxn) =
ca;

3. Dac¼a a�b are sens, atunci şirul (xn � yn)n are limit¼a şi limn!1 (xn � yn) =
a� b;

4. Dac¼a ab are sens, atunci şirul (xnyn)n are limit¼a şi limn!1
(xnyn) = ab;

5. Dac¼a a
b
are sens, atunci şirul

�
xn
yn

�
n
are limit¼a şi lim

n!1

�
xn
yn

�
= a

b
;

Demonstra̧tie. Se utilizeaz¼a caracterizarea limitelor şi inegalit¼a̧ti de tipul

jx� yj � jxj+ jyj
jxz � ywj � jxj jz � wj+ jwj jx� yj .
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Propozi̧tia 3.1.13 (Trecerea la limit¼a în inegalit¼a̧ti) Dac¼a şirurile (xn)n
şi (yn)n au limit¼a şi exist¼a n0 2 N a.î. xn � yn pentru orice n � n0, atunci
lim
n!1

xn � lim
n!1

yn.

Demonstra̧tie. Dac¼a lim
n!1

xn = lim
n!1

yn =1 sau lim
n!1

xn = lim
n!1

yn = �1
sau lim

n!1
xn = �1 şi lim

n!1
yn =1 concluzia este evident¼a. Presupunem prin

absurd c¼a lim
n!1

xn = 1 şi lim
n!1

yn = �1. Atunci exist¼a n1 2 N (respectiv,
n2 2 N) a.î. xn > 1 pentru orice n � n1 (respectiv, yn < 1 penru orice
n � n2). Aşadar pentru orice n � max fn0; n1; n2g avem pe de o parte
xn > 1 > yn şi pe de alt¼a parte xn � yn ceea ce este o contradiçtie.
Deci dac¼a limitele nu sunt �nite are loc inegalitatea lim

n!1
xn � lim

n!1
yn.

R¼amâne s¼a demonstr¼am aceast¼a inegalitate în cazul limitelor �nite. Not¼am

" =
lim
n!1

xn� lim
n!1

yn:

3
şi presupunem prin absurd c¼a " > 0 (sau echivalent

c¼a lim
n!1

xn > lim
n!1

yn). Atunci exist¼a n1 2 N (respectiv, n2 2 N) a.î.���xn � lim
n!1

xn

��� < " pentru orice n � n1 (respectiv, ���yn � lim
n!1

yn

��� < " pentru
orice n � n2). Aşadar pentru orice n � max fn0; n1; n2g avem pe de o parte

xn > lim
n!1

xn�" =
2 lim
n!1

xn + lim
n!1

yn:

3
>
lim
n!1

xn + 2 lim
n!1

yn:

3
= lim

n!1
yn+" > yn

şi pe de alt¼a parte xn � yn ceea ce este o contradiçtie.

Corolarul 3.1.14 Fie (xn)n un şir.

1. Dac¼a exist¼a a; b 2 R a.î. a � xn � b şi dac¼a (xn)n are limit¼a, atunci
a � lim

n!1
xn � b. În particular, dac¼a xn � 0 şi dac¼a (xn)n are limit¼a,

atunci lim
n!1

xn � 0.

2. Dac¼a exist¼a dou¼a şiruri (an)n şi (bn)n care au aceeaşi limit¼a a.î. an �
xn � bn pentru orice n, atunci lim

n!1
xn = lim

n!1
an = lim

n!1
bn.

Propozi̧tia 3.1.15 Orice şir de numere reale monoton (xn)n are limit¼a.

1. Dac¼a (xn)n este cresc¼ator lim
n!1

xn = sup
n
xn (deci dac¼a (xn)n este

cresc¼ator şi m¼arginit superior, atunci este convergent).
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2. Dac¼a (xn)n este descresc¼ator limn!1
xn = inf

n
xn (deci dac¼a (xn)n este

descresc¼ator şi m¼arginit inferior, atunci este convergent).

Demonstra̧tie. 1. Avem dou¼a cazuri (xn)n m¼arginit superior sau (xn)n
nem¼arginit superior. Presupunem (xn)n m¼arginit superior şi not¼am a =
sup
n
xn. Atunci a 2 R şi pentru orice " > 0 exist¼a ne 2 N a.î. xnn > a � ".

Cum (xn)n este cresc¼ator rezult¼a c¼a xn � xn" > a� " pentru orice n � n".
Deoarece a = sup

n
xn, rezult¼a c¼a xn � a < a+ " pentru orice n. Deci pentru

orice n � n", avem jxn � aj < ", de unde rezult¼a lim
n!1

xn = a = sup
n
xn:

Presupunem (xn)n nem¼arginit superior. Atunci sup
n
xn =1. Pe de alt¼a

parte pentru orice c 2 R exist¼a nc 2 N a.î.xnn > c. Cum (xn)n este cresc¼ator
rezult¼a c¼a xn � xnc > c pentru orice n � nc şi ca urmare lim

n!1
xn =1.

2. Se poate face o demostra̧tie asem¼an¼atore cu cea de la 1 sau putem
observa c¼a (xn)n descresc¼ator, (�xn)n cresc¼ator, iar infn xn = � supn

(�xn)
şi ca urmare

lim
n!1

(�xn) = sup
n
(�xn) = � inf

n
xn

şi cum lim
n!1

(�xn) = lim
n!1

(�1)xn = � lim
n!1

xn, rezult¼a c¼a lim
n!1

xn =

inf
n
xn.

Corolarul 3.1.16 (Proprietatea cleştelui) Fie (xn)n şi (yn)n dou¼a şiruri
de numere reale care au propriet¼aţile:

i) (xn)n cresc¼ator şi (yn)n descresc¼ator;

ii) xn � yn pentru orice n;

iii) lim
n!1

(yn � xn) = 0.

Atunci (xn)n şi (yn)n sunt convergente şi au aceaşi limit¼a.

Exemplul 3.1.17 (Num¼arul lui Euler şi constata lui Euler) Şirurile
(xn)n şi (yn)n de�nite prin xn =

�
1 + 1

n

�n
şi yn =

�
1 + 1

n

�n+1
pentru orice
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n 2 N� satisfac ipotezele corolarului precedent. Într-adev¼ar, avem

xn+1
xn

=

�
n+2
n+1

�n+1�
n+1
n

�n =
n+ 2

n+ 1

 
n+2
n+1
n+1
n

!n
=
n+ 2

n+ 1

�
n2 + 2n

n2 + 2n+ 1

�n
=

n+ 2

n+ 1

�
1� 1

n2 + 2n+ 1

�n
>

inegalitatea Bernoulli

n+ 2

n+ 1

�
1� n

n2 + 2n+ 1

�
=

n+ 2

n+ 1

n2 + n+ 1

n2 + 2n+ 1
=
n3 + 3n2 + 3n+ 2

n3 + 3n2 + 3n+ 1
> 1

ca urmare (xn)n este strict cresc¼ator. Pe de alt¼a parte avem

yn
yn+1

=

�
n+1
n

�n+1�
n+2
n+1

�n+2 = n+ 1

n+ 2

 
n+1
n
n+2
n+1

!n+1
=
n+ 1

n+ 2

�
n2 + 2n+ 1

n2 + 2n

�n+1
=

n+ 1

n+ 2

�
1 +

1

n2 + 2n

�n+1
>

inegalitatea Bernoulli

n+ 1

n+ 2

�
1 +

n+ 1

n2 + 2n

�
=

n+ 1

n+ 2

n2 + 3n+ 1

n2 + 2n
=
n3 + 4n2 + 4n+ 1

n3 + 4n2 + 4n
> 1

şi deci (yn)n este strict descresc¼ator. În plus yn =
�
1 + 1

n

�n+1
= xn

�
1 + 1

n

�
�

xn pentru orice n şi lim
n!1

(yn � xn) = lim
n!1

xn
1
n
= 0 deoarece

0 � xn
1

n
� yn

1

n
� y1

1

n

n!1! 0.

Conform corolarului precedent (xn)n şi (yn)n sunt convergente şi au aceaşi
limit¼a. Limita lor comun¼a se noteaz¼a cu e şi se numeşte num¼arul lui Euler.
Se poate ar¼ata c¼a e este iraţional, e = 2; 718281828459045235:::. Deoarece
e = sup

n
xn = inf

n
yn, avem

�
1 +

1

n

�n
< e <

�
1 +

1

n

�n+1
pentru orice n � 1.

Logaritmând în baza e se obţine

1

n+ 1
< ln (n+ 1)� ln (n) < 1

n
pentru orice n � 1.
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Înlocuind n cu 1,2, :::, n şi adunând inegalit¼aţile obţinem

1

2
+
1

3
+ :::+

1

n+ 1
< ln (n+ 1) < 1 +

1

2
+ :::+

1

n
, n � 1.

Utilizând aceste inegalit¼aţi se poate demonstra c¼a şirul (zn)n, unde zn =
1+ 1

2
+:::+ 1

n
�ln (n), este descrec¼ator şi c¼a zn > 0 pentru orice n. Ca urmare

(zn)n este convergent. Limita lui se noteaz¼a cu 
 şi se numeşte constanta
lui Euler. Se poate ar¼ata c¼a 
 este iraţional, 
 = 0:5772156649015328606:::.

Teorema 3.1.18 (Proprietatea Cesaro) Orice şir de numere reale m¼arginit
are un subşir convergent.

Demonstra̧tie. Fie (xn)n un şir m¼arginit de numere reale. Atunci exist¼a
a; b 2 R a.î. a � xn � b pentru orice n. Construim recursiv dou¼a şiruri
(an)n şi (bn)n cu prorietatea c¼a pentru orice n intervalul [an; bn] coņtine o
in�nitate de termeni ai şirului (xn)n. Proced¼am în felul urm¼ator: a1 = a,
b1 = b şi presupunând c¼a an, bn au fost determinate construim cn =

an+bn
2

mijlocul intervalului [an; bn]. Cum [an; bn] coņtine o in�nitate de termeni
ai şirului (xn)n, cel pu̧tin unul dintre intervalele [an; cn] şi [cn; bn] coņtine o
in�nitate de termeni ai şirului (xn)n. Dac¼a [an; cn] coņtine o in�nitate de
termeni ai şirului, lu¼am an+1 = an şi bn+1 = cn altfel lu¼am an+1 = cn şi
bn+1 = bn. Alegem un element x1 2 [a1; b1] şi presupunând c¼a a fost ales
xkn 2 [an; bn], alegem xkn+1 2 [an+1; bn+1] a.î. kn+1 > kn (acest lucru este
posibil deoarece [an+1; bn+1] coņtine o in�nitate de termeni ai şirului). Cum

bn � an =
bn�1 � an�1

2
= ::: =

b� a
2n

pentru orice n, lim
n!1

(bn � an) = 0. Pe de alt¼a parte (an)n este cresc¼ator,

(bn)n este descresc¼ator şi an � bn pentru orice n. Deci (an)n şi (bn)n sunt
convergente şi au aceaşi limit¼a. Cum pentru orice n, an � xkn � bn,
lim
n!1

xkn = lim
n!1

an = lim
n!1

bn.

De�ni̧tia 3.1.19 Şirul (xn)n de numere reale se numeşte şir Cauchy sau şir

fundamental
def, pentru orice " > 0 exist¼a n" 2 N a.î. jxm � xnj < " pentru

orice n;m � n" (,pentru orice " > 0 exist¼a n" 2 N a.î. jxn+p � xnj < "
pentru orice n � n" şi orice p 2 N).
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Propozi̧tia 3.1.20 Orice şir de numere reale convergent este şir Cauchy.

Demonstra̧tie. Fie (xn)n un şir de numere reale convergent şi �e a limita
sa. Atunci pentru rice " > 0 exist¼a n" 2 N a.î. jxn � aj < "

2
pentru orice

n � n". Ca urmare pentru orice n;m � n",

jxm � xnj � jxm � aj+ ja� xnj <
"

2
+
"

2
= ".

Deci (xn)n este şir Cauchy.

Propozi̧tia 3.1.21 Orice şir Cauchy este m¼arginit.

Demonstra̧tie. Fie (xn)n un şir de numere reale care este şir Cauchy.
Atunci xist¼a n1 2 N a.î. jxm � xnj < 1 pentru orice n;m � n1. Not¼am

M = max fjx1j ; :::; jxn1�1j ; jxn1j+ 1g .

Atunci jxnj �M pentru orice n.

Propozi̧tia 3.1.22 Orice şir de numere reale care este şir Cauchy este
convergent.

Demonstra̧tie. Fie (xn)n un şir de numere reale care este şir Cauchy.
Conform propozi̧tiei 3.1.21, (xn)n este m¼arginit şi ca urmare conform teoremei
3.1.18 are un subşir (xkn)n convergent. Fie a = lim

n!1
xkn. Atunci pentru orice

" > 0 exist¼a n" 2 N a.î. jxkn � aj < "
2
pentru orice n � n". Deoarece (xn)n

este şir Cauchy, pentru orice " > 0 exist¼a n0" 2 N a.î. jxm � xnj < " pentru
orice n;m � n0". Cum kn � n, avem

jxn � aj � jxn � xknj+ jxkn � aj <
"

2
+
"

2
= ",

pentru orice n � max fn"; n0"g. Deci (xn)n are limita a, şi în conseciņt¼a
este m¼arginit.

Teorema 3.1.23 (Criteriul lui Cauchy de convergeņt¼a a şirurilor )
Un şir de numere reale este convergent dac¼a şi numai dac¼a este şir Cauchy.

Demonstra̧tie. Rezult¼a din propozi̧tiile 3.1.20 şi 3.1.22.
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