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Capitolul 2

Multimi. Relatii. Functii
(continuare din cursul 1)

2.3 Functii

Definitia 2.3.1 Fie X 1Y doua multimi. Se numeste functie definita pe
X cu valort in'Y, si se noteaza cu f : X — Y sau X Ly squz —
f@) [ X = Y] orelatie f C X xY cu proprietatea ca pentru orice x € X
exista §i este unicy € Y a.i (v,y) € f. Unicul element y ce ii corespunde
lui = se noteaza cu f(x). X se numegte domeniul functiei f iar Y se
numeste codomeniul functiei f.

Daca A C X, functia h : A — Y, definita prin h(x) = f(x) pentru
orice x € A, se numeste restrictia functiei f la A si se noteaza cu f|a.

Daca f si g sunt doua functii, atunci f = g p2d f st g au acelasi
domeniu, acelasi codomeniu gi f (x) = g (x) pentru orice x din domeniu.

Definitia 2.3.2 O functie f : X — Y se numeste

- injectiva “ Vay,me € X, 11 # 29 = f(x1) # f(x2) (& Vay, 20 € X cu
f(z1) = f(22) = 21 = 12);

- surjectiva 24 VyeVY dz e X ai y=f(x);
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- bijectiva é{ f este injectiva gi surjectiva (< Yy € Y existd un unicx € X

ai y=f(z))

Definitia 2.3.3 Fie f : X — Y gig:Y — Z doua functii. Se numeste
compunerea functiei g cu f functia h : X — Z definita prin

h(z) =g (f(z)) Vo e X.

Functia h definita mai sus se noteaza cu go f.

Se poate arata ugor ca daca A EN B,B% CsiC 2 D sunt trei functii
(ce pot fi compuse), atunci

(hog)of=ho(gof).
Propozitia 2.3.4 Fie f : X — Y o functie.

1. Daca f este injectiva, atunci ezxista o functieg : Y — X a.i. gof (x) =
x pentru orice x € X.

2. Daca f este surjectiva, atunci exista o funciie g : Y — X a.d. fo
g (y) =y pentru oricey € Y.

Demonstratie. 1. Presupunem ca f este injectiva si alegem un element
arbitrar g € X. Definim ¢ : Y — X prin ¢ (y) = z dacd existd x a.i.
y = f(x), si prin g (y) = xo in caz contrar. Se observa cd dacid presupunem
cd pentru un y € Y existd doud elemente xq1,x, € X astfel incat f (z1) =
f (z2) =y, atunci x; = x5 deoarece f este injectivd. Ca urmare g este bine
definita, gi in plus go f (z) = g (f (z)) = = pentru orice z € X.

2. Presupunem ca f este surjectivd. Atunci pentru orice y € Y exista
z, € X astfel incat y = f (z,). Definim g : Y — X prin ¢ (y) = =, pentru
orice y € Y si obsevam ca fog(y) = f(9(y)) = f(zy) = y pentru orice
yeyY. m

Propozitia 2.3.5 Fie f : X =Y sig:Y — Z doua functi.
1. Daca f si g sunt injective, atunci g o f este injectiva.
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Daca [ si g sunt surjective, atunci g o f este surjectiva.
Daca f g1 g sunt bijective, atunci g o f este bijectiva.
Daca g o f este injectiva, atunci f este injectiva.

Daca g o f este surjectiva, atunci g este surjectiva.

Daca g o f este bijectiva, atunct f este injectiva st g este surjectiva.

NS

Daca X =Y, atunci f o f este bijectiva < f este bijectiva.

Demonstratie. 1. Fie x1,25 € X ad. go f (z1) = go f (x2), sau echivalent
g (f(z1)) = g (f (z2)). Deoarece g este injectiva, rezulta ca f (r1) = f (z2),
iar deoarece f este injectivi, rezult c¢i z; = xo. In consecintil g o f este
injectiva.

2. Fie z € Z. Deoarece g este surjectiva, rezulta ca exista y € Y astfel
incat z = g (y), iar deoarece f este surjectivi, rezultd ca existd x € X astfel
incat y = f (z). In consecintd go f () = g (f (z)) = g (y) =y, si deci go f
este surjectiva.

3. Este consecinta a lui 1 si 2.

4.Fie x1,29 € X ad. f(x1) = f(x2). Atunci g(f (x1)) = g(f (z2)) sau
echivalent go f (z1) = go f (z3). Cum go f este injectivi, rezulta ci x; = xs.
In consecintd f este injectivi.

5.Fie z € Z. Deoarece g o f este surjectiva, rezulta ca exista xr € X
astfel incat z = go f(x). Daca notdm y = f (z) atunci y € Y si g (y) =
g (f (z)) = z. Deci g este surjectiva.

6. Este consecinta a lui 4 si 5.

7.Este consecinta a lui 6. m

Definitia 2.3.6 Functia f : X — Y se numeste functie inversabila b2
exrista o functie g : Y — X a.i.

gof(r) = zVreX
fogly) = yvyeY.

Se poate arata ca daca functia f este inversabila exista o unica functie g
care satisface definitia de mai sus. In acest caz functia g se numeste inversa
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functiei f si se noteaza cu f~!. Dacd pentru o multime A se noteazi cu idy
functia idy : A — A definita prin id4 (a) = a pentru orice a € A, atunci
inversa functiei f : X — Y este definita de relatiile

fﬁlof = idx
Fof™t = idy.

Teorema 2.3.7 Functia f : X — Y este functie inversabila daca §i numai
daca f este bijectiva.

Demonstratie. , =" Presupunem f inversabild. Atunci existd f~!:Y —
X ad.

flof = idx
fof™t = idy.

Cum functia idy este bijectiva, si din particular injectiva, din propozitia
2.3.4 (punctul 4) rezultd ci f este injectivd. Deoarece functia idy este
bijectiva, si din particular surjectiva, din propozitia 2.3.5 (punctul 5) rezulta
ca f este surjectiva. Deci f este bijectiva.

»,<=" Presupunem f este bijectiva. Atunci pentru orice y € Y exista un
unic z, € X ad. f(x,) = y. Definim g : Y — X prin g (y) = z, pentru
orice y € Y si obsevam ca

gof(z) = zVreX
fogly) = yVyey.

In consecinta f este inversabild. m

Definitia 2.3.8 Se spune ca doua multimi A i B au acelasi cardinal 24
exista o functie bijectiva f : A — B.

Se spune ca multimea A are cardinaluln € N Y ewistd o functie bijectiva
f:A—=A{1, 2, ..,n} (& A aren elemente).

Multimea A se numeste numarabila Y existd o functie bijectiva f : A —
N.

Multimea A se numeste cel mult numarabila Y A este numdrabils sau
finita (exista n € N a.i A are cardinalul n) .
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Definitia 2.3.9 (Imaginea si preimaginea unei multimi printr-o functie)
Fie f : X =Y o functie.

- Pentru orice A C X imaginea (directa) a lui A prin f se noteaza cu f (A)
st defineste prin

fA) = {yeY :JreX ai y=f(x)}
{f(z) 2z € A}.

- Pentru orice B C Y imaginea inversa sau preimaginea lui B prin [ se
noteazd cu [~ (B) i defineste prin

f'B)={recX: f(x)e B}.

Propozitia 2.3.10 Fie f : X — Y o functie inversabila si fie B C Y.
Atunci tmaginea directa a lui B prin inversa functiei f si preimaginea lui
B prin f coincid.

Demonstratie. Pentru a evita confuziile notam inversa functiei f prin g
si demonstrdm cd g (B) = f~! (B) prin dubld incluziune.

Fie x € g (B). Atunci existd y € B ai. © = ¢g(y) si ca urmare f (z) =
f(g(y)) =y € B. Cum f(z) € Brezultd cd z € f~'(B).

Fie z € f~'(B). Atunci f(x) € B si in consecintd g (f (z)) € g (B).
Cum z =g (f(x)) rezultd c z € B. m

Propozitia 2.3.11 Fie f : X — Y o functie, { A;},.; o familie de submultimi

ale lui X, iar {B;},_; o familie de submuliimi ale lui'Y". Atunci:

1. f! (U Bj) = U f71(B));

jeJ jeJ

2 £(Ua)=U s

il i€l
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tr(na)ensa

icl el

5. Daca f este injectiva, atunci f (ﬂ Ai> = f(A).

el il

Demonstratie. 1. ,C": Fiez € f! (U Bj>. Atunci f (z) € | By, de
jeJ jeJ
unde rezultd ci existd j € J ad. f(z) € B;. Caurmare z € f~ (B;) si in
particular z € |J f (B;).
jeJ
,D": Fiex € U f1(B)). Atunci existd j € J ai z € f~1(B))
jeJ

si ca urnare f(z) € B;. In particular, f(z) € |J B, si in consecinti

JjeJ
x € fl1 (:LJ 13j>.
Jje€J

2. C": Fieyef (U Ai). Atunci existd x € | A; al. y = f(x), de
i€l iel

unde rezulta ci existd i € [ a.ix € A; siy = f (z). Ca urmare exista i € [

ad. y € f(A;). In particular y € | f (4)).

i€l
w7 Fiey € | f(A;). Atunci existd i € I a.i. y € f(A;) si ca urnare
i€l
existd z € A; al. y = f(x). Deciexistd z € (JA; al y = f(z)¢iin
i€l

consecintd y € f (U AZ).

el

3. C”: Fiex e f! (ﬂ Bj). Atunci f (x) € () Bj, de unde rezulta ca
jeJ JjeJ

f (z) € B; pentru orice j € J. Ca urmare x € f~! (B;) pentru orice j € J

sideciz € N [ (B)).

jeJ
,D": Fiex e () f1(B;). Atunci z € f~!(B;) pentru orice j € J si ca
jeJ
urnare f (z) € B; pentru orice j € J. In consecintd, f (z) € () B; de unde

jeJ
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rezultd x € f~! (U Bj>.

jed
4Fiey € f (ﬂ AZ-). Atunci existd x € [ A; ad. y = f(z), de unde
iel iel
rezultd ca .x € A; si y = f () pentru orice i € I. Ca urmare y € f (A;)
pentru orice i € [ si deciy € [ f (4;).

i€l
5. Deoarece f <ﬂ Ai> C () f (A;) pentru orice functie f, rdméne s
icl icl

aratdm ca dacd f este injectivd () f(A4;) C f (ﬂ Ai). Fiey € N f(4).
iel iel iel
Atunci y € f (A;) pentru orice i € I, de unde rezulta ca pentru orice ¢ € T
existd x; € A; al. y = f(x;). Fie i,k € I doi indici arbitrari. Avem
f(z;) =y = f(xx). Din faptul cd f este injectiva rezultd cd x; = x.Deci
toate elementele x; sunt egale intre ele. Notam cu zy valoarea lor comuna.

Atunci xy = z; € A; pentru orice i € I gi y = f (x9). Ca urmare xo € () 4;
iel

siy = f(z0), de unde rezulta ca y € f (ﬂ Ai). [ |

el

Definitia 2.3.12 Fie A, B C R gi f : A — B o functie. Functia [ se
numeste

d
. crescitoare Vo, 29 € A cuxy < xo= f(21) < f(22);
itoare <
- descrescatoare < Nxy, 19 € A cuxy < x9 = f(21) > f(22);
- strict crescatoare < Vr1,x9 € A cu x1 < g = f (1) < f (22);
t deserestoare 44
- strict descrescatoare < Nxy, 19 € A cu 11 < 19 = f (1) > f(22);
o g o o
- monotona f este crescatoare sau descrescatoare;
. 5 el . 5 . 5
- strict monotona f este strict crescatoare sau strict descrescatoare.
. or .
- marginita superior < IM € R a.i. f(z) < M Vz € A;

- nemarginitd superior f nu este marginita superior;
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o . d .

- marginita inferior LM eR ai flz)>MVx e A;
I . Cg o e .

- nemarginita inferior < f nu este marginita inferior;

- marginita 24 f este marginita superior i marginita inferior (< Im, M €
Rai m<fx)<MVreAs ICeRaal |f(z) <CVreA),

e . .. de VT
- nemarginita <:§ f nu este marginita.

Pentru orice S C A, se noteaza cu sup [ (respectiv, i%f f) sau sup f (z)
S €A
(respectiv, in£ f) marginea superioara (respectiv, marginea inferioard) a
[AS
multimii f (S).

Definitia de mai sus are sens nu doar pentru submultimi A si B de
numere reale ci pentru orice multimi A si B inzestrate cu o relatie de ordine

Sconsiderémdcéxzycgyga:,x<ydé¢x§y§iac7éy,x>ycgy<a:.
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Siruri si serili de numere reale

3.1 Siruri de numere reale

Definitia 3.1.1 Fie X o multime. Se numeste sir de elemente din X o
functie f : N — X gi se noteaza cu f = (f (n)), sau f = (x,), sou (z,),,
unde x, = f(n) pentru orice n. x, = f(n) se numeste termen general al
sirului f = (z,,),, -

Se numeste subgir al sirului f = (z,,), sirul fog unde g: N — N este o
functie strict crescatoare. Notand k,, = g(n), obtinem fog(n) = f(g(n)) =
f (ky) = zk,. Notatia uzuld pentru un subsir f o g este (vy,),

Se numeste gir de numere reale un gir de elemente din R adica o functie
f:N—=R.

Definitia 3.1.2 Sirul (z,,), de numere reale se numeste

- crescator dé{functia n +— f(n)[: N— R] este crescitoare (< VYn € N
T S xn+1);

- descrescator Cgfuncg‘m n— f(n)[: N — R] este descrescatoare (< Vn €
N T Z anrl);'

- strict crescator (gfunc;‘z’a n— f(n)[: N — R] este strict crescatoare (<
VneN z, < zp1);
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- strict descrescator (gfuncu’a n— f(n)[: N — R] este strict descrescatoare
(VneNx, >x,1);

de o o
. monoton & (x,,), este crescator sau descrescator;
. ‘g . o . o
- strict monoton (x,,),, este strict crescator sau strict descrescator;

- marginit superior “ multimea {z, : n € N} este marnita superior in R
(& 3IM eR a.i x, < MVneN);

o .. . cg o .. .
- memarginit superior< (x,), nu este marginit superior;

o . d ‘ oo o
- marginit inferior é{ multimea {x,, : n € N} este marnita inferior in R
(& 3Im eR ai z, >mVneN);

o, . de e . o . .
- memarginit inferior <:§ (x,,), nu este marginitd inferior;

- marginit 24 (xy), este marginit superior si marginit inferior (< IM,m €
Rai m<z,<MVneN <3ICeR ai |z,|]<CVneN);

e . ., de o ..
- nemarginit 24 (x,,), nu este marginit.

Se noteaza cu sup x,, (respectiv, inf x,, ) marginea superioara (respectiv,
n

n
marginea inferioard) a multimii {x, : n € N}.

Definitia 3.1.3 Se numeste vecinatate a unui numar real x o multime V C
R cu proprietatea ci exista € > 0 astfel incat (v —e,x +¢) CV (& Ja,b e
R a.i. z € (a,b) CV ).

Se numeste vecinatate a lui oo o multime V' cu proprietatea ca exista
a € R astfel incdt (a,00) C V.

Se numegte vecinatate a lui —oo o multime V' cu proprietatea ca exista
a € R astfel incit (—oo,a) C V.

Daca x,y € R, x # y atunci exista o vecinatate V,, a lui = si a vecinatate
V,aluiyal V,NV, =0 (intr-adevar, dacd = # y atunci € = |I3;y| > 0, iar

(x—ec,x4+e)N (y—e,y+e)=0).
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Daca = € R, aunci exista o veninatate V,, a lui x si a vecinatate V,, a
lui oo si o vecindtate V_o alui oo ad. V, NV =0, Vo, NV oo =0 si Voo N
V.o = 0 (intr-adevir, (x —e,x+e)N (x+e+1,00) =0, (r—c,x+e)N
(—o0,x—e—1)=0g (—o0,z—e—1)N(x+ec+1,00)=0).

Definitia 3.1.4 Se spune ca sirul (z,,), are limita a € R si se scrie lim z, =

n—oo
de . .y . c oy
a sau x, — a (n — o0) (:{ pentru orice vecinatate V a lui a exista ny € N
a.i. x, € V pentru orice n > ny .
Qirul (z,,), se numeste convergent dacé exista a € R a.i. lim x, = a

n—oo

gi divergent in caz contrar (adica dacd nu are limita sau limita este oo sau
—00).

Teorema 3.1.5 (Unicitatea limitei) Limita unui sir de numere reale daca
exista este unica.

Demonstratie. Fie (x,), un sir de numere reale. Presupunem prin absurd
cd a,b cu a # b sunt doud limite ale lui (), . Deoarece a # b atunci exista
o venindtate V, a lui a si a vecindtate Vj, a lui b a.i. V, NV}, = (). Deoarece
a (respectiv b) este limita lui (z,),, rezultd ca existd n, € N (respectiv,
ny € N) a.i. z, € V, pentru orice n > n, (respectiv, x, € V, pentru orice
n > ny). Deci pentru n = n, + n, avem x, € V, NV}, ceea ce contrazice
faptulca V, NV, =0. m

Teorema 3.1.6 (Caracterizarea limitelor) Fie (z,), un sir de numere
reale.

- Qirul (x,), are limita a € R < pentru orice ¢ > 0 exista n. € N a.i.
|z, — a| < e pentru orice n > n..

- Qirul (z,,),, are limita oo < pentru orice ¢ € R exista n. € N a.i. z, > c
pentru orice n > Ne.

- Qirul (z,,),, are limita —oo < pentru orice ¢ € R exista n, € N a.i. z,, <c
pentru orice n > n.

Demonstratie. Demonstratia este evidenta daca se tine cont de decrierea
vecinatatilor pentru a € R, co si —co. m
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Propozitia 3.1.7 Fie (z,), un sir de numere reale.

1. Daca lim x, = a, atunci lim |x,| = |a| (cu conventia |oo| = |—o0| =
n—oo

n—oo

0)

2. lim z, =0 daca gi numai daca lim |x,| = 0.
n—oo

n—oo

Demonstratie. 1. Presupunem a € R. Deoarece lim z, = a, pentru orice

n—oo

e > 0 existd n. € N ald. |z, — a| < e pentru orice n > n.. Ca urmare

l|zn| — |a|| < |z, — a| < € pentru orice n > n..
In consecinta, lim |z,| = |a| .
n—oo

Presupunem ca a = oo. Deoarece lim z,, = oo, pentru orice ¢ € R

n—oo

exista n. € N a.i. z,, > ¢ pentru orice n > n.. Ca urmare
|z,| > x, > ¢ pentru orice n > n,.
In consecinta, lim |z,| = occ.
n—oo

Presupunem ca a = —oo. Deoarece lim x, = —o0, pentru orice ¢ € R

n—oo
exista n. € N a.i. x,, < ¢ pentru orice n > n.. In particular, exista ng € N
a.i. x, < 0 pentru orice n > ny. Ca urmare

|z,| = —x, > ¢ pentru orice n > max {n_.,ng} .

In consecinta, lim |z,| = occ.
n—oo

2. Ramane si demonstram cad dacd lim |z,| = 0, atunci lim z,, = 0.
n—oo n—oo
Deoarece lim |z,| = 0, pentru orice ¢ > 0 existd n. € N ai. |z,] =

n—oo

||z,,| — 0] < € pentru orice n > n.. Ca urmare
|z, — 0| = |z,| < € pentru orice n > n..

si deci lim z, =0. m
n—oo

Propozitia 3.1.8 Daci (z,,), are limita a € R, atunci orice subsir al sdu
(zk,), are limita a.
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Demonstratie. Deoarece lim x,, = a, pentru orice vecinatate a lui a exista

n—oo
ny € N ai =z, € V pentru orice n > ny. Din faptul ca pentru orice n
kn, > n, rezulta ca x, € V pentru orice n > ny si deci lim x, =a. =m
n—oo

Propozitia 3.1.9 Orice sir de numere reale convergent este marginit.

Demonstratie. Fie (z,), un sir de numere reale cu limita ¢ € R. Atunci
existd ny € N al. |z, —a| <1 pentru orice n > ny, de unde rezulta ca

|z,,| < |z, —al+ |a| <1+ |a| pentru orice n > n;.

Notand
M = max {|z1|, ... |vn, 1|, |a| + 1},

obtinem |x,| < M pentru orice n =

Propozitia 3.1.10 (Criterii de convergentd) Fie (z,), un sir de numere
reale.

1. Daca exista a € R, ng € N gi exista un sir (y,), cu limita 0 a.i.

|z, — a| <y, pentru orice n > ng, atunci lim z, = a.
n—oo

2. Daca existda ng € N gi exista un sir (y,), cu limita 0o a.l. z, > y,

pentru orice n > ng, atunci lim x,, = oco.
n—oo

3. Daca existd ng € N si exista un gir (y,), cu limita —oo a.i. x, < y,

pentru orice n > ng, atunci lim z,, = —o0.

n—oo

Demonstratie. 1. Deoarece lim y,, = 0, pentru orice € > 0 exista n. € N

n—oo

a.d. |yn| < e pentru orice n > n.. Ca urmare
|z, — a| <y, < |yn| < e pentru orice n > n..

si deci lim z, = a.
n—oo

2. Deoarece lim y, = oo, pentru orice ¢ € R exista n. € N ald. y, > ¢

n—oo

pentru orice n > n.. Ca urmare

Tp > Y, > € pentru orice n > n..
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In consecinta, lim z, = oc.
n—oo

3. Deoarece lim y, = —o0, pentru orice ¢ € R exista n. € N a.i. y, < c

n—oo
pentru orice n > n.. In particular, exista ny € N a.i. x, < 0 pentru orice
n > ng. Ca urmare

Tn < Y, < c pentru orice n > n,.

si deci lim z, = —00. m

n—oo

Propozitia 3.1.11 Fie A C R.

1. Daca A este marginita superior (respectiv, marginita inferior), atunci
exista un gir convergent (x,,), cu proprietatea ca x, € A pentru orice
n gt lim x, =sup A (respectiv, lim x, =inf A).
n—oo n—oo

2. Daci A este nemarginita superior (respectiv, nemdarginita inferior),
atunci existd un gir convergent (x,,), cu proprietatea ca x,, € A pentru
orice n gi lim x,, = 400 (respectiv, lim z, = —oc0).

n—od n—oo

Demonstratie. 1. Fie M = sup A (respectiv, m = inf A). Pentru orice
n € N* existd z,, € A astfel incat z,, > M — % (respectiv, z, < m + %)
Atunci |z, — M| < L (respectiv, |z, — M| < 1) i ca urmare lim z, = M

n—oo
(respectiv, lim z,, = m).
n—oo
2.Daci A este nemarginita , superior (respectiv, nemarginitd inferior),
atunci pentru orice n € N existd z,, € A astfel incat =, > n (respectiv,
x, < —n). In acest caz avem lim x, = +oo (respectiv, lim z, = —c0). =
n—oo

n—oo

_Extindem operatiile de adunare, scadere, inmultire gi impartire de la R
la R :

00+ 00 = 00, —00 — 00 = —00Q,

a + 0o = 00 + a = oo pentru orice a € R,

a— 00 =00 — a = —00 pentru orice a € R,
0000 = 00, (—00) (—00) = 00, (—o0) 0o = 00 (—o0) = —00,

oo, daca a > 0
—00, daca a < 0

0 (—00) = (—o0)a = —00, daca a >0
o0, daca a < 0

ack = ooa =
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< = —% = () pentru orice a € R,
o —0o0
% _ 1o 00, daca a >0
a a —00, daca a <0
N —00, daca a > 0
= f— l (_Oo) — Y 8
a a 00, daca a < 0

00>® =00, 00”*® =0, 0*° =0,
a‘x’:{ 00, daca a > 1
0,daca0<a<1
“ oo, daca a > 0
- { 0, daca a <0

Nu se acorda nici un sens scrierii:
00 — 00, —00 + 00, 000, 000, 0 (—00), (—0)0, =, == =& == 2
1%, 17°°, o0, 0°.

Teorema 3.1.12 (Operatii cu limite de siruri) Fie(x,), si(y,), doud
giruri de numere reale care au limita: lim x, = a gi lim y, = b.

n—oo

1. Dact a+b are sens, atunci sirul (z,, + yn),, are limita gi im (z,, +y,) =

a+b;

2. Dacac € R gica are sens, atunci sirul (cx,), are limita i lim (cx,) =
n—od
ca;

3. Daca a—b are sens, atunci sirul (x, — y,),, are limita si lim (z, — y,) =

n—oo

a—b;

4. Daca ab are sens, atunci girul (x,y,),, are limita st lim (x,y,) = ab;

n—oo

5. Daca %are sens, atunci sirul | £ are limita g1 lim (£ ) = %;
’ ’
b Yn ) n—oo \ Yn b

Demonstratie. Se utilizeaza caracterizarea limitelor si inegalitati de tipul

2]+ Jy]

v £yl <
lzz —yw| < |zllz —w|+ |w]|z —y|.
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Propozitia 3.1.13 (Trecerea la limita in inegalitati) Daca sirurile (z,,),
§i (Yn),, ou limita si exista ng € N a.i. z,, <y, pentru orice n > ng, atunci
llm Ty < hm Yn -

n—oo

Demonstratie. Daca lim z, = lim y, = oo sau lim x, = lim y, = —c©

n—oo n—oo n—oo n—oo

sau lim z, = —oosi lim ¥y, = oo concluzia este evidenta. Presupunem prin

n—oo n—oo
absurd cd lim x,, = oo ¢i lim y, = —oco. Atunci existd n; € N (respectiv,

n—oo n—oo

ny € N) al. z, > 1 pentru orice n > ny (respectiv, y, < 1 penru orice
n > ng). Asadar pentru orice n > max {ng,n,n2} avem pe de o parte
xn, > 1>y, si pe de alta parte x,, < y,, ceea ce este o contradictie.

Deci daca limitele nu sunt finite are loc inegalitatea lim z,, < lim ,.

n—oo n—oo

Raméne sa demonstram aceasta inegalitate in cazul limitelor finite. Notam

lim z,— lim yn,.

g = "=2—"==— i presupunem prin absurd cd ¢ > 0 (sau echivalent

ca lim z, > hm Yn). Atunci existd ny; € N (respectiv, ny € N) ai

n—oo

x, — lim z,| < € pentru orice n > n; (respectiv, |y, — lim y,
n—oo n—oo

orice n > ny). Asadar pentru orice n > max {ng, n1,n2} avem pe de o parte

< € pentru

2 lim z,, + hm Un.- lim x, + 2 lim y,.
T, > lim x,—s = = 3 > 17 i 0 = lim yute > Yn

si pe de alta parte z,, < v, ceea ce este o contradictie. m
Corolarul 3.1.14 Fie (x,), un sir.

1. Daca exista a,b € R a.i. a < x, <b i daca (x,), are limita, atunci
a < lim z,, <b. In particular, daca x, > 0 gi daca (z,,), are limita,

n—oo

atunci lim z, > 0.

n—oo
2. Daca exista doud giruri (a,), $i(b,), care au aceeasi limita a.i. a, <

n < b, pentru orice n, atunci lim z, = lim a, = lim b,.

n—oo n—oo n—oo

Propozitia 3.1.15 Orice sir de numere reale monoton (x,), are limita.

1. Daca (z,), este crescator lim x, = sup a, (deci dact (z,,), este

n—oo

crescator §i marginit superior, atunci este convergent).
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2. Daca (x,), este descrescator lim z, = infx, (deci daca (z,), este

n—o0 n

descrescator i marginit inferior, atunci este convergent).

Demonstratie. 1. Avem doud cazuri (z,), marginit superior sau (z,),
nemarginit superior. Presupunem (z,), marginit superior si notdm a =
sup z,. Atunci a € R gi pentru orice ¢ > 0 exista n. € N ad. x,, > a—¢.

n
Cum (xn)n este crescator rezulta ca x, > x,. > a — € pentru orice n > n..
Deoarece a = sup z,,, rezulta ca z,, < a < a+ ¢ pentru orice n. Deci pentru
n
orice n > n., avem |z, — a| < €, de unde rezultd lim x, = a = sup x,,.
n—oo

n
Presupunem (x,), nemarginit superior. Atunci sup ,, = co. Pe de alta

n
parte pentru orice ¢ € R existd n. € Nal.x,, > c. Cum (z,), este crescator
rezulta ca x,, > x,_ > c pentru orice n > n. si ca urmare lim z, = oo.

n—oo

2. Se poate face o demostratie asemanatore cu cea de la 1 sau putem

observa ca (z,,), descrescator < (—x,), crescdtor, iar inf x, = —sup (—z,,)
n n
si ca urmare

lim (—z,) =sup (—z,) = —infz,

n—oo n

si cum lim (—z,) = lim (-1)z, = — lim z,, rezultd ca lim z, =
n—oo n—oo n—oo n—oo

infz,. =
n

Corolarul 3.1.16 (Proprietatea clestelui) Fie (x,), st (y), doud giruri
de numere reale care au proprietatile:

i) (z,),, crescétor si (y,), descrescitor;
i1) x, <y, pentru orice n;

iii) lim (y, —x,) = 0.

n—oo

Atunci (z,,),, si (yn), sunt convergente si au aceasi limita.

Exemplul 3.1.17 (Numarul lui Euler si constata lui Euler) Sirurile
(@n), i (Yn),, definite prin x, = (1 + %)nﬂ' Yn = (1 + %)nﬂ pentru orice
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n € N* satisfac ipotezele corolarului precedent. Intr-adevir, avem

n n+1 n n
Tnt1 (n_ﬁ) - n+2 n—ﬁ - n+2 n?4+2n \"
Tn (”T“)" Cn+1 ntl n2+2n+1

Cn+1

. n+2 1 " n—+ 2 n

n n—l—l( _n2—|—2n+1> inegalztatfiBernouzzZ'n—i—l( S n2+on+1
n+2nt4+n+1 7n3+3n2+3n+2
n+1n2+2n+1 n3+3n2+3n+1

ca urmare (x,,), este strict crescator. Pe de alta parte avem

n n+1 n
Yn (_n:l) +1_n+1<—":1) _n+1<n2+2n+1) +
- n n+2 n+2 - 2
Yn+1 (n_ﬁ) n+2\ =5 n+ 2 n? +2n

_on+lf 1 m N ntl (. ontl
- n -+ 2 TL2 + 2n inegalitatea Bernoulli M, -+ 2 n2 + 2n

_ n+1n2+3n+1_n3+4n2+4n+1>1
 on+42 n242n nd4+4n2+4n

si deci (yy),, este strict descrescator. In plusy,, = (1 + %)HH =, (1 + %) >
x, pentru orice n gi lim (y, — z,) = lim znt = 0 deoarece

n

1 1 I nooo
0<z,— <yp—<tpn— — 0.

n n n
Conform corolarului precedent (x,), $i (yn), sunt convergente §i au aceasi
limita. Limita lor comuna se noteaza cu e §1 se numeste numarul lui Euler.
Se poate arata ca e este irational, e = 2,718281828459045235.... Deoarece

e = sup z, = infy,, avem
n n

1 n 1 n+1
<1 + —> <e< (1 + —) pentru orice n > 1.
n n

Logaritmdnd in baza e se obtine

1
] <In(n+1)—In(n) < - pentru orice n > 1.
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Inlocuind n cu 1,2, ..., n si adundnd inegalititile obtinem
1 1 1 1
—+ -+ ... <1 H<l+-+...+—,n>1.
2+3—|— +n—|—1 n(n+1) +2—|— —|—n,n_

Utilizand aceste inegalitati se poate demonstra ca girul (z,),, unde z, =
1—|—%+...+%—1n (n), este descrecator gi ca z, > 0 pentru oricen. Ca urmare
(2n),, este convergent. Limita lui se noteazd cu y §i se numeste constanta
lui Euler. Se poate arata ca v este irational, v = 0.5772156649015328606....

Teorema 3.1.18 (Proprietatea Cesaro) Orice sir de numere reale marginit
are un subgir convergent.

Demonstratie. Fie (z,), un sir marginit de numere reale. Atunci exista
a,b € R ai. a < x, < b pentru orice n. Construim recursiv doua siruri
(an), si (bn), cu prorietatea cd pentru orice n intervalul [a,,b,] contine o
infinitate de termeni ai sirului (x,),. Procedam in felul urmator: a; = a,
by = b si presupunand ca a,, b, au fost determinate construim c, = %
mijlocul intervalului [a,,b,|. Cum [a,,b,| contine o infinitate de termeni
al sirului (x,),, cel putin unul dintre intervalele [a,, ¢,] si [cn, by] contine o
infinitate de termeni ai sirului (z,),. Dacd [a,,c,] contine o infinitate de
termeni ai girului, luam a,+; = a, si b,r1 = ¢, altfel luvam a,,1 = ¢, si
bpy1 = b,. Alegem un element x; € [aq,b] si presupunand ci a fost ales
Tk, € |an,by], alegem xy, ., € [an41,bn11] ad. kny1 > Ky, (acest lucru este
posibil deoarece [a, 1, b,11] contine o infinitate de termeni ai girului). Cum
bn—l — Qp—1 b—a

by —ay = L0l
2 o

pentru orice n, lim (b, —a,) = 0. Pe de alta parte (a,), este crescator,

(by,),, este descrescdtor si a, < b, pentru orice n. Deci (ay), si (b,), sunt
convergente si au aceagi limitd. Cum pentru orice n, a, < xx, < by,
lim z, = lim a, = lim b,. ®

n—oo n—~oo n—oo

Definitia 3.1.19 §irul (z,,), de numere reale se numeste sir Cauchy sau gir

d . . .
fundamental é; pentru orice € > 0 existi n. € N a.i. |z, — x,| < € pentru
orice n,m > n. (<pentru orice € > 0 exista n. € N a.i. |Tp4p — n| < €
pentru orice n > n. §i orice p € N).
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Propozitia 3.1.20 Orice sir de numere reale convergent este sir Cauchy.

Demonstratie. Fie (z,), un sir de numere reale convergent si fie a limita
sa. Atunci pentru rice € > 0 existd n. € N ai. [z, —a| < § pentru orice
n > n.. Ca urmare pentru orice n,m > n,

e €
|xm—a:n|§|xm—a|+\a—xn|<§+§:5.

Deci (z,,),, este sir Cauchy. m
Propozitia 3.1.21 Orice sir Cauchy este marginit.

Demonstratie. Fie (x,), un sir de numere reale care este sir Cauchy.
Atunci xistd ny € N ad. |z, — x,| < 1 pentru orice n, m > ny. Notdm

M = max {|z1], ..., |Tn, 1|, |20, | + 1}.
Atunci |z,| < M pentru orice n. m

Propozitia 3.1.22 Orice gir de numere reale care este gir Cauchy este
convergent.

Demonstratie. Fie (z,), un sir de numere reale care este sir Cauchy.
Conform propozitiei 3.1.21, (x,), este marginit si ca urmare conform teoremei
3.1.18 are un subsir (xy,, ), convergent. Fiea = lim xy,. Atunci pentru orice

n—oo

e > 0 exista n. € N a.i. |z, —a| < § pentru orice n > n.. Deoarece (z,),,
este gir Cauchy, pentru orice € > 0 existd n. € N ad. |z, — z,| < € pentru
orice n,m > n.. Cum k,, > n, avem

e ¢
]xn—a|§\xn—xknl+]a:kn—a\<§+§:€,

pentru orice n > max {n.,n.}. Deci (z,), are limita a, si in consecinta
este marginit. m

Teorema 3.1.23 (Criteriul lui Cauchy de convergenta a sirurilor )
Un gir de numere reale este convergent daca gt numai daca este sir Cauchy.

Demonstratie. Rezulta din propozitiile 3.1.20 si 3.1.22. =
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