
Analiz¼a Matematic¼a - Curs 3

M¼ad¼alina Roxana Buneci



Cuprins
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3.1 Şiruri de numere reale (continuare din cursul 2) . . . . . . . 3
3.2 Serii de numere reale . . . . . . . . . . . . . . . . . . . . . . 8

3.2.1 Serii cu termeni pozitivi . . . . . . . . . . . . . . . . 14

Index 19

2



Capitolul 3

Şiruri şi serii de numere reale
(continuare din cursul 2)

3.1 Şiruri de numere reale (continuare din
cursul 2)

Teorema 3.1.1 (Teorema lui Toeplitz) Fie f : N�N! R o funcţie cu
urm¼atoarele propriet¼aţi:

i) f (n; k) � 0 pentru orice (n; k) 2 N� N.

ii)
nP
k=1

f (n; k) = 1 pentru orice n � 1.

iii) lim
n!1

f (n; k) = 0 pentru orice k, 1 � k � n.

Atunci pentru orice şir (xn)n care are limit¼a, şirul
�

nP
k=1

f (n; k)xk

�
n

are

limit¼a şi lim
n!1

xn = lim
n!1

�
nP
k=1

f (n; k)xk

�
.

Demonstra̧tie. Avem dou¼a cazuri: (xn)n m¼arginit şi (xn)n nem¼arginit.
Presupunem c¼a (xn)n este m¼arginit şi not¼am a = lim

n!1
xn. Atunci pentru
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orice " > 0 exist¼a n" 2 N a.î. jxn � aj < "
2
pentru orice n � n". Pe de alt¼a

parte

nP
k=1

f (n; k)xk � a =
nP
k=1

f (n; k)xk �
nP
k=1

f (n; k) a =
nP
k=1

f (n; k) (xk � a)

=
n"�1P
k=1

f (n; k) (xk � a) +
nP

k=n"

f (n; k) (xk � a)

şi

lim
n!1

n"�1P
k=1

f (n; k) (xk � a) =
n"�1P
k=1

lim
n!1

f (n; k) (xk � a) = 0,

iar pentru orice n � n"���� nP
k=n"

f (n; k) (xk � a)
���� � nP

k=n"

f (n; k) jxk � aj <
"

2

nP
k=n"

f (n; k) � "

2

nP
k=1

f (n; k) <
"

2
.

Cum lim
n!1

n"�1P
k=1

f (n; k) (xk � a) = 0, exist¼a n0" 2 N a.î.
����n"�1P
k=1

f (n; k) (xk � a)
���� <

"
2
pentru orice n � n0". Ca urmare pentru orice n � max fn"; n0"g avem���� nP

k=1

f (n; k)xk � a
���� � ����n"�1P

k=1

f (n; k) (xk � a)
����+���� nP

k=n"

f (n; k) (xk � a)
���� < "

2
+
"

2
= ",

şi deci lim
n!1

�
nP
k=1

f (n; k)xk

�
= a = lim

n!1
xn.

Presupunem c¼a (xn)n nem¼arginit. Atunci limn!1
xn = 1 sau lim

n!1
xn =

�1. S¼a consider¼am c¼a lim
n!1

xn = 1. Atunci pentru orice c > 0 exist¼a

nc 2 N a.î. xn > 3c pentru orice n � nc.
Pe de alt¼a parte, deoarece lim

n!1

nc�1P
k=1

f (n; k) =
nc�1P
k=1

lim
n!1

f (n; k) = 0,

rezult¼a c¼a exist¼a n0c 2 N a.î.

����nc�1P
k=1

f (n; k)

���� < 1
3
pentru orice n � n0c, iar

deoarece lim
n!1

nc�1P
k=1

f (n; k)xk =
nc�1P
k=1

lim
n!1

f (n; k)xk = 0, rezult¼a c¼a exist¼a

n"c 2 N a.î.

����nc�1P
k=1

f (n; k)xk

���� < c pentru orice n � n"c. În conseciņt¼a,

4



Analiz¼a Matematic¼a - curs 3

pentru orice n � max fnc; n0c; n"cg

nP
k=1

f (n; k)xk =
nc�1P
k=1

f (n; k)xk +
nP

k=nc

f (n; k)xk > �c+
nP

k=nc

f (n; k)xk

� �c+
nP

k=nc

f (n; k) 3c = �c+ 3c
�

nP
k=1

f (n; k)�
nc�1P
k=1

f (n; k)

�
= �c+ 3c

�
1�

nc�1P
k=1

f (n; k)

�
> �c+ 3c

�
1� 1

3

�
= c.

de unde reuzult¼a lim
n!1

�
nP
k=1

f (n; k)xk

�
=1.

Dac¼a lim
n!1

xn = �1, atunci lim
n!1

(�xn) =1, şi din cele mai sus

lim
n!1

nP
k=1

f (n; k) (�xk) =1

de unde rezult¼a c¼a

lim
n!1

nP
k=1

f (n; k)xk = � lim
n!1

nP
k=1

f (n; k) (�xk) = �1.

Teorema 3.1.2 (Teorema Stolz-Cesaro) Fie (an)n şi (bn)n dou¼a şiruri
de numere reale cu propriet¼aţile:

i) (bn)n cresc¼ator şi nem¼arginit

ii)
�
an�an�1
bn�bn�1

�
n
are limit¼a

Atunci
�
an
bn

�
n
are limit¼a şi lim

n!1
an
bn
= lim

n!1
an�an�1
bn�bn�1 .

Demonstra̧tie. Consider¼am funçtia f : N�N! R de�nit¼a prin f (n; k) =8<:
b1
bn
, dac¼a 1 = k � n

bk�bk�1
bn

, dac¼a 2 � k � n
0, în rest

şi şirul xn =

(
a1
b1
, dac¼a n = 1

an�an�1
bn�bn�1 , dac¼a 2 � n

. Aplicând
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teorema 3.1.1 (teorema Toeplitz) rezult¼a c¼a

lim
n!1

xn = lim
n!1

nP
k=1

f (n; k)xk = lim
n!1

�
b1
bn

a1
b1
+

nP
k=2

bk � bk�1
bn

ak � ak�1
bk � bk�1

�
= lim

n!1

�
a1 + (a2 � a1) + ::::+ (an � an�1)

bn

�
= lim

n!1

an
bn
.

Exemplul 3.1.3 Se cere limita (dac¼a exist¼a) a şirului cu termenul general

xn =
1+ 1

3p2
+:::+ 1

3pnp
n

.
Fie an = 1 + 1

3p2 + ::: +
1
3pn şi bn =

p
n. Atunci (bn)n este cresc¼ator şi

nem¼arginit şi an�an�1bn�bn�1 =
1
3pnp

n�
p
n�1 . Deci

lim
n!1

an � an�1
bn � bn�1

= lim
n!1

p
n+

p
n� 1

3
p
n

= lim
n!1

n1=6

 
1 +

r
1� 1

n

!
=1.

Conform teoremei Stolz-Cesaro avem

lim
n!1

xn = lim
n!1

an
bn
= lim

n!1

an � an�1
bn � bn�1

=1.

Propozi̧tia 3.1.4 (Conseciņte ale teoremei Stolz-Cesaro)

1. Dac¼a şirul (xn)n are limit¼a, atunci şi şirul
�
x1+x2+:::xn

n

�
n
are limit¼a şi

lim
n!1

x1+x2+:::xn
n

= lim
n!1

xn.

2. Dac¼a şirul (xn)n are limit¼a şi xn > 0 pentru orice n, atunci şi şirul�
n
p
x1x2:::xn

�
n
are limit¼a şi lim

n!1
n
p
x1x2:::xn = lim

n!1
xn.:

3. Dac¼a şirul
�
xn+1
xn

�
n
are limit¼a şi xn > 0 pentru orice n, atunci şi şirul�

n
p
xn
�
n
are limit¼a şi lim

n!1
n
p
xn = lim

n!1
xn+1
xn
.
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Demonstra̧tie. 1. Fie an = x1 + x2 + :::xn şi bn = n. Atunci (bn)n este
cresc¼ator şi nem¼arginit şi an�an�1bn�bn�1 = xn. Conform teoremei Stolz-Cesaro
avem lim

n!1
an
bn
= lim

n!1
xn, de unde rezult¼a . lim

n!1
x1+x2+:::xn

n
= lim

n!1
xn.

2. Conform 1 avem lim
n!1

x1+x2+:::xn
n

= lim
n!1

xn. Pe de alt¼a parte dac¼a

(xn)n are limit¼a şi xn > 0, atunci
�
1
xn

�
n
are limit¼a şi

lim
n!1

1

xn
=

8>><>>:
1

lim
n!1

xn
, dac¼a lim

n!1
xn 2 (0;1)

1, dac¼a lim
n!1

xn = 0

0, dac¼a lim
n!1

xn =1

şi nou conform 1, lim
n!1

1
x1
+ 1
x2
+::: 1

xn

n
= lim

n!1
1
xn
, de unde rezult¼a c¼a

lim
n!1

n
1
x1
+ 1

x2
+ ::: 1

xn

=

8>><>>:
lim
n!1

xn, dac¼a lim
n!1

xn 2 (0;1)
1, dac¼a lim

n!1
xn =1

0, dac¼a lim
n!1

xn = 0

= lim
n!1

xn.

Din inegalitatea mediilor rezult¼a c¼a

n
1
x1
+ 1

x2
+ ::: 1

xn

� n
p
x1x2:::xn �

x1 + x2 + :::xn
n

şi cum

lim
n!1

n
1
x1
+ 1

x2
+ ::: 1

xn

= lim
n!1

x1 + x2 + :::xn
n

= lim
n!1

xn,

ob̧tinem lim
n!1

n
p
x1x2:::xn = lim

n!1
xn.

3. Consider¼am şirul de�nit prin y1 = x1, yn = xn
xn�1

pentru orice n � 2.
Atunci (yn)n are limit¼a şi limn!1

yn = lim
n!1

xn
xn�1

= lim
n!1

xn+1
xn
. Din 2 rezult¼a c¼a�

n
p
y1y2:::yn

�
n
are limit¼a şi lim

n!1
n
p
y1y2:::yn = lim

n!1
xn+1
xn
. Dar n

p
y1y2:::yn =

n

q
x1

x2
x1
::: xn
xn�1

= n
p
xn, de unde rezult¼a c¼a lim

n!1
n
p
xn = lim

n!1
xn+1
xn
.

Exemple 3.1.5 S¼a se calculeze urm¼atoarele limite (dac¼a exist¼a):
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1. lim
n!1

n
p
n

Lu¼am an = n şi observ¼am c¼a an > 0 pentru orice n şi c¼a lim
n!1

an+1
an

=

lim
n!1

n+1
n
= 1, de unde rezult¼a c¼a lim

n!1
n
p
an = lim

n!1
an+1
an

= 1. Deci

lim
n!1

n
p
n = 1.

2. lim
n!1

np
n!
n

Lu¼am an =
n!
nn
şi observ¼am c¼a an > 0 pentru orice n şi c¼a

lim
n!1

an+1
an

= lim
n!1

(n+ 1)!

(n+ 1)n+1
nn

n!
= lim

n!1

�
n

n+ 1

�n
= lim

n!1

 �
1� 1

n+ 1

��(n+1)!� n
n+1

= e�1,

de unde rezult¼a c¼a lim
n!1

n
p
an = lim

n!1
an+1
an

= 1
e
. Deci lim

n!1

np
n!
n
= 1

e
.

3.2 Serii de numere reale

De�ni̧tia 3.2.1 Fie (xn)n un şir de numere reale şi sn =
nP
k=p

xk (p 2 N).

Perechea de şiruri
�
(xn)n�p ; (sn)n�p

�
se numeşte serie de numere reale şi se

noteaz¼a cu
P
n�p

xn sau
1P
n=p

xn. Elementele şirului (xn)n se numesc termenii

seriei, iar elementele şirului (sn)n se numesc sume parţiale (xn se numeşte
termen general al seriei, iar sn se numeşte sum¼a parţial¼a de rang n).
Pentru orice n 2 N, seria

P
k�n+1

xk se numeşte restul de rang n al seriei
:
Seria

P
n�p

xn se numeşte convergent¼a
def, şirul sumelor parţiale (sn)n este

convergent. În caz contrar se numeşte divergent¼a.
Limita şirului sumelor parţiale s = lim

n!1
sn (dac¼a exist¼a) se numeşte

suma seriei şi în aceast¼a situaţie se foloseşte notaţia s =
1P
n=p

xn.
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Este uşor de observat c¼a pentru orice p; q 2 N şi n � p+q, seriile
P

n�p+q
xn

şi
P
n�p

xn+q au sumele paŗtiale de rang n identice, ca urmare.
P

n�p+q
xn =P

n�p
xn+q.

Exemplul 3.2.2 (Seria geometric¼a) Fie seria
P
n�0

rn, cu r 2 R. Termenul

ei general este xn = rn, iar suma parţial¼a de rang n este

sn =
nP
k=0

xk =
nP
k=0

rk =

�
rn+1�1
r�1 , dac¼a r 6= 1
n+ 1, dac¼a r = 1.

Ca urmare

lim
n!1

sn =

8<:
1
1�r , dac¼a jrj < 1
1, dac¼a r � 1
nu exist¼a, dac¼a r � �1.

În consecinţ¼a, seria
P
n�0

rn este convergent¼a , jrj < 1. Dac¼a jrj < 1, suma

seriei
P
n�0

rn este 1
1�r . Seria

P
n�0

rn se numeşte seria geometric¼a de ra̧tie r.

Exemplul 3.2.3 Seria
P
n�0

1
n!
este convergent¼a şi are limita e. Într-adev¼ar,

suma parţial¼a de rang n este sn =
nP
k=0

1
k!
şi

nP
k=0

1

k!
� 1+

nP
k=1

1

k!

(n� k + 1)
n

(n� k + 2)
n

:::
n

n
=

nP
k=0

1

k!

n!

(n� k)!nk =
�
1 +

1

n

�n
.

Pe de alt¼a parte, pentru orice j 2 N�, avem�
1 +

1

n

�n
=

nP
k=0

1

k!

n!

(n� k)!nk �
jP
k=0

1

k!

n!

(n� k)!nk =
jP
k=0

1

k!

(n� k + 1)
n

:::
n� 1
n

n

n

şi trecând la limit¼a cu n ! 1, obţinem e � sj. Deci
�
1 + 1

n

�n � sn � e şi
trecând la limit¼a cu n!1 rezult¼a lim

n!1
sn = e.

Propozi̧tia 3.2.4 Dac¼a seria
P
n�1

xn este convergent¼a, atunci lim
n!1

xn = 0.
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Demonstra̧tie. Fie (sn)n şirul sumelor paŗtiale ale seriei
P
n�1

xn şi �e

s = lim
n!1

sn (limita exist¼a şi este �nit¼a deoarece seria este convergent¼a).

Din faptul c¼a xn = sn � sn�1 pentru orice n � 2, rezult¼a c¼a lim
n!1

xn =

lim
n!1

(sn � sn�1) = lim
n!1

sn � lim
n!1

sn�1 = s� s = 0.

Exemple 3.2.5 Urm¼atoarele serii sunt divergente deoarece termenul lor
general nu converge la 0:

1.
P
n�1

�
1 + 1

n

�n
, xn =

�
1 + 1

n

�n
, lim
n!1

xn = e 6= 0.

2.
P
n�1

(�1)n, xn = (�1)n, (xn)n nu are limit¼a.

Teorema 3.2.6 (Criteriul lui Cauchy de convergeņt¼a a seriilor ) O
serie

P
n�1

xn este convergent¼a dac¼a şi numai dac¼a pentru orice " > 0 exist¼a

n" 2 N a.î.
jxn+1 + xn+2 + :::+ xn+pj < " pentru orice n � n" şi orice p 2 N.

Demonstra̧tie. Seria
P
n�1

xn este convergent¼a, şirul (sn)n este convergent,

unde sn =
nP
k=1

xk pentru orice n. Şirul de numere reale (sn)n este convergent

, (sn)n este şir Cauchy, pentru orice " > 0 exist¼a n" 2 N a.î. jsn+p � snj <
" pentru orice n � n" şi orice p 2 N ,

jxn+1 + xn+2 + :::+ xn+pj < " pentru orice n � n" şi orice p 2 N.

Exemplul 3.2.7 Seria
P
n�1

sin(nx)
2n

are termenul general xn =
sin(nx)
2n

. Pentru

orice n; p 2 N avem����sin (n+ 1) x2n+1
+
sin (n+ 2) x

2n+2
+ :::+

sin (n+ p)x

2n+p

���� �����sin (n+ 1) x2n+1

����+ ����sin (n+ 2) x2n+2

����+ :::+ ����sin (n+ p)x2n+p

���� �
jsin(y)j�1

1

2n+1
+

1

2n+2
+ :::+

1

2n+p
=

1

2n+1
1� 1

2p

1� 1
2

=
1

2n

�
1� 1

2p

�
<
1

2n
.
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Pentru orice " > 0 lu¼am n" =
�
log2

1
"

�
+ 1. Ca urmare pentru orice n � n"

avem n > log2
1
"
şi deci 2n > 1

"
, de unde rezult¼a c¼a����sin (n+ 1) x2n+1

+
sin (n+ 2) x

2n+2
+ :::+

sin (n+ p)x

2n+p

���� < 1

2n
< "

pentru orice n � n" şi orice p 2 N. În consecinţ¼a conform criteriului de
convergenţ¼a al lui Cauchy seria este convergent¼a.

Propozi̧tia 3.2.8 Fie
P
n�1

xn o serie şi p 2 N �xat. Atunci seria
P
n�1

xn este

convergent¼a dac¼a şi numai dac¼a restul de rang p al seriei, adic¼a
P

n�p+1
xn,

este o serie convergent¼a. În caz de convergenţ¼a dac¼a not¼am rp =
1P

n=p+1

xn

(suma seriei
P

n�p+1
xn) şi s suma seriei

P
n�1

xn, atunci

s =
pP
k=1

xk + rp

 
1P
k=1

xk =
pP
k=1

xk +
1P

k=p+1

xk

!
lim
p!1

rp = 0.

Demonstra̧tie. Suma paŗtial¼a de rang n a seriei
P
n�1

xn este sn =
nP
i=1

xi iar

a seriei
P

n�p+1
xn este tn =

nP
i=p+1

xi =
nP
i=1

xi �
pP
i=1

xi = sn � sp. Ca urmare

(tn)n este convergent dac¼a şi numai dac¼a (sn)n este convergent. În caz de
convergeņt¼a, lim

n!1
tn = lim

n!1
sn � sp = s � sp. În conseciņt¼a,

P
n�p+1

xn are

suma s� sp, adic¼a rp = s� spşi cum lim
p!1

sp = s, rezult¼a c¼a lim
p!1

rp = 0.

De�ni̧tia 3.2.9 Se numeşte suma seriilor
P
n�1

xn şi
P
n�1

yn, şi se noteaz¼a

cu
P
n�1

xn +
P
n�1

yn, seria al c¼arui termen general este xn + yn. Se numeşte

produsul dintre num¼arul real � şi seria
P
n�1

xn, şi se noteaz¼a cu �
P
n�1

xn, seria

al c¼arui termen general este �xn.
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Propozi̧tia 3.2.10 (Opera̧tii cu serii de numere reale convergente)

1. Dac¼a seria
P
n�1

xn (respectiv,
P
n�1

yn) este convergent¼a şi are suma x

(respectiv y), atunci
P
n�1

xn+
P
n�1

yn este convergent¼a şi are suma x+y.

2. Dac¼a seria
P
n�1

xn este convergent¼a şi are suma x şi dac¼a � 2 R, atunci

�
P
n�1

xn este convergent¼a şi are suma �x.

Demonstra̧tie. Demonstra̧tia este evident¼a (se ţine cont de opera̧tiile cu
limite de şiruri).

Exemplul 3.2.11 S¼a se arate c¼a seria
P
n�1

n3

(n�1)! este convergent¼a şi s¼a calculeze

suma ei
R: Termenul general este xn = n3

(n�1)! . Rescriem acest termen plecând
de la faptul c¼a pentru orice polinom P de grad d şi orice num¼ar întreg q
exist¼a constantele reale A0, A1, :::, Ad astfel încât

P (n) = Ad (n+ q) (n+ q � 1) ::: (n+ q � d+ 1) +
Ad�1 (n+ q) (n+ q � 1) ::: (n+ q � d+ 2) + :::+ A0.

Pentru polinomul n3 avem

n3 = A3 (n� 1) (n� 2) (n� 3) + A2 (n� 1) (n� 2) + A1 (n� 1) + A0.

Prin identi�carea coe�cienţior obţinem A3 = 1, A2 = 6, A1 = 7, A0 = 1.
Ca urmare avem

xn =
(n� 1) (n� 2) (n� 3) + 6 (n� 1) (n� 2) + 7 (n� 1) + 1

(n� 1)!

=
1

(n� 4)! + 6
1

(n� 3)! + 7
1

(n� 2)! +
1

(n� 1)! , n � 4

şi P
n�1

n3

(n� 1)! =
3P
n=1

n3

(n� 1)! +
P
n�4

n3

(n� 1)! =
45

2
+
P
n�4

n3

(n� 1)!

12
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=
45

2
+
P
n�4

1

(n� 4)! + 6
P
n�4

1

(n� 3)! + 7
P
n�4

1

(n� 2)! +
P
n�4

1

(n� 1)!

=
45

2
+
P
n�0

1

n!
+ 6

�P
n�0

1

n!
� 1
�
+ 7

�P
n�0

1

n!
� 1� 1

�
+
P
n�0

1

n!
� 1� 1� 1

2

=
45

2
+ 15

P
n�0

1

n!
� 22� 1

2

= 15
P
n�0

1

n!

Deci seria
P
n�1

n3

(n�1)! este convergent¼a şi are suma 15e.

Propozi̧tia 3.2.12 Fie (an)n un şir de numere reale convergent şi p 2 N�.
Atunci seria

P
n�1

(an+p � an) este convergent¼a şi are suma p lim
n!1

an�
pP
k=1

ak.

Demonstra̧tie. Suma paŗtial¼a de rang n a seriei este

sn =
nP
k=1

(ak+p � ak) =
nP
k=1

ak+p�
nP
k=1

ak =
j+pP
j=p+1

aj�
nP
k=1

ak =
n+pP
k=n+1

ak�
pP
k=1

ak.

Ca urmare (sn)n este convergent. Aşadar
P
n�1

(an+p � an) este convergent¼a

şi are suma lim
n!1

sn = p lim
n!1

an �
pP
k=1

ak.

Exemplul 3.2.13 S¼a se arate c¼a seria
P
n�3

1
n2�4 este convergent¼a şi s¼a calculeze

suma ei
R: Termenul general este xn = 1

n2�4 =
1

(n�2)(n+2) =
A
n�2 +

B
n+2
. Prin

identi�carea coe�cienţilor rezult¼a A = 1
4
, B = �1

4
. Deci xn = 1

4
1
n�2 �

1
4

1
n+2
.

Ca în demostraţia propoziţiei anterioare suma parţial¼a de rang n a seriei este

sn =
nP
k=3

�
1
4

1
k�2 �

1
4

1
k+2

�
=

6P
k=3

1
4

1
k�2 �

n+4P
k=n

1
4

1
k�2 . Deci limn!1

sn =
6P
k=3

1
4

1
k�2 =

1
4

�
1 + 1

2
+ 1

3
+ 1

4

�
= 25

48
. Aşadar seria este convergent¼a şi are suma 25

48
.

De�ni̧tia 3.2.14 Seria
P
n�1

xn se numeşte absolut convergent¼a
def, seria

P
n�1

jxnj

este convergent¼a.

13
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Propozi̧tia 3.2.15 Orice serie absolut convergent¼a este convergent¼a.

Demonstra̧tie. Fie seria
P
n�1

xn absolut convergent¼a. Atunci seria
P
n�1

jxnj

este convergent¼a şi conform criteriului de convergeņt¼a al lui Cauchy

jxn+1j+ jxn+2j+ :::+ jxn+pj < "pentru orice n � n" şi orice p 2 N.

Pe de alt¼a parte jxn+1 + xn+2 + :::+ xn+pj � jxn+1j + jxn+2j + ::: + jxn+pj
pentru orice n şi p. Ca urmare

jxn+1 + xn+2 + :::+ xn+pj < "pentru orice n � n" şi orice p 2 N.

şi aplicând din nou criteriului de convergeņt¼a al lui Cauchy, rezult¼a c¼a seria
este

P
n�1

xn convergent¼a.

De�ni̧tia 3.2.16 O serie care este convergent¼a dar nu este absolut convergent¼a
se numeşte semiconvergent¼a.

3.2.1 Serii cu termeni pozitivi

De�ni̧tia 3.2.17 O serie de numere reale
P
n�1

xn se numeşte serie cu termeni

pozitivi
def, xn > 0 pentru orice n.

Dou¼a serii cu termeni pozitivi au aceaşi natur¼a
def, sunt �e ambele convergente,

�e ambele divergente.

În cazul seriilor cu termeni pozitivi, şirul sumelor paŗtiale este un şir
cresc¼ator. Deci convergeņta seriilor cu termeni pozitivi este echivalent¼a cu
m¼arginirea şirului sumelor paŗtiale.

Teorema 3.2.18 (Criteriul de condensare al lui Cauchy) Fie (xn)n un
şir descresc¼ator de numere reale nenegative. Atunci seriile

P
n�1

xn şi
P
n�0

2nx2n

au aceeaşi natur¼a.

14
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Demonstra̧tie. Fie s2n�1 (respectiv, tn) suma paŗtial¼a de rang 2n � 1
(respectiv, n) asociat¼a seriei

P
n�1

xn (respectiv,
P
n�1

2nx2n). Pentru orice

numere naturale k şi j cu proprietatea c¼a 2k � j < 2k+1 avem

x2k � xj > x2k+1 deoarece (xn)n este descresc¼ator

şi ca urmare

2kx2k �
2k+1�1P
j=2k

xj > 2
kx2k+1

de unde rezult¼a c¼a

nP
k=0

2kx2k �
2n+1�1P
j=1

xj >
nP
k=0

2kx2k+1

sau echivalent

tn � s2n+1�1 >
1

2
tn+1.

Presupunem c¼a
P
n�1

xn este convergent¼a. Atunci (sn)n este convergent,

deci m¼arginit. În particular, (s2n+1�1)n este m¼arginit, iar din inegalitatea
de mai sus, (tn+1)n este m¼arginit. Cum (tn+1)n este şi cresc¼ator, rezult¼a c¼a
(tn+1)n, şi deci (tn)n, este convergent. În conseciņt¼a, seria

P
n�0

2nx2n este

convergent¼a.
Presupunem c¼a

P
n�0

2nx2n este convergent¼a. Rezult¼a c¼a (tn)n este m¼arginit

şi ca urmare (s2n+1�1)n este m¼arginit. Pentru orice k exist¼a nk astfel încât
k � 2nk+1 � 1. Cum (sk)k este cresc¼ator rezult¼a sk � s2nk+1�1 pentru orice
k, şi ca urmare (sk)k este m¼arginit. Deci seria

P
n�1

xn este convergent¼a.

Exemplul 3.2.19 (Seria armonic¼a generalizat¼a) Fie seria
P
n�1

1
n�
unde

� 2 R. Termenul general al seriei este xn = 1
n�
> 0 pentru orice n.

Dac¼a � < 0, atunci lim
n!1

xn =1 6= 0, şi deci seria este divergent¼a.
Dac¼a � = 0, atunci lim

n!1
xn = 1 6= 0, şi deci seria este divergent¼a.

15



M¼ad¼alina Roxana Buneci

Dac¼a � > 0, (xn)n este descresc¼ator, şi ca urmare conform criteriului
de condensare al lui Cauchy seriile

P
n�1

xn şi
P
n�0

2nx2n au aceeaşi natur¼a.

Pentru orice n, not¼am

yn = 2
nx2n = 2

n 1

(2n)�
=
�
21��

�n
.

Seria
P
n�0

yn este o serie geometric¼a. Raţia ei este r = 21��. Deci

P
n�0

yn este
�
convergent¼a, dac¼a � > 1
divergent¼a, dac¼a � � 1 .

În concluzie P
n�1

1

n�
este

�
convergent¼a, dac¼a � > 1
divergent¼a, dac¼a � � 1.

Seria
P
n�1

1
n�
se numeşte seria armonic¼a generalizat¼a. În cazul particular

� = 1, seria
P
n�1

1
n
se numeşte seria armonic¼a:

Exemplul 3.2.20 Fie seria
P
n�1

1
n(loga n)

� , unde a > 1 iar � � 0. Termenul

general al seriei xn = 1
n(loga n)

� > 0 pentru orice n. Şirul (xn)n este descresc¼ator,
şi ca urmare conform criteriului de condensare al lui Cauchy seriile

P
n�1

xn

şi
P
n�0

2nx2n au aceeaşi natur¼a. Pentru orice n, not¼am

yn = 2
nx2n = 2

n 1

2n (loga 2
n)�

=
1

(loga 2)
�

1

n�
.

Seria
P
n�0

yn are aceeaşi natur¼a cu seria armonic¼a generalizat¼a
P
n�1

1
n�
. Deci

P
n�0

yn este
�
convergent¼a, dac¼a � > 1
divergent¼a, dac¼a � � 1 .

şi ca urmareP
n�1

1

n (loga n)
� este

�
convergent¼a, dac¼a � > 1
divergent¼a, dac¼a 0 � � � 1.
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Teorema 3.2.21 (Criterii de compara̧tie) Fie
P
n�1

xn şi
P
n�1

yn dou¼a serii

cu termeni pozitivi.

Criteriul I. Dac¼a xn � yn pentru orice n, atunci:

1. Seria
P
n�1

yn convergent¼a ) Seria
P
n�1

xn convergent¼a.

2. Seria
P
n�1

xn divergent¼a ) Seria
P
n�1

yn divergent¼a.

Criteriul II. Dac¼a xn+1
xn

� yn+1
yn

pentru orice n, atunci:

1. Seria
P
n�1

yn convergent¼a ) Seria
P
n�1

xn convergent¼a.

2. Seria
P
n�1

xn divergent¼a ) Seria
P
n�1

yn divergent¼a.

Criteriul III. Dac¼a exist¼a lim
n!1

xn
yn
şi lim

n!1
xn
yn
2 (0;1), atunci seriile

P
n�1

xn

şi
P
n�1

yn au aceeaşi natur¼a.

Demonstra̧tie. Fie sn (respectiv, tn) suma paŗtial¼a de rang n asociat¼a
seriei

P
n�1

xn (respectiv,
P
n�1

yn).

Criteriul I. Deoarece xn � yn pentru orice n, sn � tn pentru orice n.
Şi ca urmare dac¼a (tn)n este m¼arginit, atunci (sn)n este m¼arginit, iar dac¼a
(tn)n este nem¼arginit, atunci (sn)n este nem¼arginit.
Criteriul II. Deoarece xn+1

xn
� yn+1

yn
pentru orice n, rezult¼a c¼a xn+1

yn�1
� xn

yn
pentru orice n. Ca urmare

xn
yn
� xn�1
yn�1

� ::: � x1
y1
pentru orice n.

Deci xn � x1
y1
yn pentru orice n, şi putem aplica mai departe criteriul I seriilorP

n�1
xn şi x1y1

P
n�1

yn.

Criteriul III. Lu¼am a; b 2 R a.î.

0 < a < lim
n!1

xn
yn
< b <1.
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Atunci exist¼a n1 2 N (respectiv, n2 2 N) a.î. xn
yn
� a (respectiv, xn

yn
� b)

pentru orice n � n1 (respectiv, n � n2). Ca urmare pentru orice n �
max fn1; n2g avem

ayn � xn � byn.

Ţinem cont de criteriul I şi de faptul c¼a un num¼ar �nit de termeni nu
in�ueņteaz¼a convergeņta sau divergeņta unei serii, şi deducem c¼a

P
n�1

xn şiP
n�1

yn au aceeaşi natur¼a.

Exemple 3.2.22 S¼a se precizeze natura urm¼atoarelor serii cu termeni
pozitivi:

1.
P
n�1

1
n+2n

.

R: Pentru orice n avem

1

n+ 2n
�
�
1

2

�n
iar
�
1
2

�n
este termenul general al seriei geometrice de raţie 1

2
2 (�1; 1).

Cum seria
P
n�1

�
1
2

�n
este convergent¼a, aplicând criteriul I de comparaţie,

rezult¼a c¼a seria
P
n�1

1
n+2n

este divergent¼a

2.
P
n�1

xn, unde (xn)n are proprietatea c¼a exist¼a r > 1 a.î. xn+1
xn

� r

pentru orice n.

R: Ţinând cont c¼a
rn+1

rn
� xn+1

xn

şi c¼a seria
P
n�1

rn este divergent¼a pentru r > 1, rezult¼a c¼a aplicând

criteriul al II-lea de comparaţie obţinem divergent¼a
P
n�1

xn.

3.
P
n�1

3pn2+2n+1
n2+5

.

18
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R: Fie xn =
3pn2+2n+1
n2+5

termenul general al seriei şi �e yn = 1
n4=3

SeriaP
n�1

yn este convergent¼a (seria armonic¼a generalizat¼a pentru � = 4
3
>

1). Din faptul c¼a

lim
n!1

xn
yn
= lim

n!1

3
p
n2 + 2n+ 1

n2 + 5
n4=3 =

lim
n!1

n2 3

q
1 + 2

n
+ 1

n2

n2
�
1 + 5

n2

� = lim
n!1

3

q
1 + 2

n
+ 1

n2�
1 + 5

n2

� = 1 2 (0;1)

şi din al III-lea criteriu de comparaţie, rezult¼a c¼a seriile
P
n�1

xn şi
P
n�1

yn

au aceeaşi natur¼a. Deci seria
P
n�1

3pn2+2n+1
n2+5

este convergent¼a.
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