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Capitolul 3

Siruri si serii de numere reale
(continuare din cursul 2)

3.1 Siruri de numere reale (continuare din
cursul 2)

Teorema 3.1.1 (Teorema lui Toeplitz) Fie f : NxN — R o functie cu
urmatoarele proprietats:

i) f(n,k) >0 pentru orice (n,k) € N x N.
i) > f(n,k) =1 pentru orice n > 1.
k=1

iti) lim f(n,k) =0 pentru orice k, 1 < k < n.

n—oo

Atunci pentru orice sir (x,), care are limita, sirul (Z f(n, k) xk) are
k=1

limita i lim z, = lim (z f(n,k) xk)

Demonstratie. Avem doud cazuri: (z,), marginit si (z,), nemarginit.
Presupunem cé (x,), este marginit si notdm a = lim z,. Atunci pentru

n—oo
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orice € > 0 exista n. € N a.i. |z, —a| < § pentru orice n > n.. Pe de alta
parte

kzn:lf(n,k)a:k—a = kzn:lf(n,k)azk—]éf(n,k)a:]éf(n,k)(wk—a)
_ Zgz_ff(n,k)(xk—a)—i—ki F(n, ) (24 — a)
§1 ne—1 ne—1
Jim (8 ok —a) = 3 T f (0 ) (= a) =0,

iar pentru orice n > n,

n

> fn k) (z —a)| <

k=nc¢

ne—1

Cum lim > f(n,k)(xx —a) =0, existan. € Nad.

S pentru orice n > n.. Ca urmare pentru orice n > max {n.,n.} avem

n

>, f(n,k)ay —al <

k=1

221f<n,k> (25— )| 4] 32 (m k) (ax — a)

k=n.

<S4t =¢
2 2 7

n—oo

si deci hm (Z f(n, k) xk> =a= lim x,.

Presupunem cd (z,), nemarginit. Atunci lim z,, = oo sau lim z, =

n—oo n—oo

—00. Sa consideram ca lim z, = oo. Atunci pentru orice ¢ > 0 exista

n—o0

n. € N a.i. x, > 3c pentru orice n > n,..

ne—1
Pe de alta parte, deoarece lim > f(n,k) = Z lim f(n,k) = 0,

n—oo | —1 n—00
ne—1

rezultd cd existd n, € N al | > f(n, k)' < 3 pentru orice n > nl, iar

ne—1 ne—1
deoarece lim Z f(nk)x, = Z lim f(n,k)z, = 0, rezultd cid existd
nc—l

n’. € N a.l. < ¢ pentru orice n > n”.. In consecinta,

/;1 f(n, k) xy
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1 / 7
pentru orice n > max {n.,n.,n”.

g:f(n,k)xk _ Zzlf(n,k)zﬁk_i f(n,k)xk>—c—|—gn: F (n, k) 2

> et 3 f(n,k)Sc:—c+3c<§:1f(n,k)—7:2_:11f(n,k))

k:nc

ne—1

_ —c—|—30<1— $ (n,k)) >—c+3c(1—%) .

k=1

de unde reuzulta lim (Z f(n, k) xk) = 0.
k=1

n—oo

Dacid lim z,, = —o0, atunci lim (—z,) = 0o, si din cele mai sus

n—oo n—oo

lim i f(n,k)(—x) = o0

de unde rezults ca

lim Xn: f(n,k)xp =— lim Xn: f(n, k) (—xp) = —o0.

Teorema 3.1.2 (Teorema Stolz-Cesaro) Fie (ay), si (), doud siruri
de numere reale cu proprietatile:

i) (bn), crescator gi nemarginit

i1) (===t are limitd
bn 7bn— 1 n

Gn—0n—1

Atunci (“—”) are limita i lim = = lim ===,
n n n—

bn n—oo bn n—o0

Demonstratie. Consideram functia f : Nx N — R definita prin f (n, k) =

2’—1, dacal=k<n 9 dack m — 1

bl —by—1 < - _ by = A

2k k=1 <k< igirul z, = & o . Aplicand
bn ydaci 2 k<n sty " { r s, dacd 2 <n p

0, in rest noon
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teorema 3.1.1 (teorema Toeplitz) rezulta ca

lim Ty = lim Z f (n’ k;) Tp = lim (b_lﬂ + Z b — br_1 ax — akl)
n—o0 n—00 . n—oo \ b, b; =2 by, b — bp_1
~ i (% + (ag —ay) + ... + (an — ap—1) i O
e by n—00 by,
|

Exemplul 3.1.3 Se cere limita (daca exista) a sirului cu termenul general

o I+ o totge
Fie a, =1+ \3% + ...+ Q’/Lﬁ i b, = /n. Atunci (b,), este crescator si
1
nemarginit i 3= =+ = \/ﬁ?\/ﬁﬁ Deci
Ay — Qp— . n+vn—1
lim ! lim \/_+3—

n—00 bn - bnfl n—0oo \/ﬁ

= lim n'/f (1—1—\/1—1) = 0.
n—oo n

Conform teoremei Stolz-Cesaro avem

. . ap . Qp — Qp—1
lim z, = lim — = lim — = o0.
n—00 n—00 bn n—00 bn — bn—l

Propozitia 3.1.4 (Consecinte ale teoremei Stolz-Cesaro)

1. Daca girul (x,), are limita, atunci si girul (B422beto) - qre limitd, gi
lim w — llm 'ITL‘
n—oo n—oo
2. Daca sirul (z,,), are limita st x,, > 0 pentru orice n, atunci si sirul
§ n § p , gt 3

({L/:plxg...xn) are limita st lim /x1x5..2, = lim x,..
n n—00

n—oo

3. Daca sirul (%) are limita g1 x,, > 0 pentru orice n, atunci i sirul
n

n

n . v . N n _ . Tp41
(\/xn)n are limita i 711;1& ¥z, = lim —=EL

n—~o0
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Demonstratie. 1. Fie a, = z1 + 22 + ...z, §i b, = n. Atunci (b,),, este
crescitor si nemarginit si *—"= = x,,. Conform teoremei Stolz-Cesaro

n*bn—l
avem lim * = lim z,, de unde rezulta . lim ntTrteTn — iy g,,.
n—oo on n—00 n—0o0 n n—o0
2. Conform 1 avem lim #F2t=fn — lim g,. Pe de altd parte daci
n—oo n—oo

(x,,), are limitd si x,, > 0, atunci <—x1 ) are limitd si
n
n

Tm o dacd lim z, € (0, 00)

1 n—00 n—oo
lim — = { oo, daca lim z,, =0
0, daca lim z, = c©
n—oo

1 1 1

si nou conform 1, lim “—2—" — lim -, de unde rezultd c

n—oo n—oo “n

lim z,, dacd lim z, € (0,00)

n—oo n—oo
. n s 1; .
lim = { o0,daca lim z, = = lim z,,.
T T2 Tn 0, daca lim z, =0
n—oo
Din inegalitatea mediilor rezulta ca
n 1+ 2o+ ..k
< ¥Yri29..2, < °
L1, L= - n
pi il S
si cum
) n . Tt xe+ .y .
lim = lim = lim x
neo L —+ L —+ 1 n— oo n n— o0 "
pos el S
obtinem lim /zix5...x, = lim x,.
n—oo n—oo

3. Consideram sirul definit prin y; = x1, y, = 2= pentru orice n > 2.

Atunci (y,,),, are limitd si lim y, = lim -*»~ = lim **. Din 2 rezultd ca
n—o00 n—oo ¥n-1 n—oo In
(:L/ylyg...yn) are limita si lim /Y1ys...y, = lim 2. Dar ¢/419s...yn =
n n—o00 n—oo ¥n

n/wE2 st = /Ty, de unde rezultd ca lim {/z, = lim Intl m

T1 Tn n—o0 n—oo *n

Exemple 3.1.5 Sa se calculeze urmatoarele limite (daca exista):

7
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1. lim {/n
n—oo
Luam a, = n si observam ca a, > 0 pentru orice n gi ca lim 2 =

n—oo 9n

lim 2= 1 — 1, de unde rezulta ca lim /a, = lim Inil — 1. Deci
’ n
n a

n—oo n—o0 n—oo n

lim /n=1.

n—o0

2. lim Yo

n—o0

v ! . v v . . o
Luam a, = 75 §i observam ca a, > 0 pentru orice n si ca

. pi . (n+D! 0™ n \"
lim —— = lim — g = lim
1 —(n+1) A
= lim <1 — )
n—00 n+1
= @71;

3
*[s
-

de unde rezultd ¢ lim /a, = lim %+ =1 Deci lim
n €

n—00 n—oo @ n—00

3.2 Serii de numere reale
Definitia 3.2.1 Fie (x,), un gir de numere reale §i s, = > xp (p € N).
k=p

Perechea de sirurt | (z s se numeste serie de numere reale si se
nnzp? \"N/n>p

o
noteazd cu Y, x, sau Yy T,. Elementele sirului (z,), se numesc termenii
n>p n=p
seriei, tar elementele sirului (s,), se numesc sume partiale (x, se numeste
termen general al seriei, iar s, se numeste suma partiald de rang n).

Pentru orice n € N, seria Y xj se numegte restul de rang n al seriei
k>n+1

. . de . .
Seria Y x, se numeste convergenta 24 girul sumelor partiale (s,,), este
nzp
convergent. In caz contrar se numeste divergenta.
Limita sirului sumelor partiale s = lim s, (daca ezistd) se numeste
n—oo
o
suma seriei gi in aceastd situatie se foloseste notatia s = Y x,.
n=p
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Este usor de observat ca pentru orice p, g € Nsin > p+q, seriille Y =z,

n2p+q
si Y Zn4q au sumele partiale de rang n identice, ca urmare. ) =z, =
n>p nzp+q
> Tntg-
nzp

Exemplul 3.2.2 (Seria geometrica) Fie seria >, r™, cur € R. Termenul
n>0
et general este x, = r", iar suma partiala de rang n este

n+1 1

- - , dacar #1
_ _ k_
Sn_kzzoxk k;or { n+1, daca r = 1.

Ca urmare

lim s, =< oo, dacar >1
n—oo . v v
nu exista, daca r < —1.

In consecinta, seria Y r™ este convergenta < |r| < 1. Daca |r| < 1, suma
n>0
seriei y_ r™ este t-—. Seria > r™ se numeste seria geometrica de ratie r.
n>0 n>0

Exemplul 3.2.3 Seria > # este convergentd si are limita e. Intr-adevar,
>0
"= n
suma partiala de rang n este s, = Y % st
k=0

n " 1l(n—k+1)(n—k+2) n 1 n! \"
l IR o b I L
2:: k! +,§1 k! n n n kzzok:! (n — k)Ink +n

Pe de alta parte, pentru orice 7 € N*, avem

\" &1 n! i1 n! Io1(n—k+1) n—1n
14— SR o N LA o el P
( * n) ; El'(n —k)Ink — k;ok:! (n — k)Ink ,g)k! n n on

st trecand la limita cu n — oo, obtinem e > s;. Deci (1 + %)n <s,<es
trecind la limita cu n — oo rezulta lim s, = e.

n—oo

Propozitia 3.2.4 Daca seria Y x, este convergentd, atunci lim x, = 0.
n>1 n— o0
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Demonstratie. Fie (s,), sirul sumelor partiale ale seriei ) z, si fie
n>1

s = lim s, (limita existd si este finitd deoarece seria este convergentd).

n—o0

Din faptul ca z, = s, — s,_1 pentru orice n > 2, rezulta ca lim z, =

lim (s, —$,-1) = lim s, — lim s, 1 =s—s=0. =
Exemple 3.2.5 Urmatoarele serii sunt divergente deoarece termenul lor
general nu converge la 0:
LY (1+8" 2, =(1+2)", lim 2, =e#0.
n>1 n—oo
2. 3 (=), z, = (=1)", (x,), nu are limita.
n>1
Teorema 3.2.6 (Criteriul lui Cauchy de convergenta a seriilor ) O

serie Y @, este convergentd dacd si numai dacd pentru orice € > 0 existd
n>1

n. € N a.i.
|Tni1 + Tppo + oo+ Tnyp| < € pentru orice n > n. i orice p € N.

Demonstratie. Seria ) z, este convergenta < sirul (s,,),, este convergent,
n>1
n

unde s, = ) x), pentru orice n. Sirul de numere reale (s,), este convergent
k=1

& (Sn),, este sir Cauchy < pentru orice ¢ > 0 existd n. € Nad. [s,4, — sp| <

€ pentru orice n > n, si orice p € N &

|Tpi1 + Tpio + ... + Tnyp| < € pentru orice n > n. si orice p € N.

n
Exemplul 3.2.7 Seria > 5”12(—::”) are termenul general x,, = Sinéfx). Pentru
n>1
orice n,p € N avem
sin(n+ 1)z  sin(n+2)z sin (n+p)z
on+1 on+2 et Qn+p -
sin(n+1)x sin (n+2)x sin (n + p) = <
2ntl 2n+2 2n+p |sm(;)|<1
1 1 11 1-5 1 _ 1
2n+1+2n+2+"'+2n+p_2n+11_%_2_n o <2_n'

10
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Pentru orice € > 0 luam n, = [log2 ﬂ + 1. Ca urmare pentru orice n > n,
avem n > 10g2§ st deci 2™ > %, de unde rezulta ca
sin(n+1)x  sin(n+2)z _i_sin(n—i—p)x 1

on+l on+2 . Qn+p < 2_n <€

pentru orice n > n. gi orice p € N. In consecinta conform criteriului de
convergenta al lui Cauchy seria este convergenta.

Propozitia 3.2.8 Fie > x, o serie sip € N fizat. Atunci seria ) x, este

n>1 n>1
convergentd dacd §i numai daca restul de rang p al seriei, adica Y x,,
nzp+1
” [e.e]
este o serie convergenta. In caz de convergentd daca notam r, = > X,
n=p+1
(suma seriei >, ) §i s suma seriei Y T,, atunci
n>p+1 n>1
p 00 p 00
S=D apHTp | 2T =D okt )L Ty
k=1 k=1 k=1 k=p+1
lim r, = 0.
p—00

n
Demonstratie. Suma partiald de rang n a seriei ) z,, este s, = > x; iar
n>1 i=1

n n p

aseriei ) wx,estet,= > x;,=> 2, —> x; =5, — 5, Caurmare

n>ptl i=p+1 i=1 i=1

(tn), este convergent dacd si numai daca (s,), este convergent. In caz de

convergentd, lim ¢, = lim s, — s, = s — s,. In consecintd, > z, are
n—oo

suma s — sp, adica 1, = s — spsi cum lim s, = s, rezultd ca lim r, = 0. =
p—00 p—00

Definitia 3.2.9 Se numeste suma seriilor Y x, §i Y. yn, §i se noteazd
n>1 n>1
cu Y, T+ Y. Yn, seria al carui termen general este x,, + y,. Se numeste
n>1 n>1
produsul dintre numarul real o §i seriay | T, §i se noteazd cu Y, x,, seria
n>1 n>1
al carui termen general este ax,.

11
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Propozitia 3.2.10 (Operatii cu serii de numere reale convergente)

1. Daca seria Y x, (respectiv, Y. y,) este convergenta gi are suma x

n>1 n>1
(respectivy), atunci Y x,+ > y, este convergentd si are suma x+7y.
n>1 n>1

2. Daca seria Y x, este convergenta gi are suma x $i dacd o € R, atunci
n>1

a Y x, este convergentd §i are suma ox.
n>1

Demonstratie. Demonstratia este evidentd (se tine cont de operatiile cu
limite de giruri). m

Exemplul 3.2.11 Sa se arate ca semaz Ty este convergenta i sa calculeze
n>l )
suma ei
3 . A
R: Termenul general este x, = "4;. Rescriem acest termen plecind

de la faptul ca pentru orice polinom P de grad d si orice numar intreg q
exista constantele reale Ag, Ay, ..., Aq astfel incdt

Pn) = Agtn+q)(n+q—1)..(n+qg—d+1)+
Aiin+q(n+q—1)...(n+q—d+2)+ ..+ Ap.
Pentru polinomul n® avem
n*=A3(n—1)(n—-2)(n—3)+A3(n—1)(n—2)+ Ay (n — 1) + Ay.

Prin identificarea coeficientior obtinem As = 1, Ay =6, Ay =7, Ay = 1.
Ca urmare avem

m—1)n—-2)(n—=3)+6(n—1)(n—2)+7(n—-1)+1

Tn = (n—1)!
1 1 1 1
I [ ) R o R R M
&l 3 3 3 3 n’
TP T R s Vi R O]

12
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45 1
= -+ —tb6Y e FTY >
2 n>4 (n - 4)- n>4 ( 3)- n>4 ( 2)- n>4 (n - 1)
1
= —+Z—+6(Z——1) <Z——1—1) Z——l—l——
n>0 N n>0 N n>0 T n>0 2
45 1
= +15 Z — —22— =
n>0 2
= 15
n>0 n!
Deci seria Z 1 "y este convergenta gi are suma 15e.
n>1
Propozitia 3.2.12 Fie (a,), un sir de numere reale convergent si p € N*.
p
Atunci seria Y, (an4p — an) este convergenta gi are suma p lim a, — Y ax.
n>1 n—00 —
Demonstratie. Suma partiala de rang n a seriei este
n j+p n n+p
= > (ahp —ax) = Zakz+p Zak— > ai—y ap= ) -3 ax.
k=1 j=p+1 k=1 k=n+1 k=1
Ca urmare (s,), este convergent. Asadar ) (@4, — a,) este convergenta
n>1
P
gi are suma lim s, = p lim a, — ) ax.
n—oo n—oo —
Exemplul 3.2.13 Sa se arate ca seria) , ——; este convergenta si sa calculeze
n>3
suma e
R: Termenul general este x, = n21_4 = (n—Z)l(n+2) = ﬁ + nLj-Z' Prin
identificarea coeficientilor rezulta A = ;11, B = —}1. Deci x,, = A—iﬁ — }MLH
Ca in demostratia propozitier anterioare suma partiald de rang n a seriei este
n n+4 6
_ 11 11\ _ 11 11 - _ 1.1 _
Sn = Z(zm—zm) =2 irn 2 ans Deci im s, =3 4575 =
k=3 k=3 k=n k=3
;11 (1 + % + % + }1) = 22 Asadar seria este convergenta §i are suma 4212

ops . o d .
Definitia 3.2.14 Seria ) x,, se numeste absolut convergenta Y seria > x|
n>1 n>1
este convergenta.

13
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Propozitia 3.2.15 Orice serie absolut convergenta este convergenta.

Demonstratie. Fie seria ) z, absolut convergenta. Atunci seria Y |z,
n>1 n>1
este convergenta si conform criteriului de convergenta al lui Cauchy

|Tpi1| + |Tnge| + o + |Tnip| < epentru orice n > n. si orice p € N.

Pe de altd parte |T,41 + Znto + oo + Togp| < |Tog1| + |[Zng2] + oo + [Tospl
pentru orice n si p. Ca urmare

|Tps1 + Tnso + ... + Tygp| < epentru orice n > n. si orice p € N.

si aplicand din nou criteriului de convergenta al lui Cauchy, rezulta ca seria

este Y x, convergentd. m
n>1

Definitia 3.2.16 O serie care este convergenta dar nu este absolut convergenta
se numegte semiconvergenta.

3.2.1 Serii cu termeni pozitivi

Definitia 3.2.17 O serie de numere reale Y, x,, se numeste serie cu termeni
n>1

.. .d .
pozitivi é{ Ty, > 0 pentru orice n.

o .. . e . . o de
Doua serii cu termeni pozitivi au aceast natura <:§ sunt fie ambele convergente,
fie ambele divergente.

In cazul seriilor cu termeni pozitivi, sirul sumelor partiale este un sir
crescator. Deci convergenta seriilor cu termeni pozitivi este echivalenta cu
marginirea girului sumelor partiale.

Teorema 3.2.18 (Criteriul de condensare al lui Cauchy) Fie(x,), un

gir descrescator de numere reale nenegative. Atunci seriile > x, i Y 2"Tgn
n>1 n>0
au aceeagi natura.

14
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Demonstratie. Fie sgn_; (respectiv, ¢,) suma partiald de rang 2" — 1

(respectiv, n) asociatd seriei > x, (respectiv, >  2"xg.). Pentru orice
n>1 n>1

numere naturale k si j cu proprietatea ca 2% < j < 2¥*1 avem

Tor > T > Tor+1 deoarece (x,), este descrescator

sl ca urmare
2k+1_1
2K o > Yooz > 2K o1

de unde rezults ca

n n
S 2Fwg > 3 > 2R
k=0 j=1 k=0

sau echivalent

1
b = Son+11 > §tn+1.

Presupunem ca ) x, este convergentd. Atunci (s,), este convergent,
n>1

deci mérginit. In particular, (sgn+1_1), este marginit, iar din inegalitatea

de mai sus, (£,41), este marginit. Cum (¢,41), este si crescator, rezulta ca

A

(tn41),,, si deci (t,),, este convergent. In consecinta, seria ) 2"xon este
n>0
convergenta.
Presupunem ca 2"xq9n este convergenta. Rezulta ca (¢,,), este marginit
n
n>0
si ca urmare (sgn+1_1), este marginit. Pentru orice k exista n;, astfel incat
k< 2mtt 1. Cum (sg), este crescitor rezultd si < Son,+1_; pentru orice
k 2 1

k, si ca urmare (s), este marginit. Deci seria ) z,, este convergentd. m
n>1

Exemplul 3.2.19 (Seria armonic# generalizata) Fie seria >, % unde
n>1

a € R. Termenul general al seriei este x,, = # > 0 pentru orice n.
Daca o < 0, atunci lim z, = co # 0, si deci seria este divergenta.

n—oo

Daca o = 0, atunci lim z, =1 # 0, i deci seria este divergenta.

n—oo

15
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Daca o > 0, (z,,), este descrescator, si ca urmare conform criteriului
de condensare al lui Cauchy seriile Y x, si Y 2"xon au aceeagi naturda.

n>1 n>0
Pentru orice n, notam
Yy — o L (2'7)"
yn = on = (271)0‘ = .
Seria > y, este o serie geometrica. Ratia ei este r = 2'7%. Deci
n>0
convergenta, daca o > 1
>y, este : y b
>0 dwergenta, daca oo <1

In concluzie

1
> — este

{ convergenta, daca o > 1
n>1 "N

divergenta, daca o < 1.

Seria ) nia se numeste seria armonica generalizata. In cazul particular
n>1
a =1, seria Y 1 se numeste seria armonici.
n

n>1

Exemplul 3.2.20 Fie seria Y ﬁ, unde a > 1 tar o > 0. Termenul
n>1

log, n

.. o 1 . . . o
general al seriei x,, = oz 0 pentru orice n. Sirul (z,,), este descrescator,
g1 ca urmare conform criteriului de condensare al lui Cauchy seriile > x,

n>1
§i > 2"xon au aceeasi naturda. Pentru orice n, notam
n>0
1 1 1
n n
Yn = 2" Ton = 2 = —.
: 27 (log, 2")*  (log, 2)" n~
Seria Y y, are aceeasi naturd cu seria armonicd generalizatd Y, —. Deci
n>0 n>1
3 ; convergenta, daca o > 1
este : § o
=0 In divergenta, daca o <1

§t ca urmare

5 este convergenta, daca o > 1
a1 n (log, n)® divergenta, daca 0 < o < 1.

16



Analiza Matematica - curs 3

Teorema 3.2.21 (Criterii de comparatie) Fie > x, §i Y y, doud serii
n>1 n>1
cu terment pozitivi.

Criteriul 1. Daca x, <y, pentru orice n, atunci:

1. Seria Y y, convergentd = Seria Y x, convergenta.
n>1 n>1

2. Seria Y x, divergenta = Seria Y vy, divergenta.
n>1 n>1

Criteriul II. Daca =2+ < % pentru orice n, atunci:
n n

1. Seria Y y, convergentd = Seria Y x, convergentd.
n>1 n>1

2. Seria Y x, divergenta = Seria Y vy, divergenta.

n>1 n>1

Criteriul III. Daca exista lim == i lim ;j—" € (0,00), atunci seriile . x,,

— n N n

§i Y Yn au aceeasgi naturd.
n>1

Demonstratie. Fie s, (respectiv, t,) suma partiald de rang n asociata

seriei Y x, (respectiv, > y,).
n>1 n>1

Criteriul I. Deoarece x,, < y, pentru orice n, s, < t, pentru orice n.
Si ca urmare daca (t,,), este marginit, atunci (s,), este marginit, iar daca
(tn),, este nemarginit, atunci (s,), este nemarginit.
Criteriul II. Deoarece *2+ < y;ﬁ pentru orice n, rezultd ci % < z—"
n n n— n
pentru orice n. Ca urmare
T Tp-1 sl .
< T < ... < 2= pentru orice n.
Yn Yn—1 U1

Deci z,, < %yn pentru orice n, i putem aplica mai departe criteriul I seriilor

> T §1 D Yn.

n>1 n>1
Criteriul III. Luadm a,b € R a.i.

x
0<a< lim =2 <b< oo.

n—oo yn

17
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Atunci exista n; € N (respectiv, np € N) ai. 7 > a (respectiv, 7 < b)
pentru orice n > ny (respectiv, n > ny). Ca urmare pentru orice n >
max {ny,ny} avem

ayp < Tp < byp,.

Tinem cont de criteriul I si de faptul cd un numar finit de termeni nu

influenteaza convergenta sau divergenta unei serii, si deducem ca > z, si
n>1

> yn au aceeagi naturd. =
n>1

Exemple 3.2.22 Sa se precizeze natura urmatoarelor serii cu termeni
pozitivi:

1
1oy i

n>1

R: Pentru orice n avem

1 1\"
- <z
n—+2" 7 \2

l)n este termenul general al seriei geometrice de ratie % €(-1,1).

ar (2
. n o A . . .
Cum seria (%) este convergenta, aplicind criteriul I de comparatie,
n>1

rezultd cd seria
n>1

1
n+2n

este divergenta

2. Y xn, unde (x,), are proprietatea ca exista r > 1 a.i. Intl > p
n>1
pentru orice n.

R: Tindnd cont ca

TnJrl

Tn+1
<
rn Tn

§i ca seria Y, r™ este divergentd pentru r > 1, rezultd ca aplicind
n>1

criteriul al Il-lea de comparatie obtinem divergentda . .
n>1

YnZrontl
5.y Vil
n>1

18
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. 2 L .
R: Fie x, = Y2  termenul general al seriei gi fie y, = —i Seria

> yn este convergentd (seria armonica generalizatd pentru o = % >
n>1

1). Din faptul ca

. Y2+ on+ 1
lim ©™ — lim wn‘lﬂ% —
n—0o0 Y, n—00 TL2 + 5

2fie2ey fieie
= lim " =1€ (0,00
n? (14 %) 1+ 5) (0, 00)

n—o0 (

lim

n—oo

gi din al Il-lea criteriu de comparatie, rezulta ca seriile Y T, §i Y Yn
n>1 n>1

¥nZrontl

au aceeasi naturd. Deci seria ) ~3=

n>1

este convergenta.
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