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Capitolul 3

Siruri si serii de numere reale
(continuare din cursul 3)

3.2 Serii de numere reale(continuare din cursul
3)

3.2.1 Serii cu termeni pozitivi (continuare din cursul
3) - Criterii de convergenta

Propozitia 3.2.1 (Criteriul radacinii al lui Cauchy) Fie Y z,, o serie
n>1

cu terment pozitivi cu proprietatea ca exista L = lim /x,.
n—oo

1. Daca L < 1, atunci seria ) x, este convergenta.
n>1

2. Daca L > 1, atunci seria », x, este divergenta.
n>1

3. Daca L = 1, nu se poate decide natura seriei y , x,, (mai precis, exista
n>1

serii Y x, pentru care lim {/x, = 1 gi sunt convergente i exista serii
n>1 n—oo

> x, pentru care lim /x, = 1 gi sunt divergente).

n>1 n—0oo
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Demonstratie. 1. Deoarece 0 < L < 1 exista r > 0 a.il. L <r < 1. Cum
L= lim {/z, sir < L exista n, € N ai. /z, < r pentru orice n > n,.. Ca
n—oo

urmare x, < r" pentru orice n > n,, iar seria » " este convergentd fiind
n>0

o serie geometrica de ratie r € (0,1). Conform criteriului I de comparatie,

seria Y x, este convergentd.
n>1
2. Deoarece L > 1 exista r a.i. L > r > 1. Din faptul ca L = lim {/z,,
n—oo
rezulta ca exista un subsir ( &/x al girului (/x a.il. lim k/xp =
siv (/T ), al § (¢/@n),, ad lim s/m

L > r. Ca urmare existd n, € N a.i. /Ty, > r pentru orice n > n,,
de unde rezultd ci zy, > r* > 1 pentru orice n > n,. Deci (zy,), si in

consecintd (x,), nu poate converge la 0. Asadar seria ) | z,, este divergenta.
n>1

3. Considersm seria armonicd generalizatd ). —=. Avem lim {/-L =

na
—
n>1 n— oo

lim ﬁ = 1, iar seria este convergenta pentru o > 1 si divergenta pentru

n—o0

a<l. =m

Propozitia 3.2.2 (Criteriul raportului al lui d’Alembert) Fie ) z,
n>1
Tn+1

o serie cu termeni pozitivi cu proprietatea ca exista L = lim

n—o0

1. Daca L < 1, atunci seria Y, x, este convergenta.
n>1

2. Daca L > 1, atunci seria ), x, este divergenta.
n>1

3. Daca L =1, nu se poate decide natura seriei ) .
n>1

Demonstratie. 1. Deoarece 0 < L < 1 exista r > 0 a.il. L <r < 1. Cum
L = lim = & r < L existd n, € N a.i. ™ <7 pentru orice n > n,. Ca

n—oo
n+1 . . . v
urmare™*= < —— pentru orice n > n,., iar seria Y r" este convergenta,
Tn r

n>0
fiind o serie geometrica de ratie r € (0,1). Conform criteriului al II-lea de
comparatie, seria » x, este convergenta.
n>1
2. Deoarece L > 1 existd r a.i. L > r > 1. Din faptul cd L = lim

n—oo z

si r < L existd n, € N a.. % > r pentru orice n > n,. Ca urmare
n
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n+1 . . . . o .
fotl > - pentru orice n > n,, iar seria ) 7" este divergentd, fiind o
n
n>0

serie geometrica de ratie r > 1. Conform criteriului al II-lea de comparatie,
seria Y x, este divergenta.
n>1

3. Consideram seria armonic generalizatd Y -=. Avem
n>1

n® n “
lim ——— = lim =1,
n—oo (n 4 1) n—oo \n + 1
iar seria este convergenta pentru a > 1 si divergenta pentru a < 1. m

Propozitia 3.2.3 (Criteriul lui Kumer) Fie > z, o serie cu termeni
n>1

POZitivi.

A

1. Daca exista un gir de numere reale pozitive (ay),, a.i.

) x
lim (an - —an+1> > 0,

atunci seria Yy x, este convergentd.
n>1

2. Daca existi un gir de numere reale pozitive (a,), a.i. seria Y. =
n>1

este divergentd si lim (a%x:l — an+1> < 0, atunci seria Y, x, este
n—oo "
n>1

divergenta.

n—00 Tntl
exista n, € N ai. a,-* — a,.1 > r pentru orice n > n,. Ca urmare

Tn+1

(pTy — Api1Tpy1 > T,y pentru orice n > n, si deci

Demonstratie. 1. Fie r € R a.i. lim (an Ln_ an+1) > r > 0. Atunci

n n

Yoowe <= > (Thorak—1 — xpag) =
k=n,+1 T k=n,+1
1
; ("L‘nran,« — Tt 100,41 T Tnpt10np+1 — Tppt20n, 42 + oo + Tp1Gp—1 — xnan) =

1 1
. (T, Qn, — Tpay) < ;xmam.
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n
Decigirul [ > x| este marginit gi crescator si in consecintd convergent.

k=n,+1 n
Ca urmare seria », x, este convergentd, si in consecintd seria Y z,, este
n>n, n>1
convergenta.
2. Fier € R ai. lim (anx’fil — an+1> < r < 0. Atunci existd n, € N
n— 00 "

al. a,-22— —a,.1 < r pentru orice n > n,. Ca urmare —£o— < %ntid? - Gnil
Tn+1 + Tn+1

. . an Qn
si deci
1

Tp+1 a .
> ~“ pentru orice n > n,,
Tn L

an

iar seria ) aL este divergenta. Conform criteriului al II-lea de comparatie,
n>1

seria Y x, este divergentd. m
n>1

Propozitia 3.2.4 (Criteriul Raabe-Duhamel) Fie ) z,, o serie cu termeni
n>1
pozitivi cu proprietatea ca exista L = lim n (x’“"—" — )

n—o0 n+l

1. Daca L > 1, atunci seria Y x, este convergenta.
n>1

2. Daca L < 1, atunci seria Y, x, este divergenta.
n>1

Demonstratie. Caz particular al criteriului Kumer pentru a, =n. =

n

Conform unei consecinte a teoremei Stolz-Cesaro, daca sirul %)
n

are limita si x,, > 0 pentru orice n, atunci si sirul ({L/xn)n are limita si

lim /z, = lim x”% Asadar daca x,, > 0 pentru orice n, iar sirurile
n—oo n—oo

Tnt1 (o Cmits U lim /7. = lim Zetl

( o )n si (w/xn)n au limita, atunci nh_I)Iolo T 7}51;0 = Ca urmare

daca aplicarea criteriului raportului a dus la indecizie, nu se incearca in
continuare aplicarea criteriului radacinii, c¢i a unui alt criteriu cum ar fi
Raabe-Duhamel. La fel pentru criteriul radacinii.

Exemple 3.2.5 Sa se precizeze natura urmdatoarelor serii cu termeni pozitivi:

6
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n
3n2—n+1
1. Z <n2+2n+3>

n>1

n

. 2_ . o . . VR TV S

R: Seria > (::LZ +QZI§) este divergenta conform criteriului radacinii,
n>1

deoarece

) 2 —n+1\" 32 —n+1
lim /[ ——— ) =lim——— =3 >1.
n—00 n?+2n+3 n—oon? + 2n + 3

()

n>1

R: Seria Y. n (%)n este convergenta conform criteriului raportulus,
n>1

deoarece

I n+12" .on+1 1<1

im = lim = - )

n—oo 2+l n n—oo 2N 2

Z 1-3-...-(2n4+1) 1
: 24-.-(2n) 203

n>1
R: Termenul general al seriei este x,, = 1'23.'4"'.'.62(7;)1) 2n1+3 > 0 pentru
orice n. Avem

Tpy1  1:3-..-(2n+3) 1 2-4-...-(2n) 2n+3

T,  2-4-..-(2n+2)2n+51-3-..-(2n+1) 1

(2n + 3)°
(2n+2) (2n +5)

Deoarece lim % = lim z:—:l = lim x”% = 1, nu putem stabili

natura seriei utilizind criteriului raportului. Incercam sa wutilizam
criteriul Raabe-Duhamel:

(1) - (e
2n+1

"n? + 14n + 10
on?+n
4n? + 14n + 10

7
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. . 2 .
Deoarece lim n (22— — 1) = lim —2+t0 _ =1 <1 seria
n—00 Tn41 n—s oo 4n®+14n+10 2 ’

g L3 (nt1) 1

este divergenta conform criteriului Raabe-Duhamel.

O serie care are numai un numar finit de termeni negativi poate fi
asimilata cu o serie cu termeni pozitivi. De asemenea studiul unei serii

> @, care are numai un numadr finit de termeni pozitivi este echivalent cu
n>1
studiul seriei — ) (—x,) care are doar un numar finit de termeni negativi.
n>1
Criteriile de convergenta pentru seriile cu termeni pozitivi pot fi utilizate

pentru studiul absolut convergentei unei serii dupa cum urmeaza.

Propozitia 3.2.6 Fie > x, si Y. y, doua serii cu proprietatile:

n>1 n>1
i) |xn| < yn pentru orice n;

i1) Seria Y y, convergenta
n>1

Atunci seria Y, x, absolut convergenta.
n>1

Demonstratie. Este consecinta a criteriului I de comparatie. m

Propozitia 3.2.7 Fie Y x, o serie si fie L = lim {/|x,|.

n>1

1. Daca L < 1, atunci seria ) x, este absolut convergenta.
n>1

2. Daca L > 1, atunci seria y, x, este divergenta.
n>1

Demonstratie. Criteriul radécinii aplicat seriei ) |z,|. =
n>1

Propozitia 3.2.8 Fie ) x, o serie i fie L = lim

Tn+1
n
n>1 n—00
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1. Daca L < 1, atunci seria Y, x, este absolut convergenta.
n>1

2. Daca L > 1, atunci seria Y, x, este divergenta.
n>1

Demonstratie. Criteriul raportului aplicat seriei »_ |z,|. =
n>1

3.2.2 Serii alternate

Definitia 3.2.9 O serie de numere reale S (=1)""" x,, se numeste serie
n>1

. d .
alternata é{ Ty > 0 pentru orice n.

Propozitia 3.2.10 (Criteriul lui Leibniz) O serie alternata

Z (_1)n+1 T,

n>1

cu proprietatea ca (x,,), este un gir descrescator cu limita zero, este o serie
convergenta. Daca s este suma ei iar s, o suma partiala , atunci pentru
oricen > 1, avem

|5 — Sn| < Tpg1-

Demonstratie. Deoarece pentru orice n > 1 avem

Sont3 = Song1 + (—Tonto + Tony3) < Songa

Sont2 = Son + (Tont1 — Tany2) > Son,

rezultd ca (sg,41), este descrescator iar (sg,i2), este crescdtor. In plus,

Son42 = Sopnt1 — Topg2 S Sguyq lar lim (82n+1 - S2n+2) = lim 29,42 = 0.
n—oo n—oo

Aplicand proprietatea clestelui rezulta ca (son+1),, si (82”t2)n sunt convergente

si au aceeasi limita. Ca urmare (s,), este convergent. In consecintd, seria

I C o
S (=1)""' z, este convergentd si are suma
n>1

s = lim s, = lim Sg,,11 = lim s9,,19.
n—oo n—oo n—oo

Pe de alta parte pentru orice n > 0, avem
|5 — Son41| = Sant1 — 5 < Sont1 — Sang2 = Tant2

9
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iar
|S — 52n+2| =8 — Sopt2 < S2pn43 — Sopt2 = Tapt3

si deci pentru orice n > 1,

ls — Sn| < Tpi1.

[
v . .. n+1 1
Exemplul 3.2.11 Sa se precizeze natura seriei ;1 (=)™ .
n>
R: Seria (—1)"“% este o serie alternata cu proprietatea ca (),
n>1
(x, = % ) este un gir descrescator cu lim% = 0. Conform criteriului lui
n—oo
Leibniz, Y (=1)"  este o serie convergenti. Pe de alta parte seria
n>1
1 1
_1 n+1 il -
%:1 (=)™~ gl -
este divergentt (seria armonici) si deci S (—1)"1! L nu este absolut convergenti.
n>1
o . n+l 1 . o
In concluzie ) (—1)""" - este semiconvergenta.

n>1

Exemplul 3.2.12 (Calculul aproximativ al sumei unei serii alternate)
Sé se calculeze cu trei zecimale exacte suma seriei S, (—1)"TH L

2n—1)""
=i (2n—1)
. . n+1 1 . v . v
R: Seria > (—1) @ este o serie alternata cu proprietatea ca
n>1
o 1 . o . 1 o
(z,), (v, = —(anl)n) este un gir descrescator cu nllHI{)lo—(znil)n = 0. Conform
. . . . . . 1 . v v
criteriului lui Leibniz, 3 (—1)"" (%11) este o serie convergentda. Daca s
n>1
este suma ei ar s, o suma partiala , atunci pentru orice n > 1, avem
1

|8 = Sn| < Tnt1, unde Tp4 = W

L

Dact w41 < 153,

atunci |s — s,| < 355. Dar

1

1
1 < —— o —— < — = (2n+ 1)"" > 1000,
S0 (2 4 1) T 108 @n+ 1) 2

10
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de unde rezulta n > 3. Aproximam deci suma Seriei cu

= +x3=1 1+1—1009—0896888
S3 = T1 i) T3 — 32 53 = 1125 = U,

3.2.3 Serii cu termeni oarecare

In aceastd sectiune consideram serii de numere reale ) z,, fird a impune
n>1
vreo restrictie asupra semnului termenului general z,,.

Lema 3.2.13 (Identitatea lui Abel) Fie (z,), st (yn), doud siruri de
numere reale. Atunci

n+p n—+p—1
1. Z Tk (yk - yk—1> = Z (xk - xk—l—l) Yk + TnipYntp — Tn¥Yn—1-
k=n k=n
n+p n+p—1
2. Z TrYr = Z (SCk - SCk+1) Skt TnipSnip — Tny1Sn, unde
k=n+1 k=n+1

Sp =1Y1 + Yo + ... +yn pentru orice n > 1.

Demonstratie. 1. Avem

ntp n+p n+p
Yowk (Y —Yk1) = D0 TkYk — ) TiYr—1
k=n k=n k=n
n+p—1 n+p—1
= > Tpyp+ Tn+pYntp — > Ti+1Y;
k=n j=n—1
n+p—1 n+p—1
= Z TrYk + TnapYnip — Z Tr+1Yk — TnYn—1
k=n k=n
n+p—1
= Z (xk - Ik+1> Yr + TntpYntp — TnlYn—1-
k=n

2. Se obtine inlocuind in 1 sirul (y,), cu (s,),, ncun+1sipcup—1.
n

Propozitia 3.2.14 (Criteriul Abel-Dirichlet) Fie (x,), si (y»), doud
siruri de numere reale cu proprietatile:

11
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i) imaz, =0 gi Y |T,41 — x,| convergenta.
n—00 n>1

n
i1) sup |s,| < oo unde s, = Y, yx pentru orice n > 1.
n k=1

Atunci » x,y, este convergenta.
n>1

Demonstratie. Aplicand identitatea lui Abel rezulta

n—+p n+p—1
2o wyr| < 20 ok — angallsel + wnapl [Snapl = 2] [snl -

Pe de alta parte

im [|2pp| [Spap] = 0
n—oo
lim |x,.1|]se] = 0
n—oo

(produsul unui gir cu limita 0 cu un gir mérginit) si de asemenea cum

lim |z, — 2, =0
o0

n—

(termenul general al unei serii convergente) avem

n+p—1
lm > |xp — 2kl sk = Im |21 — Tyl [Spga] + .+
n—oo 7 n—o0

m |Zpip1 — Tngp| [Snip-1]| = 0.
n—oo

Aplicand criteriul de convergenta al lui Cauchy, rezulta ca > x,y, este
n>1
convergenta. m

Corolarul 3.2.15 (Criteriul lui Dirichlet) Fie (x,), si(yn), doud siruri
de numere reale cu proprietatile:

i) (xn), descrescdtor si lim x, = 0.

n—oo

12
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n
i1) sup|s,| < oo unde s, = Y yr pentru orice n > 1.
n k=1

Atunci Y x,y, este convergenta.
n>1

Demonstratie. Avem ) |r,41 — @, = Y. &, — Tp41, lar suma partiald
n>1 n>1
de rang n este

n
Sp = E T — Tg+1 = L1 — Tp41-
k=1

de unde rezulta ca lim s, = z;. Ca urmare Y |v,11 — Tp| = D T — Tpi1
n—00 n>1 n>1

este convergentd. Aplicand criteriul Abel-Dirichlet, rezulta ca ) z,y, este
n>1
convergenta. W

sin(n) cos(n?
Exemplul 3.2.16 Sa se arate ca seria Y ()3C—ﬁ()este convergenta.
n>1
R: Aplicam criteriul lui Dirichlet pentru x,, = g,/iﬁ §i Y, = sin (n) cos (n?) =

1 (sinn(n+1) —sin(n — 1) n) observand ca

|sn| =

N | —

Z Yk
k=1

1
= ‘ésin(n—l—l)(n—l—Q) <

Corolarul 3.2.17 Fie (x,), si(yn), doud siruri de numere reale cu proprietatile:

i) > |Tpi1 — xn| convergenta.
n>1

i1) . yn convergenta.
n>1

Atunci y x,y, este convergenta.
n>1

Demonstratie. Deoarece Y |x,.1 — ,| convergentd, rezultd cd > x,1—
n>1 n>1

x, este convergenta. Cum
n—1
Tp =21+ > (Tps1 — Tn)
k=1

13
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sirul (x,), este convergent. Fie x = lim x, Aplicand criteriul Abel-
Dirichlet, rezultd c& 3 (2, — )y, este convergentd. In consecinti,
n>1
Z TnlYn = Z (mn_x)yn_’_x Z Yn
n>1 n>1 n>1

este convergenta. m

Corolarul 3.2.18 (Criteriul lui Abel) Fie (z,), st (y,), doud siruri de
numere reale cu proprietatile:

i) (z,), monoton si marginit.

i1) Y. Yy, convergenta.
n>1

Atunci » x,y, este convergenta.
n>1

Demonstratie. Putem presupune ci (x,,), este marginit si crescator (altfel

inlocuim z, cu —xz,). Avem > |T,41 —x,| = > Tpy1 — Ty, iar suma
n>1 n>1

partiala de rang n este

n

Sp = Thi1 — Th = Tpt1 — L1

k=1

de unde rezulta ca lims, = lims, — z;. Ca urmare > |, — z,| =

> Tpy1 — T, este convergentd. Aplicand criteriul Abel-Dirichlet, rezulta ca
n>1

> x,y, este convergentd. m
n>1

2y

W
R: Aplicam criteriul lui Abel pentru x, = (1 + %)n §t Yp = (—1)"+1 -

Exemplul 3.2.19 Si se arate ci seria 3 (—1)"™

n>1

este convergenta.

T
o 1 y Lo
observand ci 3y, = 3 (—=1)"" % este convergenta conform criteriului

n>1 n>1
lui Leibniz.

14
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Corolarul 3.2.20 (Varianta a criteriului lui Leibniz) Fie (z,), un sir
de numere reale cu proprietatile:

i) limz, =0

n—oo

1) Y. |Tpy1 — xp| convergenta.
n>1

Atunci 3 (=1)"" z, este convergenti.
n>1

Demonstratie. Luand y, = (—1)"*" si aplicand criteriul Abel-Dirichlet,
rezultd cd (—1)7”rl Tp = Y TpY, este convergents.

n>1 n>1
3.2.4 Produsul convolutiv a doua serii
Definitia 3.2.21 Fie Y x, i Y y, doua serii de numere reale. Se numeste

n>0 n>0

produsul convolutiv al celor doud serii seria Y, z,, unde
n>0

Zn = Y TkYn—k = ToYn + T1Yn—1 + ... + TnYo-
k=0

Produsul convolutiv al seriilor > x, §i Y. y, se noteazd (Z xn> <Z yn) :

n>0 n>0 n>0 n>0
Lema 3.2.22 Fie (z,), i (yn), doud siruri de numere reale cu proprietatile:

i) limz, =0.

1) Y. yn absolut convergenta.

n>0

Atunci lim > zxy,_ = 0.

15
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Demonstratie. Fie ¢ > 0, s suma seriei ). |y,| si M = max{s,1}.
n>0
Deoarece lim x,, = 0, exista N; € N astfel incat
n—oo

| |<—€ pent icen > N
T ntru orice n .

Deoarece lim y, = 0, exista Ny € N astfel incat Ny > N; si

n—oo

lyn| < Nﬁl; pentru orice n > N.
25l + 1
k=0

Asadar pentru orice n > Ny + N; — 1 avem

n Ni—1 n
DT Un-k| < | D0 TwYnok|+| Do ThYn—i
k=0 k=0 k=N1
5 Nl—l £ n
< — —_— _
< S & Il gy 3 e
2 2: |$k|+-1
k=0
< ° —+ c S
2 2M
< e

n
In consecintd, lim Y xpy,—r=0. m
n—00 g

Teorema 3.2.23 (Teorema lui Mertens) Fie Y z, i Y y, doud serii
n>0 n>0

de numere reale, una convergenta si cealalta absolut convergentda. Atunci

produsul convolutiv al celor doua serii este o serie convergenta, tar suma ei

este egala cu produsul sumelor seriilor date.

Demonstratie. Presupunem » | x, absolut convergentd si > v, convergenta.
n>0 n>0

Fie x suma seriei ) z, si y suma seriei Y y,. Pentru orice n > 0, notdm
n>0 n>0

16
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T =1Y— > Y. Avem
k=0

n k
> <Z %‘yk—j) = ZoYo +
=0

k=0
ToY1 + 1Yo +

ToYn + T1Yn—1 + .. + Tulo

n n—1 0

= Do) Yk +T1 D Ykt Tn D Yks
k=0 k=0 k=0

de unde rezults ca
n k
Yl 2T = oW —ra) ta(y—ra1) + otz (¥ —10)
k=0 \ j=0

n n
= YD Tp+ D, Tlnk
k=0 k=0

n

Conform lemei anterioare lim ) xyr,_, = 0. Ca urmare

n k n
lim ) (Z :vjyk_j> = limy ) zp = yx.
n—00 Lo \ j=0 n—oo  p_

0

Asadar produsul convolutiv (E :L‘n) (Z yn> este o serie convergenta, iar

n>0 n>0
suma ei este egald cu produsul sumelor seriilor ) z, si > y,. ®
n>0 n>0

Teorema 3.2.24 (Teorema lui Cauchy) Fie > x, si Y y, doud serii
n>0 n>0
de numere reale absolut convergente. Atunci produsul convolutiv al celor

doua serit este o serie absolut convergenta.

Demonstratie. Pentru orice n > 0, avem

n n
E:Q%yn—k S §:|kayn—H
k=0 k=0

17
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n
iar seria ) (Z |z |yn_k|) este convergentd conform teoremei lui Mertens
n>0 \k=0

(fiind produsul convolutiv al seriilor > |z,|si > |y,|). Conform criteriului
n>0 n>0

n
Z TrYn—k
k=0

n
5 ( y)
n>0 k=0

Exemplul 3.2.25 Consideram seria Y r™ cu |r| < 1. Seria Y r™ fiind
n>0 n>0
absolut convergenta, produsul convolutiv

(z)(z7)

este o serie convergentd si are suma egald cu patratul sumei seriei Y r".
n>0

I de comparatie seria »_
n>0

este convergenta. Asadar seria

este absolut convergenta. m

Termenul de rang n al seriei (Z 7’”) (Z 7"”) este

n>0 n>0

ot ety Y = (n 1) "

Asadar (Z r”) (Z r”) = > (n+1)r" gi ca urmare seria »_ (n+ 1)r"
n>0 n>0 n>0 n>0

o 2
este absolut convergenta §i are suma (1—2) .

Teorema 3.2.26 (Teorema lui Abel) Fie > x, (respectiv Y y,) o serie
n>0 n>0
convergentd avdnd suma x (respectiv y). Daca produsul convolutiv al celor

doua serii este o serie convergenta si are suma z, atunci z = Ty.
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