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Criterii de convergeņt¼a . . . . . . . . . . . . . . . . . 3

3.2.2 Serii alternate . . . . . . . . . . . . . . . . . . . . . . 9
3.2.3 Serii cu termeni oarecare . . . . . . . . . . . . . . . . 11
3.2.4 Produsul convolutiv a dou¼a serii . . . . . . . . . . . . 15

Index 18

2



Capitolul 3

Şiruri şi serii de numere reale
(continuare din cursul 3)

3.2 Serii de numere reale(continuare din cursul
3)

3.2.1 Serii cu termeni pozitivi (continuare din cursul
3) - Criterii de convergeņt¼a

Propozi̧tia 3.2.1 (Criteriul r¼ad¼acinii al lui Cauchy) Fie
P
n�1

xn o serie

cu termeni pozitivi cu proprietatea c¼a exist¼a L = lim
n!1

n
p
xn.

1. Dac¼a L < 1, atunci seria
P
n�1

xn este convergent¼a.

2. Dac¼a L > 1, atunci seria
P
n�1

xn este divergent¼a.

3. Dac¼a L = 1, nu se poate decide natura seriei
P
n�1

xn (mai precis, exist¼a

serii
P
n�1

xn pentru care lim
n!1

n
p
xn = 1 şi sunt convergente şi exist¼a seriiP

n�1
xn pentru care lim

n!1
n
p
xn = 1 şi sunt divergente).
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Demonstra̧tie. 1. Deoarece 0 � L < 1 exist¼a r > 0 a.î. L < r < 1. Cum
L = lim

n!1
n
p
xn şi r < L exist¼a nr 2 N a.î. n

p
xn < r pentru orice n � nr. Ca

urmare xn < rn pentru orice n � nr, iar seria
P
n�0

rn este convergent¼a �ind

o serie geometric¼a de ra̧tie r 2 (0; 1). Conform criteriului I de compara̧tie,
seria

P
n�1

xn este convergent¼a.

2. Deoarece L > 1 exist¼a r a.î. L > r > 1. Din faptul c¼a L = lim
n!1

n
p
xn,

rezult¼a c¼a exist¼a un subşir
�
kn
p
xkn
�
n
al şirului

�
n
p
xn
�
n
a.î. lim

n!1
kn
p
xkn =

L > r. Ca urmare exist¼a nr 2 N a.î. kn
p
xkn > r pentru orice n � nr,

de unde rezult¼a c¼a xkn > rkn > 1 pentru orice n � nr. Deci (xkn)n şi în
conseciņt¼a (xn)n nu poate converge la 0. Aşadar seria

P
n�1

xn este divergent¼a.

3. Consider¼am seria armonic¼a generalizat¼a
P
n�1

1
n�
. Avem lim

n!1
n

q
1
n�
=

lim
n!1

1
npn� = 1, iar seria este convergent¼a pentru � > 1 şi divergent¼a pentru

� � 1.

Propozi̧tia 3.2.2 (Criteriul raportului al lui d�Alembert) Fie
P
n�1

xn

o serie cu termeni pozitivi cu proprietatea c¼a exist¼a L = lim
n!1

xn+1
xn
.

1. Dac¼a L < 1, atunci seria
P
n�1

xn este convergent¼a.

2. Dac¼a L > 1, atunci seria
P
n�1

xn este divergent¼a.

3. Dac¼a L = 1, nu se poate decide natura seriei
P
n�1

xn.

Demonstra̧tie. 1. Deoarece 0 � L < 1 exist¼a r > 0 a.î. L < r < 1. Cum
L = lim

n!1
xn+1
xn

şi r < L exist¼a nr 2 N a.î. xn+1
xn

< r pentru orice n � nr. Ca
urmarexn+1

xn
< rn+1

rn
pentru orice n � nr, iar seria

P
n�0

rn este convergent¼a,

�ind o serie geometric¼a de ra̧tie r 2 (0; 1). Conform criteriului al II-lea de
compara̧tie, seria

P
n�1

xn este convergent¼a.

2. Deoarece L > 1 exist¼a r a.î. L > r > 1. Din faptul c¼a L = lim
n!1

xn+1
xn

şi r < L exist¼a nr 2 N a.î. xn+1
xn

> r pentru orice n � nr. Ca urmare
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xn+1
xn

> rn+1

rn
pentru orice n � nr, iar seria

P
n�0

rn este divergent¼a, �ind o

serie geometric¼a de ra̧tie r > 1. Conform criteriului al II-lea de compara̧tie,
seria

P
n�1

xn este divergent¼a.

3. Consider¼am seria armonic¼a generalizat¼a
P
n�1

1
n�
. Avem

lim
n!1

n�

(n+ 1)�
= lim

n!1

�
n

n+ 1

��
= 1,

iar seria este convergent¼a pentru � > 1 şi divergent¼a pentru � � 1.

Propozi̧tia 3.2.3 (Criteriul lui Kumer) Fie
P
n�1

xn o serie cu termeni

pozitivi.

1. Dac¼a exist¼a un şir de numere reale pozitive (an)n a.î.

lim
n!1

�
an

xn
xn+1

� an+1
�
> 0,

atunci seria
P
n�1

xn este convergent¼a.

2. Dac¼a exist¼a un şir de numere reale pozitive (an)n a.î. seria
P
n�1

1
an

este divergent¼a şi lim
n!1

�
an

xn
xn+1

� an+1
�
< 0, atunci seria

P
n�1

xn este

divergent¼a.

Demonstra̧tie. 1. Fie r 2 R a.î. lim
n!1

�
an

xn
xn+1

� an+1
�
> r > 0. Atunci

exist¼a nr 2 N a.î. an xn
xn+1

� an+1 > r pentru orice n � nr. Ca urmare
anxn � an+1xn+1 > rxn+1 pentru orice n � nr şi deci

nP
k=nr+1

xk <
1

r

nP
k=nr+1

(xk�1ak�1 � xkak) =

1

r
(xnranr � xnr+1anr+1 + xnr+1anr+1 � xnr+2anr+2 + :::+ xn�1an�1 � xnan) =

1

r
(xnranr � xnan) �

1

r
xnranr .
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Deci şirul
�

nP
k=nr+1

xk

�
n

este m¼arginit şi cresc¼ator şi în conseciņt¼a convergent.

Ca urmare seria
P
n�nr

xn este convergent¼a, şi în consecint¼a seria
P
n�1

xn este

convergent¼a.

2. Fie r 2 R a.î. lim
n!1

�
an

xn
xn+1

� an+1
�
< r < 0. Atunci exist¼a nr 2 N

a.î. an xn
xn+1

�an+1 < r pentru orice n � nr. Ca urmare xn
xn+1

< an+1+r
an

< an+1
an

şi deci
xn+1
xn

>

1
an+1
1
an

pentru orice n � nr,

iar seria
P
n�1

1
an
este divergent¼a. Conform criteriului al II-lea de compara̧tie,

seria
P
n�1

xn este divergent¼a.

Propozi̧tia 3.2.4 (Criteriul Raabe-Duhamel) Fie
P
n�1

xn o serie cu termeni

pozitivi cu proprietatea c¼a exist¼a L = lim
n!1

n
�

xn
xn+1

� 1
�
.

1. Dac¼a L > 1, atunci seria
P
n�1

xn este convergent¼a.

2. Dac¼a L < 1, atunci seria
P
n�1

xn este divergent¼a.

Demonstra̧tie. Caz particular al criteriului Kumer pentru an = n.
Conform unei conseciņte a teoremei Stolz-Cesaro, dac¼a şirul

�
xn+1
xn

�
n

are limit¼a şi xn > 0 pentru orice n, atunci şi şirul
�
n
p
xn
�
n
are limit¼a şi

lim
n!1

n
p
xn = lim

n!1
xn+1
xn
. Aşadar dac¼a xn > 0 pentru orice n, iar şirurile�

xn+1
xn

�
n
şi
�
n
p
xn
�
n
au limit¼a, atunci lim

n!1
n
p
xn = lim

n!1
xn+1
xn
. Ca urmare

dac¼a aplicarea criteriului raportului a dus la indecizie, nu se încearc¼a în
continuare aplicarea criteriului r¼ad¼acinii, ci a unui alt criteriu cum ar �
Raabe-Duhamel. La fel pentru criteriul r¼ad¼acinii.

Exemple 3.2.5 S¼a se precizeze natura urm¼atoarelor serii cu termeni pozitivi:
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1.
P
n�1

�
3n2�n+1
n2+2n+3

�n
R: Seria

P
n�1

�
3n2�n+1
n2+2n+3

�n
este divergent¼a conform criteriului r¼ad¼acinii,

deoarece

lim
n!1

n

s�
3n2 � n+ 1
n2 + 2n+ 3

�n
= lim

n!1

3n2 � n+ 1
n2 + 2n+ 3

= 3 > 1.

2.
P
n�1

n
�
1
2

�n
R: Seria

P
n�1

n
�
1
2

�n
este convergent¼a conform criteriului raportului,

deoarece
lim
n!1

n+ 1

2n+1
2n

n
= lim

n!1

n+ 1

2n
=
1

2
< 1.

3.
P
n�1

1�3�:::�(2n+1)
2�4�:::�(2n)

1
2n+3

R: Termenul general al seriei este xn =
1�3�:::�(2n+1)
2�4�:::�(2n)

1
2n+3

> 0 pentru
orice n. Avem

xn+1
xn

=
1 � 3 � ::: � (2n+ 3)
2 � 4 � ::: � (2n+ 2)

1

2n+ 5

2 � 4 � ::: � (2n)
1 � 3 � ::: � (2n+ 1)

2n+ 3

1

=
(2n+ 3)2

(2n+ 2) (2n+ 5)

Deoarece lim
n!1

xn+1
xn

= lim
n!1

xn+1
xn

= lim
n!1

xn+1
xn

= 1, nu putem stabili

natura seriei utilizând criteriului raportului. Încerc¼am s¼a utiliz¼am
criteriul Raabe-Duhamel:

n

�
xn
xn+1

� 1
�

= n

�
(2n+ 2) (2n+ 5)

(2n+ 3)2
� 1
�

= n
2n+ 1

4n2 + 14n+ 10

=
2n2 + n

4n2 + 14n+ 10
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Deoarece lim
n!1

n
�

xn
xn+1

� 1
�
= lim

n!1
2n2+n

4n2+14n+10
= 1

2
< 1, seria

P
n�1

1 � 3 � ::: � (2n+ 1)
2 � 4 � ::: � (2n)

1

2n+ 3

este divergent¼a conform criteriului Raabe-Duhamel.

O serie care are numai un num¼ar �nit de termeni negativi poate �
asimilat¼a cu o serie cu termeni pozitivi. De asemenea studiul unei seriiP
n�1

xn care are numai un num¼ar �nit de termeni pozitivi este echivalent cu

studiul seriei �
P
n�1

(�xn) care are doar un num¼ar �nit de termeni negativi.

Criteriile de convergeņt¼a pentru seriile cu termeni pozitivi pot �utilizate
pentru studiul absolut convergeņtei unei serii dup¼a cum urmeaz¼a.

Propozi̧tia 3.2.6 Fie
P
n�1

xn şi
P
n�1

yn dou¼a serii cu propriet¼aţile:

i) jxnj � yn pentru orice n;

ii) Seria
P
n�1

yn convergent¼a

Atunci seria
P
n�1

xn absolut convergent¼a.

Demonstra̧tie. Este conseciņt¼a a criteriului I de compara̧tie.

Propozi̧tia 3.2.7 Fie
P
n�1

xn o serie şi �e L = lim
n!1

n
p
jxnj.

1. Dac¼a L < 1, atunci seria
P
n�1

xn este absolut convergent¼a.

2. Dac¼a L > 1, atunci seria
P
n�1

xn este divergent¼a.

Demonstra̧tie. Criteriul r¼ad¼acinii aplicat seriei
P
n�1

jxnj.

Propozi̧tia 3.2.8 Fie
P
n�1

xn o serie şi �e L = lim
n!1

���xn+1xn

���.
8
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1. Dac¼a L < 1, atunci seria
P
n�1

xn este absolut convergent¼a.

2. Dac¼a L > 1, atunci seria
P
n�1

xn este divergent¼a.

Demonstra̧tie. Criteriul raportului aplicat seriei
P
n�1

jxnj.

3.2.2 Serii alternate

De�ni̧tia 3.2.9 O serie de numere reale
P
n�1

(�1)n+1 xn se numeşte serie

alternat¼a
def, xn > 0 pentru orice n.

Propozi̧tia 3.2.10 (Criteriul lui Leibniz) O serie alternat¼aP
n�1

(�1)n+1 xn

cu proprietatea c¼a (xn)n este un şir descresc¼ator cu limita zero, este o serie
convergent¼a. Dac¼a s este suma ei iar sn o sum¼a parţial¼a , atunci pentru
orice n � 1, avem

js� snj < xn+1.

Demonstra̧tie. Deoarece pentru orice n � 1 avem

s2n+3 = s2n+1 + (�x2n+2 + x2n+3) � s2n+1
s2n+2 = s2n + (x2n+1 � x2n+2) � s2n,

rezult¼a c¼a (s2n+1)n este descresc¼ator iar (s2n+2)n este cresc¼ator. În plus,
s2n+2 = s2n+1 � x2n+2 � s2n+1 iar lim

n!1
(s2n+1 � s2n+2) = lim

n!1
x2n+2 = 0.

Aplicând proprietatea cleştelui rezult¼a c¼a (s2n+1)n şi (s2n+2)n sunt convergente
şi au aceeaşi limit¼a. Ca urmare (sn)n este convergent. În conseciņt¼a, seriaP
n�1

(�1)n+1 xn este convergent¼a şi are suma

s = lim
n!1

sn = lim
n!1

s2n+1 = lim
n!1

s2n+2.

Pe de alt¼a parte pentru orice n � 0, avem

js� s2n+1j = s2n+1 � s < s2n+1 � s2n+2 = x2n+2

9
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iar
js� s2n+2j = s� s2n+2 < s2n+3 � s2n+2 = x2n+3

şi deci pentru orice n � 1,

js� snj < xn+1.

Exemplul 3.2.11 S¼a se precizeze natura seriei
P
n�1

(�1)n+1 1
n
:

R: Seria
P
n�1

(�1)n+1 1
n
este o serie alternat¼a cu proprietatea c¼a (xn)n

(xn = 1
n
) este un şir descresc¼ator cu lim

n!1
1
n
= 0. Conform criteriului lui

Leibniz,
P
n�1

(�1)n+1 1
n
este o serie convergent¼a. Pe de alt¼a parte seria

P
n�1

����(�1)n+1 1n
���� = P

n�1

1

n

este divergent¼a (seria armonic¼a) şi deci
P
n�1

(�1)n+1 1
n
nu este absolut convergent¼a.

În concluzie
P
n�1

(�1)n+1 1
n
este semiconvergent¼a.

Exemplul 3.2.12 (Calculul aproximativ al sumei unei serii alternate)
S¼a se calculeze cu trei zecimale exacte suma seriei

P
n�1

(�1)n+1 1
(2n�1)n :

R: Seria
P
n�1

(�1)n+1 1
(2n�1)n este o serie alternat¼a cu proprietatea c¼a

(xn)n (xn = 1
(2n�1)n ) este un şir descresc¼ator cu limn!1

1
(2n�1)n = 0. Conform

criteriului lui Leibniz,
P
n�1

(�1)n+1 1
(2n�1)n este o serie convergent¼a. Dac¼a s

este suma ei iar sn o sum¼a parţial¼a , atunci pentru orice n � 1, avem

js� snj < xn+1, unde xn+1 =
1

(2n+ 1)n+1
.

Dac¼a xn+1 � 1
103
, atunci js� snj < 1

103
. Dar

xn+1 �
1

103
, 1

(2n+ 1)n+1
� 1

103
, (2n+ 1)n+1 � 1000,
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de unde rezult¼a n � 3. Aproxim¼am deci suma seriei cu

s3 = x1 � x2 + x3 = 1�
1

32
+
1

53
=
1009

1125
= 0; 896888:::

3.2.3 Serii cu termeni oarecare

În aceast¼a seçtiune consider¼am serii de numere reale
P
n�1

xn f¼ar¼a a impune

vreo restriçtie asupra semnului termenului general xn.

Lema 3.2.13 (Identitatea lui Abel) Fie (xn)n şi (yn)n dou¼a şiruri de
numere reale. Atunci

1.
n+pP
k=n

xk (yk � yk�1) =
n+p�1P
k=n

(xk � xk+1) yk + xn+pyn+p � xnyn�1.

2.
n+pP
k=n+1

xkyk =
n+p�1P
k=n+1

(xk � xk+1) sk + xn+psn+p � xn+1sn, unde

sn = y1 + y2 + :::+ yn pentru orice n � 1:

Demonstra̧tie. 1. Avem

n+pP
k=n

xk (yk � yk�1) =
n+pP
k=n

xkyk �
n+pP
k=n

xkyk�1

=
n+p�1P
k=n

xkyk + xn+pyn+p �
n+p�1P
j=n�1

xj+1yj

=
n+p�1P
k=n

xkyk + xn+pyn+p �
n+p�1P
k=n

xk+1yk � xnyn�1

=
n+p�1P
k=n

(xk � xk+1) yk + xn+pyn+p � xnyn�1.

2. Se ob̧tine înlocuind în 1 şirul (yn)n cu (sn)n, n cu n+ 1 şi p cu p� 1.

Propozi̧tia 3.2.14 (Criteriul Abel-Dirichlet) Fie (xn)n şi (yn)n dou¼a
şiruri de numere reale cu propriet¼aţile:
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i) lim
n!1

xn = 0 şi
P
n�1

jxn+1 � xnj convergent¼a.

ii) sup
n
jsnj <1 unde sn =

nP
k=1

yk pentru orice n � 1.

Atunci
P
n�1

xnyn este convergent¼a.

Demonstra̧tie. Aplicând identitatea lui Abel rezult¼a���� n+pP
k=n+1

xkyk

���� � n+p�1P
k=n+1

jxk � xk+1j jskj + jxn+pj jsn+pj � jxn+1j jsnj .

Pe de alt¼a parte

lim
n!1

jxn+pj jsn+pj = 0

lim
n!1

jxn+1j jsnj = 0

(produsul unui şir cu limita 0 cu un şir m¼arginit) şi de asemenea cum

lim
n!1

jxn+1 � xnj = 0

(termenul general al unei serii convergente) avem

lim
n!1

n+p�1P
k=n+1

jxk � xk+1j jskj = lim
n!1

jxn+1 � xn+2j jsn+1j+ :::+

lim
n!1

jxn+p�1 � xn+pj jsn+p�1j = 0.

Aplicând criteriul de convergeņt¼a al lui Cauchy, rezult¼a c¼a
P
n�1

xnyn este

convergent¼a.

Corolarul 3.2.15 (Criteriul lui Dirichlet) Fie (xn)n şi (yn)n dou¼a şiruri
de numere reale cu propriet¼aţile:

i) (xn)n descresc¼ator şi limn!1
xn = 0.

12
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ii) sup
n
jsnj <1 unde sn =

nP
k=1

yk pentru orice n � 1.

Atunci
P
n�1

xnyn este convergent¼a.

Demonstra̧tie. Avem
P
n�1

jxn+1 � xnj =
P
n�1

xn � xn+1, iar suma paŗtial¼a

de rang n este

sn =
nP
k=1

xk � xk+1 = x1 � xn+1.

de unde rezult¼a c¼a lim
n!1

sn = x1. Ca urmare
P
n�1

jxn+1 � xnj =
P
n�1

xn � xn+1
este convergent¼a. Aplicând criteriul Abel-Dirichlet, rezult¼a c¼a

P
n�1

xnyn este

convergent¼a.

Exemplul 3.2.16 S¼a se arate c¼a seria
P
n�1

sin(n) cos(n2)
3pn este convergent¼a.

R: Aplic¼am criteriul lui Dirichlet pentru xn = 1
3pn şi yn = sin (n) cos (n

2) =
1
2
(sinn (n+ 1)� sin (n� 1)n) observând c¼a

jsnj =
���� nP
k=1

yk

���� = ����12 sin (n+ 1) (n+ 2)
���� � 1

2
.

Corolarul 3.2.17 Fie (xn)n şi (yn)n dou¼a şiruri de numere reale cu propriet¼aţile:

i)
P
n�1

jxn+1 � xnj convergent¼a.

ii)
P
n�1

yn convergent¼a.

Atunci
P
n�1

xnyn este convergent¼a.

Demonstra̧tie. Deoarece
P
n�1

jxn+1 � xnj convergent¼a, rezult¼a c¼a
P
n�1

xn+1�

xn este convergent¼a. Cum

xn = x1 +
n�1P
k=1

(xk+1 � xk) ,

13
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şirul (xn)n este convergent. Fie x = lim
n!1

xn Aplicând criteriul Abel-

Dirichlet, rezult¼a c¼a
P
n�1

(xn � x) yn este convergent¼a. În conseciņt¼a,

P
n�1

xnyn =
P
n�1

(xn � x) yn + x
P
n�1

yn

este convergent¼a.

Corolarul 3.2.18 (Criteriul lui Abel) Fie (xn)n şi (yn)n dou¼a şiruri de
numere reale cu propriet¼aţile:

i) (xn)n monoton şi m¼arginit.

ii)
P
n�1

yn convergent¼a.

Atunci
P
n�1

xnyn este convergent¼a.

Demonstra̧tie. Putem presupune c¼a (xn)n este m¼arginit şi cresc¼ator (altfel
înlocuim xn cu �xn). Avem

P
n�1

jxn+1 � xnj =
P
n�1

xn+1 � xn, iar suma

paŗtial¼a de rang n este

sn =
nP
k=1

xk+1 � xk = xn+1 � x1.

de unde rezult¼a c¼a lim
n!1

sn = lim
n!1

sn � x1. Ca urmare
P
n�1

jxn+1 � xnj =P
n�1

xn+1�xn este convergent¼a. Aplicând criteriul Abel-Dirichlet, rezult¼a c¼aP
n�1

xnyn este convergent¼a.

Exemplul 3.2.19 S¼a se arate c¼a seria
P
n�1

(�1)n+1 (1+
1
n)

n

3pn este convergent¼a.

R: Aplic¼am criteriul lui Abel pentru xn =
�
1 + 1

n

�n
şi yn = (�1)n+1 1

3pn
observând c¼a

P
n�1

yn =
P
n�1

(�1)n+1 1
3pn este convergent¼a conform criteriului

lui Leibniz.
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Corolarul 3.2.20 (Variant¼a a criteriului lui Leibniz) Fie (xn)n un şir
de numere reale cu propriet¼aţile:

i) lim
n!1

xn = 0

ii)
P
n�1

jxn+1 � xnj convergent¼a.

Atunci
P
n�1

(�1)n+1 xn este convergent¼a.

Demonstra̧tie. Luând yn = (�1)n+1 şi aplicând criteriul Abel-Dirichlet,
rezult¼a c¼a

P
n�1

(�1)n+1 xn =
P
n�1

xnyn este convergent¼a.

3.2.4 Produsul convolutiv a dou¼a serii

De�ni̧tia 3.2.21 Fie
P
n�0

xn şi
P
n�0

yn dou¼a serii de numere reale. Se numeşte

produsul convolutiv al celor dou¼a serii seria
P
n�0

zn, unde

zn =
nP
k=0

xkyn�k = x0yn + x1yn�1 + :::+ xny0.

Produsul convolutiv al seriilor
P
n�0

xn şi
P
n�0

yn se noteaz¼a
�P
n�0

xn

��P
n�0

yn

�
.

Lema 3.2.22 Fie (xn)n şi (yn)n dou¼a şiruri de numere reale cu propriet¼aţile:

i) lim
n!1

xn = 0.

ii)
P
n�0

yn absolut convergent¼a.

Atunci lim
n!1

nP
k=0

xkyn�k = 0.

15
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Demonstra̧tie. Fie " > 0, s suma seriei
P
n�0

jynj şi M = max fs; 1g.

Deoarece lim
n!1

xn = 0, exist¼a N1 2 N astfel încât

jxnj <
"

2M
pentru orice n � N1.

Deoarece lim
n!1

yn = 0, exist¼a N2 2 N astfel încât N2 � N1 şi

jynj <
"

2
N1�1P
k=0

jxkj+ 1
pentru orice n � N2.

Aşadar pentru orice n � N2 +N1 � 1 avem���� nP
k=0

xkyn�k

���� �
����N1�1P
k=0

xkyn�k

����+ ���� nP
k=N1

xkyn�k

����
� "

2
N1�1P
k=0

jxkj+ 1

N1�1P
k=0

jxkj+
"

2M

nP
k=N1

jyn�kj

<
"

2
+

"

2M
s

� ".

În conseciņt¼a, lim
n!1

nP
k=0

xkyn�k = 0.

Teorema 3.2.23 (Teorema lui Mertens) Fie
P
n�0

xn şi
P
n�0

yn dou¼a serii

de numere reale, una convergent¼a şi cealalt¼a absolut convergent¼a. Atunci
produsul convolutiv al celor dou¼a serii este o serie convergent¼a, iar suma ei
este egala cu produsul sumelor seriilor date.

Demonstra̧tie. Presupunem
P
n�0

xn absolut convergent¼a şi
P
n�0

yn convergent¼a.

Fie x suma seriei
P
n�0

xn şi y suma seriei
P
n�0

yn. Pentru orice n � 0, not¼am

16
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rn = y �
nP
k=0

yk. Avem

nP
k=0

 
kP
j=0

xjyk�j

!
= x0y0 +

x0y1 + x1y0 +

::::::::::::::::::::::::+

x0yn + x1yn�1 + :::+ xny0

= x0
nP
k=0

yk + x1
n�1P
k=0

yk + :::+ xn
0P
k=0

yk,

de unde rezult¼a c¼a

nP
k=0

 
kP
j=0

xjyk�j

!
= x0 (y � rn) + x1 (y � rn�1) + :::+ xn (y � r0)

= y
nP
k=0

xk +
nP
k=0

xkrn�k

Conform lemei anterioare lim
n!1

nP
k=0

xkrn�k = 0. Ca urmare

lim
n!1

nP
k=0

 
kP
j=0

xjyk�j

!
= lim

n!1
y

nP
k=0

xk = yx.

Aşadar produsul convolutiv
�P
n�0

xn

��P
n�0

yn

�
este o serie convergent¼a, iar

suma ei este egal¼a cu produsul sumelor seriilor
P
n�0

xn şi
P
n�0

yn.

Teorema 3.2.24 (Teorema lui Cauchy) Fie
P
n�0

xn şi
P
n�0

yn dou¼a serii

de numere reale absolut convergente. Atunci produsul convolutiv al celor
dou¼a serii este o serie absolut convergent¼a.

Demonstra̧tie. Pentru orice n � 0, avem���� nP
k=0

xkyn�k

���� � nP
k=0

jxkj jyn�kj

17
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iar seria
P
n�0

�
nP
k=0

jxkj jyn�kj
�
este convergent¼a conform teoremei lui Mertens

(�ind produsul convolutiv al seriilor
P
n�0

jxnj şi
P
n�0

jynj). Conform criteriului

I de compara̧tie seria
P
n�0

���� nP
k=0

xkyn�k

���� este convergent¼a. Aşadar seria
P
n�0

�
nP
k=0

xkyn�k

�
este absolut convergent¼a.

Exemplul 3.2.25 Consider¼am seria
P
n�0

rn cu jrj < 1. Seria
P
n�0

rn �ind

absolut convergent¼a, produsul convolutiv�P
n�0

rn
��P

n�0
rn
�

este o serie convergent¼a şi are suma egal¼a cu p¼atratul sumei seriei
P
n�0

rn.

Termenul de rang n al seriei
�P
n�0

rn
��P

n�0
rn
�
este

r0rn + r1rn�1 + :::+ rnr0 = (n+ 1) rn.

Aşadar
�P
n�0

rn
��P

n�0
rn
�
=
P
n�0

(n+ 1) rn şi ca urmare seria
P
n�0

(n+ 1) rn

este absolut convergent¼a şi are suma
�

1
1�r
�2
.

Teorema 3.2.26 (Teorema lui Abel) Fie
P
n�0

xn (respectiv
P
n�0

yn) o serie

convergent¼a având suma x (respectiv y). Dac¼a produsul convolutiv al celor
dou¼a serii este o serie convergent¼a şi are suma z, atunci z = xy.
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