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Capitolul 4

Spa̧tii topologice

În capitolul precedent am de�nit no̧tiunea de limit¼a (a unui şir de numere
reale) utilizând no̧tiunea de vecin¼atate a unui num¼ar real sau a lui �1 2 R.
Cadrul general în care se de�nesc vecin¼at¼a̧tile este dat de aşa numite spa̧tii
topologice.

4.1 Topologie

De�ni̧tia 4.1.1 (Topologie) Fie X o mulţime. O familie � de submulţimi
ale lui X se numeşte topologie pe X dac¼a şi numai dac¼a sunt îndeplinite
urm¼atoarele condiţii:

1. X şi ; sunt elemente ale lui �

2. Dac¼a I este o familie oarecare de indici şi dac¼a Gi 2 � pentru orice
i 2 I, atunci

[
i2I
Gi 2 �

3. Dac¼a I este o familie �nit¼a de indici şi dac¼a Gi 2 � pentru orice i 2 I,
atunci

\
i2I
Gi 2 � .

Muļtimea X înzestrat¼a cu o topologie � se numeşte spaţiu topologic
şi se noteaz¼a (X; �). Dac¼a nu exist¼a posibilitatea unei confuzii, nu se mai
precizeaz¼a topologia � . Elementele unui spa̧tiu topologic se numesc puncte,
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iar elementele topologiei se numesc mulţimi deschise (cu alte cuvinte, G �
X se numeşte muļtime deschis¼a dac¼a şi numai dac¼aG 2 �). O submuļtime F
a spa̧tiului topologicX se numeştemulţime închis¼a dac¼a este complementara
(în raport cu X) unei muļtimi deschise.

Exemple 4.1.2 1. Pentru orice mulţime X, f;; Xg satisace condiţiile
din de�niţia topologiei. Topologia în care familia mulţimilor deschise
este f;; Xg se numeşte topologia indiscret¼a sau trivial¼a pe X.

2. Pentru orice mulţime X, P(X) = 2X satisace condiţiile din de�niţia
topologiei. Topologia � d = P(X) = 2X se numeşte topologia discret¼a
pe X.

3. Familia reuniunilor de intervale deschise ale lui R împreun¼a cu ; d¼a
o topologie pe R numit¼a topologia uzual¼a (sau topologia natural¼a) pe
R.

4. Dac¼a (X; �X) şi (Y; �Y ) sunt dou¼a spaţii topologice. Atunci familia
mulţimilor G � X � Y cu proprietatea c¼a pentru orice (a; b) 2 G
exist¼a A 2 �X şi B 2 �Y asfel încât

(a; b) 2 A�B � G

este o topologie pe X �Y numit¼a topologia produs. Mai general, dac¼a
(Xi; � i), i = 1::n, sunt spaţii topologice, topologia produs pe X1�X2�
:::�Xn este familia mulţimilor G � X1�X2� :::�Xn cu proprietatea
c¼a pentru orice (x1; x2; : : : ; xn) 2 G şi pentru orice i = 1::n exist¼a
Ai 2 � i asfel încât

(x1; x2; : : : ; xn) 2 A1 � A2 � ::� An � G.

O submuļtime V a spa̧tiului topologicX se numeşte vecin¼atate a punctului

x 2 X def, exist¼a o muļtime deschis¼a G astfel încât x 2 G � V . Mai general,
V este o vecin¼atate a muļtimii A � X dac¼a exist¼a o muļtime deschis¼a G
astfel încât A � G � V . Se poate ar¼ata uşor c¼a o submuļtime A � X
este deschis¼a dac¼a şi numai dac¼a este vecin¼atate pentru orice punct al s¼au.
O muļtime U(x) de vecin¼at¼a̧ti ale unui punct x 2 X se numeşte sistem

fundamental de vecin¼at¼aţi pentru punctul x
def, pentru orice V vecin¼atate a
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lui x exist¼a U 2 U(x) astfel încât U � V . Dac¼a not¼am cu V(x) muļtimea
tuturor vecin¼at¼a̧tilor lui x atunci sunt adev¼arate urm¼atoarele propriet¼a̧ti:

V 1: Dac¼a V 2 V(x) atunci x 2 V .

V 2: Dac¼a V 2 V(x) şi V � U , atunci U 2 V(x).

V 3: Dac¼a V; U 2 V(x), atunci V \ U 2 V(x).

V 4: Dac¼a V 2 V(x), atunci exist¼a U 2 V(x) astfel încât V este vecin¼atate
pentru �ecare punct y 2 U .

Se poate ar¼ata c¼a propriet¼a̧tile V 1 � V 4 de�nesc unic topologia lui X,
în sensul c¼a dac¼a funçtia x 7! V(x) satisface condi̧tiile V 1� V 4, atunci

� = fG � X : G 2 V(x) pentru orice x 2 Gg [ f;g

este o topologie pe X şi V(x) este muļtimea vecin¼at¼a̧tilor lui x în aceast¼a
topologie. În aceast¼a situa̧tie se spune c¼a topologia a fost generat¼a cu
ajutorul vecin¼at¼aţilor. Aceast¼a observa̧tie ne permite s¼a de�nim o topologie
pe X pornind de la o familie fU(x)gx2X de submuļtimi ale lui X având
proprietatea c¼a

V(x) = fV � X : exist¼a U 2 U(x) astfe lîncât U � V g

satisface condi̧tii V 1� V 4 pentru orice x.
În cele ce urmeaz¼a A este o submuļtime a spa̧tiului topologic X.

Se numeşte interiorul mulţimii A, şi se noteaz¼a cu int (A) sau
�
A, reuniunea

tuturor muļtimilor deschise incluse în A. Int (A) poate � de�nit în mod
echivalent ca �ind cea mai mare muļtime deschis¼a (relativ la rela̧tia de
incluziune) coņtinut¼a în A. Punctele muļtimii int (A) se numesc puncte
interioare ale lui A. În conseciņt¼a, x 2 int (A) dac¼a şi numai dac¼a exist¼a o
muļtime deschis¼a G astfel încât x 2 G � A. Muļtimea A este deschis¼a dac¼a
şi numai dac¼a A = int (A).
Se numeşte închiderea mulţimii A, şi se noteaz¼a cu A, interseçtia tuturor

muļtimilor închise ce coņtin pe A. A poate � de�nit¼a în mod echivalent ca
�ind cea mai mic¼a muļtime închis¼a (relativ la rela̧tia de incluziune) care
include pe A. Punctele muļtimii A se numesc puncte aderente ale lui A.
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Se observ¼a imediat c¼a x 2 A dac¼a şi numai dac¼a pentru orice vecin¼atate V
a lui x, V \ A 6= ;. Muļtimea A este închis¼a dac¼a şi numai dac¼a A = A.
Muļtimea A se numeşte dens¼a în X dac¼a A = X. Se poate ar¼ata c¼a

X n A = int (X n A) şi X n int (A) = X n A:

Un punct x 2 X se numeşte punct de acumulare (sau punct limit¼a)

al lui A
def, oricare ar � vecin¼atatea V a lui x, avem (V n fxg) \ A 6= ;.

Muļtimea punctelor de acumulare ale muļtimii A se noteaz¼a cu A0 şi se
numeşte derivata mulţimii A. Un punct x 2 X se numeşte punct izolat

al muļtimii A
def, exist¼a o vecin¼atate V a lui x astfel încât V \ A = fxg.

Muļtimea A se numeşte discret¼a dac¼a orice punct al ei este izolat.
Se numeşte exteriorul muļtimiiA, şi se noteaz¼a cu exterior (A), muļtimea

int (X n A). Un punct x 2 exterior(A) se numeşte punct exterior lui A.
Rezult¼a imediat c¼a x 2 exterior (A) dac¼a şi numai dac¼a exist¼a o vecin¼atate
V a lui x astfel încât V \ A = ;.
Se numeşte frontiera muļtimii A, şi se noteaz¼a cu Fr (A) sau @ (A),

muļtimeaA\X n A. Elementele muļtimii Fr (A) se numesc puncte frontier¼a
ale lui A (puncte care nu apaŗtin nici interiorului nici exteriorului muļtimii
A). Vom nota cu frn (A) = Fr (A) n A = A n A (muļtimea punctelor
frontier¼a ale lui A care nu apaŗtin lui A).
Se poate ar¼ata c¼a:

� int (A) = A n Fr (A);

� A = A [ Fr (A);

� Fr (X n A) = Fr (A);

� Fr (A [B) � Fr (A) [ Fr (B);

� Fr (A \B) � Fr (A) [ Fr (B);

� X = int (A) [ exterior (A) [ Fr (A);

� Fr
�
A
�
� Fr (A);

� Fr (int (A)) � Fr (A);
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� A este deschis¼a dac¼a şi numai dac¼a Fr (A) = A n A;

� A este închis¼a dac¼a şi numai dac¼a Fr (A) = A n int (A).

Muļtimea A se numeşte mulţime de tipul G� dac¼a se poate scrie sub
forma unei interseçtii num¼arabile de muļtimi deschise ale lui X. Muļtimea A
se numeşte mulţime de tipul F� dac¼a se poate scrie sub forma unei reuniuni
num¼arabile de muļtimi închise ale lui X.

Dac¼a (X; �) este un spa̧tiu topologic şi A o submuļtime a lui X,
atunci

�A = fA \G : G 2 �g
este o topologie pe A numit¼a topologia indus¼a pe A de topologia � , sau
restriçtia (urma) topologiei � pe A. Se mai spune c¼a A este subspaţiu
topologic al lui X. Orice element al lui �A se numeşte muļtime deschis¼a în
A, iar orice submuļtime a lui A închis¼a în topologia �A (i.e. complementara
unui element al lui �A) se numeşte muļtime închis¼a în A. Muļtimea B este
�A-închis¼a (închis¼a în A) dac¼a şi numai dac¼a exist¼a o muļtime închis¼a F
(relativ la �) astfel încât B = F \ A. Închiderea lui B în topologia �A este
interseçtia dintre închiderea lui B în topologia � şi A.
O familie B de muļtimi deschise în spa̧tiul topologic X cu proprietatea

c¼a orice muļtime deschis¼a din X este reuniunea unei familii de elemente din
B se numeşte baz¼a (de muļtimi deschise) pentru topologia lui X. Familia
B de muļtimi deschise ale spa̧tiului topologic X este baz¼a dac¼a şi numai
dac¼a pentru orice x 2 X şi orice vecin¼atate V a lui x exist¼a B 2 B astfel
încât x 2 B � V . O familie B de submuļtimi ale unei muļtimi X este baz¼a
pentru o topologie pe X dac¼a exist¼a o topologie pe X astfel încât B s¼a �e
baz¼a pentru acea topologie (care se va numi topologia generat¼a de baza B).
Se arat¼a uşor c¼a B baz¼a pentru o topologie pe X dac¼a

B1: [fB : B 2 Bg = X;

B2: Pentru orice U şi V din B, U\V este reuniunea unei familii de elemente
din B.
Dou¼a baze care genereaz¼a aceeaşi topologie se numesc baze echivalente.

Fie � 1 şi � 2 dou¼a topologii pe X. Se spune c¼a � 1 este mai slab¼a (sau

mai puţin �n¼a) decât � 2 sau c¼a � 2 este mai tare (sau mai �n¼a) decât � 1
def,
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orice muļtime deschis¼a în topologia � 1 este deschis¼a şi în topologia � 2 (cu
alte cuvinte, G 2 � 1 ) G 2 � 2).
Un spa̧tiu topologicX se numeşte spaţiu T2 sau spa̧tiu (separat)Hausdor¤

dac¼a şi numai dac¼a oricare ar � punctele distincte x; y 2 X, exist¼a dou¼a
muļtimi deschise disjuncte Gx şi Gy astfel încât x 2 Gx şi y 2 Gy.

4.2 Şiruri şi funçtii pe spa̧tii topologice

Fie X un spa̧tiu topologic. Dup¼a cum ştim deja se numeşte şir de elemente
din X o funçtie f : N! X şi se noteaz¼a cu f = (f (n))n sau f = (xn)n sau
(xn)n, unde xn = f (n) pentru orice n.

De�ni̧tia 4.2.1 (Limita unui şir) Fie X un spaţiu topologic. Un punct
a 2 X se numeşte limita şirului (xn)n din X (sau se spune c¼a (xn)n converge

la a în X) şi se scrie lim
n!1

xn = a
def, pentru orice vecin¼atate V a lui a exist¼a

nV 2 N astfel încât pentru orice n � nV avem xn 2 V .

Este uşor de observat c¼a în de�ni̧tia precedent¼a "orice vecin¼atate V a
lui a" poate � înlocuit¼a cu "orice muļtime deschis¼a V ce coņtine a" sau cu
"orice muļtime V dintr-un sistem fundamental de vecin¼at¼a̧ti ale lui a". De
asemenea ca şi în cazul şirurilor de numere reale avem:

Teorema 4.2.2 (Unicitatate limitei unui şir) Dac¼a X este spaţiu
separat (spaţiu Hausdor¤ ), atunci limita unui şir din X (dac¼a exist¼a) este
unic¼a.

De�ni̧tia 4.2.3 Un şir din spaţiu topologic X care are limit¼a în X se
numeşte convergent în X. Un şir care nu este convergent se numeşte
divergent.
Un punct a 2 X se numeşte punct limit¼a al şirului (xn)n dac¼a şi numai

dac¼a pentru orice vecin¼atate V a lui a şi orice n 2 N exist¼a k � n, astfel
încât xk 2 V .

Se observ¼a c¼a:
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� Dac¼a (xn)n este un şir din X cu proprietea c¼a xn 2 A � X pentru orice n,
şi dac¼a a este un punct limit¼a al lui (xn)n, atunci a 2 A (închiderea
muļtimii A). (Într-adev¼ar, (pentru orice vecin¼atate V a lui a, V \A 6=
;)

� Un punct a este punct limit¼a al şirului (xn)n dac¼a şi numai dac¼a exist¼a
un subşir al şirului (xn)n convergent la a.

� Dac¼a a este limita unui şir (xn)n cu proprietea c¼a xn 2 A � X pentru
orice n, atunci a 2 A.

De�ni̧tia 4.2.4 (Limita unei funçtii) Fie X şi Y dou¼a spaţii topologice,
A o submulţime a lui X şi �e f : A ! Y o funcţie. Fie a un punct de
acumulare al lui A. Se spune c¼a f are limita b 2 Y în punctul a şi se scrie
lim
x!a
f (x) = b

def, pentru orice vecin¼atate V a lui b exist¼a o vecin¼atate UV a

lui a astfel încât f (x) 2 V pentru orice x 2 (UV n fag) \ A.

În de�ni̧tia precedent¼a "orice vecin¼atate a lui b, respectiv a " poate �
înlocuit¼a cu "orice muļtime deschis¼a ce coņtine b, respectiv a" sau cu "orice
muļtime dintr-un sistem fundamental de vecin¼at¼a̧ti ale lui b, respectiv a".
Cu nota̧tiile din de�ni̧tia precedent¼a, dac¼a f are limit¼a în a şi (xn)n este
un şir din A astfel încât xn 6= a pentru orice n şi lim

n!1
xn = a, atunci

lim
n!1

f (xn) = lim
x!a

f (x).

Teorema 4.2.5 (Unicitatate limitei unei funçtii) Fie X un spaţiu
topologic, A o submulţime a lui X şi a un punct de acumulare al lui A.
Dac¼a Y este spaţiu separat (spaţiu Hausdor¤ ), atunci limita unei funcţii
f : A! Y în a (dac¼a exist¼a) este unic¼a.

Demonstra̧tie. Fie b1, b2 2 Y astfel încât lim
x!a
f (x) = b1 şi lim

x!a
f (x) = b2.

Presupunem prin absurd c¼a b1 6= b2. Atunci exist¼a dou¼a muļtimi deschise V1
şi V2 astfel încât b1 2 V1, b2 2 V2 şi V1\V2 = ;. Cum lim

x!a
f (x) = b1, exist¼a o

vecin¼atate U1 a lui a astfel încât f (x) 2 V1 pentru orice x 2 (U1 n fag)\A.
Pe de alt¼a parte din faptul c¼a lim

x!a
f (x) = b2 rezult¼a c¼a exist¼a o vecin¼atate

U2 a lui a astfel încât f (x) 2 V2 pentru orice x 2 (U2 n fag) \ A. Deci
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pentru orice x 2 (U1 \ U2 \ A)nfag avem f (x) 2 V1\V2 ceea ce contrazice
V1 \ V2 = ;.
Cu nota̧tiile din teorema precedent¼a, dac¼a (xn)n şi (yn)n sunt dou¼a şiruri

din A astfel încât xn 6= a şi yn 6= a pentru orice n, lim
n!1

xn = lim
n!1

yn = a

şi lim
n!1

f (xn) 6= lim
n!1

f (yn), atunci f nu are limit¼a în punctul a (altfel

lim
x!a

f (x) = lim
n!1

f (xn) = lim
n!1

f (yn)). Dac¼a A o submuļtime a unui spa̧tiu

topologic X, a un punct de acumulare al lui A f este continu¼a în a şi (x)n
este un şir din A astfel încât lim

n!1
xn = a, atunci lim

n!1
f (xn) = lim

x!a
f (x).

De�ni̧tia 4.2.6 (Limitele laterale ale unei funçtii) Fie Y un spaţiu
topologic, A � R (înzestrat cu topologia uzual¼a) şi �e f : A! Y o funcţie.
Punctul a 2 R se numeşte punct de acumulare la stânga pentru A şi se scrie
a 2 A0s

def, pentru orice vecin¼atatea V a lui a avem (V n fx � ag) \ A 6= ;.
Se spune c¼a f are limita la stânga b 2 Y în punctul a 2 A0s şi se scrie
lim
x!a
x<a

f (x) = b
def, pentru orice vecin¼atate V a lui b exist¼a o vecin¼atate UV a

lui a astfel încât f (x) 2 V pentru orice x 2 UV \ A, x < a.
Punctul a 2 R se numeşte punct de acumulare la dreapta pentru A şi se

scrie a 2 A0d
def, pentru orice vecin¼atatea V a lui a avem (V n fx � ag)\A 6=

;. Se spune c¼a f are limita la dreapta b 2 Y în punctul a şi se scrie

lim
x!a
x>a

f (x) = b
def, pentru orice vecin¼atate V a lui b exist¼a o vecin¼atate UV a

lui a astfel încât f (x) 2 V pentru orice x 2 UV \ A, x > a.

Este uşor de observat în cazul în care Y este spa̧tiu separat (spa̧tiu
Hausdor¤) f : A! Y are limit¼a în punctul a 2 A0s\A0d dac¼a şi numai dac¼a
are limit¼a la stânga şi la dreapta în a şi cele dou¼a limite laterale coincid. În
aceast¼a situa̧tie lim

x!a
f (x) = lim

x!a
x<a

f (x) = lim
x!a
x>a

f (x).

De�ni̧tia 4.2.7 (Funçtie continu¼a) Fie X şi Y dou¼a spaţii topologice, A
o submulţime a lui X şi �e f : A ! Y o funcţie. Se spune c¼a f : A ! Y
este continu¼a într-un punct a 2 A dac¼a pentru orice vecin¼atate V a lui f (a)
exist¼a o vecin¼atate UV a lui a astfel încât f (x) 2 V pentru orice x 2 UV \A.
Se spune c¼a f este continu¼a pe A0 � A dac¼a f este continu¼a în orice

punct a 2 A0.
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Se observ¼a c¼a:

� f este continu¼a în orice punct izolat din A.

� Dac¼a a 2 A este punct de acumulare pentru A, atunci f este continu¼a în
a dac¼a şi numai dac¼a lim

x!a
f (x) = f (a).

� Dac¼a f este continu¼a în a şi (x)n este un şir din X astfel încât lim
n!1

xn = a,

atunci lim
n!1

f (xn) = f (a).

Teorema 4.2.8 (Condi̧tii necesare şi su�ciente de continuitate global¼a)
Dac¼a X şi Y sunt dou¼a spaţii topologice şi f : X ! Y este o funcţie, atunci
urm¼atoarele a�rmaţii sunt echivalente:

1. f continu¼a pe X.

2. Pentru orice mulţime deschis¼a G � Y , f�1 (G) este deschis¼a în X.

3. Pentru orice mulţime închis¼a F � Y , f�1 (F ) este închis¼a în X.

4. Pentru orice A � X avem f
�
�A
�
� f (A).

5. Pentru orice B � Y avem f�1 (B) � f�1
�
B
�
.

De�ni̧tia 4.2.9 Dac¼a X şi Y sunt dou¼a spaţii topologice şi f : X ! Y
este o funcţie bijectiv¼a, atunci f se numeşte homeomor�sm dac¼a f şi f�1

sunt continue.

4.2.1 Limite uzuale de funçtii reale

I Limitele la �1 ale polinoamelor şi funçtiilor ra̧tionale

1. Dac¼a � > 0, lim
x!1

1
x�
= 0

2. Dac¼a � 2 N�, lim
x!�1

1
x�
= 0

3. Dac¼a p > 0 şi ap 6= 0, atunci

lim
x!1

�
apx

p + ap�1x
p�1 + :::+ a1x+ a0

�
= ap1 =

�
1, dac¼a ap > 0
�1, dac¼a ap < 0
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4. Dac¼a p > 0 şi ap 6= 0, atunci

lim
x!�1

�
apx

p + ap�1x
p�1 + :::+ a1x+ a0

�
=

= (�1)p ap1 =

8>><>>:
1, dac¼a ap > 0 şi p par
�1, dac¼a ap > 0 şi p impar
�1, dac¼a ap < 0 şi p par
1, dac¼a ap < 0 şi p impar

5. Dac¼a r > 0 şi apbr 6= 0, atunci

lim
x!1

apx
p + ap�1x

p�1 + :::+ a1x+ a0
brxr + br�1xr�1 + :::+ b1x+ b0

=

=

8<:
ap
br
1, dac¼a p > r

ap
br
, dac¼a p = r

0, dac¼a p < r
=

8>><>>:
1, dac¼a p > r şi apbr > 0
�1, dac¼a p > r şi apbr < 0
ap
br
, dac¼a p = r

0, dac¼a p < r

6. Dac¼a r > 0 şi apbr 6= 0, atunci

lim
x!�1

apx
p + ap�1x

p�1 + :::+ a1x+ a0
brxr + br�1xr�1 + :::+ b1x+ b0

=

=

8<:
ap
br
(�1)p�r1, dac¼a p > r

ap
br
, dac¼a p = r

0, dac¼a p < r
=

8>>>>>>><>>>>>>>:

1, dac¼a p > r, apbr > 0 şi p� r par
�1, dac¼a p > r, apbr > 0 şi p� r impar
�1, dac¼a p > r, apbr < 0 şi p� r par
1, dac¼a p > r, apbr < 0 şi p� r impar
ap
br
, dac¼a p = r

0, dac¼a p < r

II Limitele funçtiilor exponeņtiale şi logaritmice la marginile inferiore şi
superioare ale domeniilor de de�ni̧tie

1. Dac¼a a > 0 şi a 6= 1, atunci

lim
x!1

ax =

�
1, dac¼a a > 1
0, dac¼a 0 < a < 1
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2. Dac¼a a > 0 şi a 6= 1, atunci

lim
x!�1

ax =

�
0, dac¼a a > 1
1, dac¼a 0 < a < 1

3. Dac¼a a > 1 şi P este o funçtie polinomial¼a, atunci lim
x!1

P (x)
ax

= 0 şi

lim
x!�1

axP (x) = lim
t!1

a�tP (�t) = lim
t!1

P (�t)
at

= 0.

4. Dac¼a a 2 (0; 1) şi P este o funçtie polinomial¼a, atunci lim
x!1

axP (x) =

lim
x!1

P (x)
(1=a)xx

= 0 şi lim
x!�1

P (x)
ax

= lim
x!�1

�
1
a

�x
P (x) = 0.

5. Dac¼a a > 0 şi a 6= 1, atunci

lim
x!1

loga (x) =

�
1, dac¼a a > 1
�1, dac¼a 0 < a < 1

6. Dac¼a a > 0 şi a 6= 1, atunci

lim
x!0
x>0

loga (x) =

�
�1, dac¼a a > 1
1, dac¼a 0 < a < 1

7. Dac¼a a > 1 şi P este o funçtie polinomial¼a, atunci lim
x!1

loga(x)
P (x)

= 0 şi

lim
x!0
x>0

loga (x)P (x) = 0.

8. Dac¼a a 2 (0; 1) şi P este o funçtie polinomial¼a, atunci lim
x!1

1
P (x) loga(x)

=

lim
x!1

log(1=a)(x)

P (x)
= 0 şi lim

x!0
x>0

P (x)
loga(x)

= lim
x!0
x>0

log(1=a) (x)P (x) = 0.

III Limite de funçtii trigonometrice

1. lim
x!0

sin(x)
x
= 1

2. lim
x!0

tg(x)
x
= lim

x!0
1

cos(x)
sin(x)
x
= 1

13
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3. lim
x!0

arc sin(x)
x

= 1

4. lim
x!0

arctg(x)
x

= 1

IV Num¼arul lui Euler

1. lim
x!0

(1 + x)
1
x = e (num¼arul lui Euler)

2. lim
x!1

�
1 + 1

x

�x
= e

V Alte limite

1. Dac¼a a > 0, atunci lim
x!0

ax�1
x
= ln (a).

2. lim
x!0

1
jxj =1

3. lim
x!0
x<0

1
x
= 1

0� = �1

4. lim
x!0
x>0

1
x
= 1

0+
=1

Exemple 4.2.10 S¼a se calculeze urm¼atoarele limite

1. lim
x!0

pp1+x�1
x

, p 2 N , p � 2.

R: Avem

lim
x!0

p
p
1 + x� x
x

= lim
x!0

(1 + x)� 1

x

�
p

q
(1 + x)p�1 + p

q
(1 + x)p�2 + :::+ 1

�
= lim

x!0

1�
p

q
(1 + x)p�1 + p

q
(1 + x)p�2 + :::+ 1

� = 1

p
.
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2. lim
x!0

�
sin(x)
x

� sin(x)
x�sin(x)

.

R: Avem lim
x!0

sin(x)
x
= 1 şi

lim
x!0

�
sin (x)

x

� sin(x)
x�sin(x)

= lim
x!0

 �
1 +

sin (x)� x
x

� x
sin(x)�x

! sin(x)�x
x

sin(x)
x�sin(x)

= e
lim
x!0

� sin(x)
x = e�1.

4.3 Spa̧tii conexe, compacte şi local-compacte

De�ni̧tia 4.3.1 Un spaţiu topologic X se numeşte compact dac¼a din orice
acoperire deschis¼a a sa se poate extrage o subacoperire �nit¼a (mai precis,
oricare ar �familia fGigi de mulţimi deschise cu proprietatea c¼a

[
i

Gi = X,

exist¼a o subfamilie �nit¼a
�
Gij
	
j2f1;2;:::;ng astfel încât

n[
j=1

Gij = X).

O submulţime A a unui spaţiu topologic X se numeşte compact¼a dac¼a
înzestrat¼a cu topologia indus¼a de X este spaţiu compact (sau echivalent,
pentru orice familie fGigi de submulţimi deschise ale lui X cu proprietatea
c¼a A �

[
i

Gi, exist¼a o subfamilie �nit¼a
�
Gij
	
j2f1;2;:::;ng astfel încât A �

n[
j=1

Gij):

O submulţime A a unui spaţiu topologic X se numeşte relativ compact¼a
dac¼a �A compact¼a (închiderea mulţimii A este compact¼a).

Se poate ar¼ata c¼a

� Într-un spa̧tiu topologic în care �eccare punct are un sistem fundamental
num¼arabil de vecin¼at¼a̧ti este compact dac¼a şi numai dac¼a din orice şir
se poate extrage un subşir convergent.
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� Orice submuļtime închis¼a F a unei muļtimi compacte K este compact¼a.
(Într-adev¼ar, �e fGigi o familie de submuļtimi deschise cu proprietatea
c¼a F �

[
i

Gi şi �e CF complementara lui F . Atunci fGigi [ CF

este o acoperire deschis¼a a muļtimii compacte K, şi deci admite o
subacoperire �nit¼a. Eliminând eventual CF din aceast¼a subacoperire
ob̧tinem o subacoperire �nit¼a a lui F )

� Orice submuļtime compact¼aK a unui spa̧tiu Hausdor¤ este închis¼a. (Într-
adev¼ar, pentru x =2 K şi orice y 2 K exist¼a dou¼a muļtimi deschise
Ux;y şi Vx;y astfel încât x 2 Ux;y, y 2 Vx;y şi Ux;y \ Vx;y = ;. Din
acoperirea deschis¼a fVx;ygy2K a lui K se poate extrage o subacoperire

�nit¼a fVx;yigi2f1;2;:::;ng. Atunci x 2
nT
i0=1

Ux;yi � CK (complementara

muļtimii K), şi cum
nT
i0=1

Ux;yi este deschis¼a şi x oarecare în CK, se

ob̧tine CK deschis¼a, ceea ce este echivalent cu K închis¼a).

� Orice submuļtime a unui spa̧tiu compact Hausdor¤ este relativ compact¼a.

Propozi̧tia 4.3.2 (Borel-Lebesgue) O submulţime a lui R (cu topologia
uzual¼a) este compact¼a dac¼a şi numai dac¼a este închis¼a şi m¼arginit¼a. (Pentru
demonstraţie se poate consulta de exemplu, [Gh. Sireţchi, Calcul difereņtial
şi integral, Vol. 1 p. 145, Editura Ştiinţi�c¼a şi Enciclopedic¼a, Bucureşti,
1985].)

Teorema 4.3.3 Fie X şi Y dou¼a spaţii topologice şi f : X ! Y este o
funcţie continu¼a. Dac¼a submulţimea K � X este compact¼a, atunci atunci
f (K) este compact¼a în Y .

Demonstra̧tie. Fie fGigi o familie de submuļtimi deschise ale lui Y cu
proprietatea c¼a f (K) �

[
i

Gi. Deoarece f este continu¼a, f�1 (Gi) este

deschis¼a în X pentru orice i. În plus, cum pentru orice x 2 K, exist¼a
ix astfel încât f (x) 2 Gix (sau echivalent, x 2 f�1 (Gix)), rezult¼a c¼a
K �

[
i

f�1 (Gi). Aşadar ff�1 (Gi)gi este o acoperire deschis¼a a muļtimii

compacteK şi ca urmare admite o subacoperire �nit¼a
�
f�1

�
Gij
�	

j2f1;2;:::;ng.
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DeoareceK �
n[
j=1

f�1
�
Gij
�
, pentru orice x 2 K, exist¼a j = jx 2 f1; 2; :::; ng

a astfel încât x 2 f�1
�
Gij
�
(echivalent, f (x) 2 Gij). Deci f (K) �

n[
j=1

Gij şi în conseciņt¼a, din fGigi se poate extrage o subacoperire �nit¼a a

lui f (K). Ca urmare f (K) este compact¼a.

Teorema 4.3.4 (Weierstrass) Dac¼aX este un spaţiu compact şi f : X !
R este o funcţie continu¼a, atunci f este m¼arginit¼a şi îşi atinge extremele,
adic¼a exist¼a xmin; xmax 2 X astfel încât

f(xmin) � f(x) � f(xmax) pentru orice x 2 X.

Demonstra̧tie. Muļtimea f (X) �ind o submuļtime compact¼a a lui R, este
închis¼a şi m¼arginit¼a. Deci f este m¼arginit¼a. Deoarece sup f (X) (respectiv
inf f (X)) este limita unui şir din f (X), sup f (X) (respectiv inf f (X))
apaŗtine închiderii lui f (X) ce coincide cu f (X). Ca urmare exist¼a ymax 2
f (X) (respectiv ymin 2 f (X)) astfel încât ymax = sup f (X) (respectiv
ymin = inf f (X)) . În conseciņt¼a, exist¼a xmax 2 X (respectiv xmin 2 X)
astfel încât f (xmax) = ymax = sup f (X) (respectiv f (xmin) = ymin =
inf f (X)) .

De�ni̧tia 4.3.5 Un spaţiu topologic X se numeşte local compact dac¼a orice
punct al s¼au are o vecin¼atate compact¼a.

Exemplul 4.3.6 R (cu topologia uzual¼a) este spaţiu local compact Hausdor¤.

De�ni̧tia 4.3.7 Un spaţiu topologic X se numeşte conex dac¼a singurele lui
submulţimi în acelaşi timp închise şi deschise sunt ; şi X. O submulţime A
a unui spaţiu topologic X se numeşte conex¼a

def, A înzestrat¼a cu topologia
indus¼a de X este spaţiu topologic conex.

Teorema 4.3.8 Singurele submulţimi conexe ale R înzetrat cu topologia
uzual¼a sunt intervalele. (Pentru demonstraţie se poate consulta de exemplu,
[Gh. Sireţchi, Calcul difereņtial şi integral, Vol. 1 p. 143, Editura Ştiinţi�c¼a
şi Enciclopedic¼a, Bucureşti, 1985].)
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Teorema 4.3.9 Fie X şi Y dou¼a spaţii topologice şi f : X ! Y este o
funcţie continu¼a. Dac¼a submulţimea A � X este conex¼a, atunci atunci
f (A) este conex¼a ca submulţime a lui Y .

Demonstra̧tie. Presupunem prin absurd c¼a exist¼a dou¼a submuļtimi B1şi
B2 ale lui Y în acelaşi timp închise şi deschise astfel încât f (A) = (B1 [B2)\
f (A). Atunci f�1 (B1) şi f�1 (B2) sunt submuļtimi în acelaşi timp închise
şi deschise ale lui X şi în plus, A = (f�1 (B1) [ f�1 (B2)) \ A. Ob̧tinem
astfel o contradiçtie cu faptul c¼a A este conex¼a. Aşadar f (A) este conex¼a.

4.4 Spa̧tii metrice

De�ni̧tia 4.4.1 (Metric¼a) Fie X o mulţime. Se numeşte distanţ¼a (sau
metric¼a) pe X o funcţie d : X �X ! R cu urm¼atoarele propriet¼aţi:

1. d (x; y) � 0 pentru orice x; y 2 X;

2. d (x; y) = 0 dac¼a şi numai dac¼a x = y;

3. d (x; y) = d (y; x) pentru orice x; y 2 X;

4. d (x; y) � d (x; z) + d (z; y) pentru orice x; y; z 2 X. (inegalitatea
triunghiului)

Perechea (X; d) se numeşte spaţiu metric. Petru orice a 2 X şi orice
r > 0 se numeşte bila (deschis¼a) din X centrat¼a în a de raz¼a r şi se noteaz¼a
cu B (a; r) mulţimea:

B(a; r) = fx 2 X : d (a; x) < rg .

Familia bilelor din spa̧tiul metric (X; d) este o baz¼a pentru o topologie
numit¼a topologia asociat¼a (canonic) distanţei (metricii) d. O muļtime G
este deschis¼a în aceast¼a topologie dac¼a pentru orice x 2 G exist¼a rx > 0
astfel încât B(x; rx) � G. Dou¼a distaņte (metrice) se numesc echivalente
dac¼a topologiile asociate coincid. Un spa̧tiu topologic se numeşte metrizabil
dac¼a exist¼a o distant¼a (metric¼a) d peX cu proprietatea c¼a topologia asociat¼a
lui d coincide cu topologia de pe X.

18



Analiz¼a Matematic¼a - curs 5

Exemplul 4.4.2 Funcţia d : R � R ! R de�nit¼a prin d (x; y) = jx� yj
pentru orice x; y 2 R este o distanţ¼a pe R. Topologia indus¼a de aceast¼a
metric¼a coincide cu topologia uzual¼a pe R.

În orice spa̧tiu metric are sens no̧tiunea de limit¼a deoarece orice spa̧tiu
metric este un spa̧tiu topologic. Astfel dac¼a (X; d) este un spa̧tiu metric
şi (xn)n un şir din X, atunci limn!1

xn = a 2 X (relativ la topologia indus¼a

de metrica d) dac¼a şi numai dac¼a pentru orice " > 0 exist¼a n" 2 N astfel
încât pentru orice n � n" avem d (a; xn) < ". Ca urmare lim

n!1
xn = a ,

lim
n!1

d (a; xn) = 0.

De�ni̧tia 4.4.3 (Şir Cauchy) Fie (X; d) un spaţiu metric şi �e (xn)n
un şir din X. Şirul (xn)n se numeşte şir Cauchy (sau fundamental)

def,
pentru orice " > 0 exist¼a n" 2 N astfel încât pentru orice m;n � n" avem
d (xm; xn) < " (sau echivalent, pentru orice " > 0 exist¼a n" 2 N astfel încât
pentru orice n � n" şi orice p 2 N avem d (xn+p; xn) < ").

Propozi̧tia 4.4.4 Orice şir convergent este şir Cauchy.

Demonstra̧tie. Fie (xn)n un şir convergent din X şi �e a limita sa. Atunci
pentru orice " > 0 exist¼a n" 2 N astfel încât d (a; xn) < "

2
pentru orice

n � n". Ca urmare pentru orice n;m � n",

d (xm; xn) � d (xm; a) + d (a; xn) <
"

2
+
"

2
= ".

Deci (xn)n este şir Cauchy.
Reciproca nu este adev¼arat¼a.

De�ni̧tia 4.4.5 (Spa̧tiu metric complet) Un spaţiu metric (X; d) în care
orice şir Cauchy este convergent se numeşte spaţiu metric complet.

Exemplul 4.4.6 R înzestrat cu distanţa d : R � R ! R, de�nit¼a prin
d (x; y) = jx� yj pentru orice x; y 2 R, este un spaţiu metric complet.

Este uşor de observat c¼a dac¼a (X; d) este un spa̧tiu metric şi A � X,
atunci (A; dA) este un spa̧tiu metric, unde dA : A � A ! R, dA (x; y) =
d (x; y) pentru orice x; y 2 A. Dac¼a (X; d) este un spa̧tiu metric complet şi
A � X, atunci (A; dA) este un spa̧tiu metric complet dac¼a şi numai dac¼a A
este o submuļtime închis¼a a lui X.
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Propozi̧tia 4.4.7 Fie (X; dX) şi (Y; dY ) dou¼a spaţii metrice şi �e f : X !
Y o funcţie. Pentru orice a 2 X urm¼atoarele a�rmaţii sunt echivalente

1. f continu¼a în a.

2. Dac¼a (xn)n este un şir dinX astfel încât lim
n!1

xn = a, atunci lim
n!1

f (xn) =

f (a).

3. Pentru orice " > 0 exist¼a �" > 0 astfel încât pentru orice x 2 X cu
dX(x; a) < �" rezult¼a dY (f(x); f(a)) < ".

Demonstra̧tie. 1: ) 2: Este o implica̧tie valabil¼a în spa̧tii topologice
în general. Fie V o vecin¼atate a lui f (a). Deoarece f este continu¼a în a,
exist¼a UV o vecin¼atate a lui a astfel încât f (UV ) � V . Faptul c¼a lim

n!1
xn = a

implic¼a existeņta unui num¼ar natural nV astfel încât xn 2 UV pentru orice
n � nV . De aici şi din faptul c¼a f (UV ) � V , rezult¼a c¼a f (xn) 2 V pentru
orice n � nV şi ca urmare lim

n!1
f (xn) = f (a).

2: ) 3: Presupunem prin absurd c¼a exist¼a "0 > 0 astfel încât pentru
orice � > 0 exist¼a x� > 0 astfel încât dX(x�; a) < � şi dY (f(x�); f(a)) > "0.
Not¼am xn = x�n pentru �n =

1
n
. Atunci dX(x�; a) < 1

n
şi deci lim

n!1
d (a; xn) =

0. Ca urmare lim
n!1

xn = a şi în conseciņt¼a lim
n!1

f (xn) = f (a). Aşadar exist¼a

n0 2 N astfel încât dY (f(xn); f(a)) < "0 pentru orice n � n0, ceea ce
contrazice dY (f(xn); f(a)) > "0 pentru orice n 2 N�.
3:) 1: Fie V o vecin¼atate a punctului f (a). Atunci exist¼a "V > 0 astfel

încât B (f (a) ; "V ) � V . Pe de alt¼a parte exist¼a �"V > 0 astfel încât pentru
orice x 2 X cu dX(x; a) < �"V rezult¼a dY (f(x); f(a)) < "V sau cu alte
cuvinte f (B (a; �"V )) � B (f (a) ; "V ). Deoarece B (a; �"V ) este o vecin¼atate
a lui a şi f (B (a; �"V )) � B (f (a) ; "V ) � V , rezult¼a c¼a f este continu¼a în
a.

De�ni̧tia 4.4.8 O funcţie f : X ! Y între spaţiile metrice (X; dX) şi
(Y; dY ) se numeşte uniform continu¼a dac¼a pentru orice " > 0 exist¼a �" > 0
astfel încât pentru orice x; y 2 X cu proprietatea c¼a dX (x; y) < �", s¼a avem
dY (f(x); f(y)) < ".

Evident, orice funçtie uniform continu¼a este continu¼a.
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Propozi̧tia 4.4.9 Dac¼a X este spaţiu metric compact, atunci orice funcţie
continu¼a f : X ! Y este uniform continu¼a.

4.5 Spa̧tii normate şi spa̧tii Hilbert

De�ni̧tia 4.5.1 Fie V un spaţiu vectorial peste corpul K(K = R sau K =
C). O norm¼a pe V este o funcţie p : V ! [0;1) care satisface urm¼atoarele
condiţii:

1. p(x) = 0 dac¼a şi numai dac¼a x = 0.

2. p(x+ y) � p(x) + p(y) pentru orice x,y 2 V .

3. p(�x) = j�jp(x) pentru orice � 2 K şi orice x 2 V .

Perechea (V; p) se numeşte spaţiu normat (real dac¼a K = R, respectiv
complex dac¼a K = C).

Exemple 4.5.2 1. Consider¼am V = R ca spaţiu vectorial peste R. Atunci
p : R! [0;1), p (x) = jxj este o norm¼a R.

2. Consider¼am V = C ca spaţiu vectorial peste C. Atunci p : C! [0;1),
p (z) = jzj =

p
a2 + b2 (z = a+ ib, a; b 2 R) este o norm¼a C.

În cele ce urmeaz¼a vom nota p(x) = jjxjj pentru orice x 2 V şi vom
spune c¼a V este un spa̧tiu normat în loc de (V; jj�jj), atunci când norma jj�jj
se subîņtelege. Pe orice spa̧tiu normat se poate de�ni o metric¼a (distanţ¼a)
canonic¼a d prin d(x; y) = jjx � yjj pentru orice x; y 2 V . Prin urmare
oric¼arui spa̧tiu normat i se pot asocia în mod canonic o structur¼a metric¼a şi
o structur¼a topologic¼a(asociat¼a distaņtei d(x; y) = jjx � yjj). Pentru orice
x0 2 V şi orice r > 0 vom nota cu B(x0; r) bila din V centrat¼a în x0 de raz¼a
r:

B (x0; r) = fx 2 V : jjx� x0jj < rg :
Pentru orice spa̧tiu normat V (înzestrat cu structura metric¼a şi structura
topologic¼a asociate în mod canonic) sunt adev¼arate urm¼atoarele a�rma̧tii:

� Şirul (xn)n din V converge la x 2 V dac¼a şi numai dac¼a limn!1 jjxn�xjj = 0.
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� Şirul (xn)n din V este şir Cauchy (fundamental) dac¼a şi numai dac¼a pentru
orice " > 0 exist¼a n" 2 N astfel încât kxn � xmk < " pentru orice
m;n � n".

� jj�jj : V ! [0;1) este o aplica̧tie continu¼a.

� Funçtiile (x; y)! x+ y [: V � V ! V ] şi (�; x)! �x[: K � V ! V ] sunt
continue (V � V şi K � V sunt înzestrate cu topologia produs).

� Dac¼a W este un alt spa̧tiu normat, A � V , a 2 A0, atunci o funçtie
f : A ! W are limita b 2 W în punctul a , pentru orice " > 0
exist¼a �" > 0 astfel încât pentru orice x 2 A n fag cu kx� ak < �",
avem kf (x)� bk < ".

De�ni̧tia 4.5.3 O norm¼a pe un spaţiu vectorial V peste corpul K (K = R
sau K = C) se numeşte complet¼a dac¼a metrica asociat¼a ei este complet¼a
(i.e. dac¼a orice şir Cauchy este convergent). Un spaţiu normat se numeşte
spaţiu Banach dac¼a norma cu care este înzestrat este complet¼a.

De�ni̧tia 4.5.4 Dou¼a norme p1 şi p2 pe spaţiul vectorial V se numesc
echivalente dac¼a topologiile asociate lor (în mod canonic) coincid. Pentru
a desemna faptul c¼a p1 şi p2 sunt echivalente vom folosi notaţia p1 � p2.

Se poate ar¼ata c¼a normele p1 şi p2 sunt echivalente dac¼a şi numai dac¼a
exist¼a M;m > 0 astfel încât

mp1(x) � p2(x) �Mp1(x) pentru orice x 2 V .

Exemple 4.5.5 Fie (V1; p1), (V2; p2), ..., (Vn; pn) n spaţii normate peste
corpul K (K = R sau K = C). Dac¼a pe

V1� V2� :::� Vn = f(x1; x2; : : : ; xn) : xi 2 Vi, oricare ar � i 2 f1; 2; : : : ngg

de�nim adunarea şi înmulţirea cu scalari din K în maniera de mai jos

(x1; x2; : : : ; xn) + (y1; y2; : : : ; yn) = (x1 + y1; x2 + y2; : : : ; xn + yn)

�(x1; x2; : : : ; xn) = (�x1; �x2; : : : ; �xn),
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atunci este uşor de observat c¼a sunt îndeplinite condiţiile cerute de de�niţia
spaţiului vectorial şi deci V1 � V2 � ::: � Vn este spaţiu vectorial peste K.
Vom nota cu p1; p1; p2 : V1�V2� :::�Vn ! [0;1) aplicaţiile de�nite prin:

p1 (x1; x2; : : : ; xn) = max
1�j�n

pj (xj)

p1 (x1; x2; : : : ; xn) =
nX
j=1

pj (xj)

p2 (x1; x2; : : : ; xn) =

 
nX
j=1

pj (xj)
2

!1=2
pentru orice x = (x1; x2; : : : ; xn) 2 V1�V2� :::�Vn. Atunci p1, p1; p2 sunt
norme echivalente pe V1 � V2 � :::� Vn. Într-adev¼ar, avem

1

n
p1 (x) � p1 (x) � p1 (x) şi

1p
n
p2 (x) � p1 (x) � p2 (x)

pentru orice x = (x1; x2; : : : ; xn) 2 V1 � V2 � ::: � Vn. Topologia asociat¼a
oric¼areia dintre aceste norme coincide cu topologia produs pe V1�V2�:::�Vn.

De�ni̧tia 4.5.6 Fie H un spaţiu vectorial peste corpul peste corpul K(K =
R sau K = C). Se numeşte produs scalar pe H o aplicaţie ' : H �H ! K
care are urm¼atoarele propriet¼aţi:

1. '(x+ y; z) = '(x; z) + '(y; z) pentru orice x; y; z 2 H.

2. '(�x; y) = �'(x; y) pentru orice � 2 K şi x 2 H.

3. '(x; y) = ' (y; x) (deci '(x; y) = '(y; x) pentru K = R) pentru orice
x; y 2 H.

4. ' (x; x) > 0 pentru orice x 6= 0.

Vom nota '(x; y) = hx; yi pentru orice x; y 2 H. Se spune c¼a norma
spa̧tiului normat (H; jj�jj) provine dintr-un produs scalar h�; �i dac¼a

jjxjj =
p
hx; xi

pentru orice x 2 H. Un spaţiu pre-Hilbert este un spa̧tiu normat în care
norma provine dintr-un produs scalar, iar un spaţiu Hilbert este un spa̧tiu
pre-Hilbert complet (cu norm¼a complet¼a).
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baz¼a a unei topologii, 7
bila (deschis¼a), 18

continuitate, 10

derivata unei muļtimi, 6
distaņt¼a, 18

asociat¼a unei norme, 21
distaņte echivalente, 18

exteriorul unei muļtimii, 6

frontiera unei muļtimii, 6
funçtie

funçtie continu¼a, 10
limita intr-un punct, 9
uniform continu¼a, 20

homeomor�sm, 11

inchiderea unei muļtimii, 5
inegalitatea triunghiului, 18
interiorul unei muļtimii, 5

limita la dreapta, 10
limita la stânga, 10
limita unei funçtii, 9
limita unui şir, 8
limite laterale, 10

metric¼a, 18

asociat¼a unei norme, 21
metrice echivalente, 18
muļtime

închiderea unei muļtimii, 5
compact¼a, 15
derivata unei muļtimii, 6
exteriorul unei muļtimii, 6
frontiera unei muļtimii, 6
interiorul unei muļtimii, 5
muļtime închis¼a, 4
F�, 7
G�, 7
muļtime dens¼a, 6
muļtime deschis¼a, 4
muļtime discret¼a, 6
punct aderent al muļtimii, 5
punct de acumulare, 6
punct interior al muļtimii, 5
punct izolat al unei muļtimii, 6
relativ compact¼a, 15

norm¼a, 21
complet¼a, 22
indus¼a de un produs scalar, 23

norme echivalente, 22

produs scalar, 23
punct aderent, 5
punct de acumulare, 6
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la dreapta, 10
la stânga, 10

punct exterior, 6
punct frontier¼a, 6
punct interior, 5
punct izolat, 6
punct limit¼a, 6, 8

sir
punct limita, 8
sir convergent, 8
sir divergent, 8

sir Cauchy, 19
sir fundamental, 19
sistem fundamental de vecinatati, 4
spa̧tiu Banach, 22
spa̧tiu compact, 15
spa̧tiu conex, 17
spa̧tiu Hilbert, 23
spa̧tiu local compact, 17
spa̧tiu metric, 18

complet, 19
sir Cauchy, 19

spa̧tiu normat, 21
complex, 21
real, 21

spa̧tiu pre-Hilbert, 23
spa̧tiu separat (Hausdor¤), 8
spa̧tiu topologic, 3

metrizabil, 18
muļtime dens¼a, 6
punct, 3
spa̧tiu compact, 15
spa̧tiu conex, 17
spa̧tiu Hausdor¤, 8
spa̧tiu local compact, 17

subspa̧tiu topologic, 7

teorema Borel-Lebesgue, 16
teorema Weierstrass, 17
topologie, 3

asociat¼a unei distaņte, 18
asociat¼a unei norme, 21
muļtime închis¼a, 4
muļtime deschis¼a, 4
topologia discret¼a, 4
topologia indiscret¼a, 4
topologia produs, 4
topologia uzual¼a pe R, 4
topologie indus¼a, 7
topologie mai slab¼a ..., 7
topologie mai tare ..., 7
vecin¼atate, 4

topologie indus¼a, 7

urma unei topologii, 7

vecin¼atate, 4
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