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Capitolul 4

Spatii topologice

In capitolul precedent am definit notiunea de limit# (a unui sir de numere
reale) utilizand notiunea de vecinitate a unui numar real sau a lui £0o € R.
Cadrul general in care se definesc vecinatatile este dat de asa numite spatii
topologice.

4.1 'Topologie

Definitia 4.1.1 (Topologie) Fie X o multime. O familie T de submultimi
ale lut X se numeste topologie pe X daca gi numai daca sunt indeplinite
urmatoarele conditii:

1. X i () sunt elemente ale lui T

2. Daca I este o familie oarecare de indici si daca G; € T pentru orice
1 € 1, atunci UGi eT
iel
3. Daca I este o familie finita de indici i daca G; € T pentru orice i € I,
atunci ﬂ G, er.

i€l

Multimea X inzestratd cu o topologie 7 se numeste spatiu topologic
si se noteazd (X, 7). Dacd nu existd posibilitatea unei confuzii, nu se mai
precizeaza topologia 7. Elementele unui spatiu topologic se numesc puncte,
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iar elementele topologiei se numesc multimi deschise (cu alte cuvinte, G C
X se numeste multime deschisa daca i numai dacad G € 7). O submultime F'
a spatiului topologic X se numeste multime inchisa daca este complementara
(in raport cu X) unei multimi deschise.

Exemple 4.1.2 1. Pentru orice multime X, {0, X} satisace conditiile
din definitia topologiei. Topologia in care familia multimilor deschise
este {0, X'} se numeste topologia indiscreta sau triviala pe X .

2. Pentru orice multime X, P(X) = 2% satisace conditiile din definitia
topologiei. Topologia T4 = P(X) = 2% se numeste topologia discreti
pe X.

3. Familia reuniunilor de intervale deschise ale lui R impreund cu () da

o topologie pe R numita topologia uzuald (sau topologia naturala) pe
R.

4. Daca (X,7x) si (Y,7y) sunt doud spatii topologice. Atunci familia
multimilor G C X XY cu proprietatea ca pentru orice (a,b) € G
erista A € Tx si B € Ty asfel incdt

(a,b) e Ax BCG

este o topologie pe X XY numita topologia produs. Mai general, daca
(Xi,7i), i = 1..n, sunt spatii topologice, topologia produs pe X x Xg X
.. x X, este familia multimilor G C X1 x X5 X ... X X,, cu proprietatea
ca pentru orice (r1,xs,...,x,) € G gi pentru orice i = 1..n exista
A; € T; asfel incat

(ZL’l,IQ,...,ZEn)€A1XA2X..XAnCG.

O submultime V' a spatiului topologic X se numeste vecindtate a punctului
v e X Y exists o multime deschisa G astfel incat x € G C V. Mai general,
V' este o vecindtate a multimii A C X daca existda o multime deschisa G
astfel incat A C G C V. Se poate arata usor ca o submultime A C X
este deschisa daca si numai daca este vecinatate pentru orice punct al sau.
O multime U(z) de vecinatati ale unui punct = € X se numeste sistem

. . d . .
fundamental de vecinatati pentru punctul x “ pentru orice V' vecinatate a
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lui = existd U € U(x) astfel incat U C V. Dacd notdm cu V(z) multimea
tuturor vecinatatilor lui x atunci sunt adevarate urmatoarele proprietati:

V1. Daca V € V(z) atunci z € V.
V2. Dacd V € V() si V C U, atunci U € V(x).
V3. Daca V,U € V(z), atunci VN U € V(x).

V4. Dacd V € V(x), atunci existd U € V(x) astfel incat V este vecinitate
pentru fiecare punct y € U.

Se poate arata ca proprietatile V1 — V4 definesc unic topologia lui X,
in sensul cd daca functia x — V(z) satisface conditiile V'1 — V4, atunci

7={G C X : G € V(x) pentru orice z € G} U {0}

este o topologie pe X gi V(z) este multimea vecindtatilor lui x in aceasta
topologie. In aceastil situatie se spune ci topologia a fost generatd cu
ajutorul vecinatatilor. Aceastd observatie ne permite s& definim o topologie
pe X pornind de la o familie {{/(x)}, .y de submultimi ale lui X avand
proprietatea ca

V(z) ={V C X :existd U € U(z) astfe lincat U C V'}

satisface conditii V1 — V4 pentru orice x.
In cele ce urmeaza A este o submultime a spatiului topologic X.

Se numeste interiorul multimii A, gi se noteaza cu int (A) sau A, reuniunea
tuturor multimilor deschise incluse in A. Int(A) poate fi definit in mod
echivalent ca fiind cea mai mare multime deschisa (relativ la relatia de
incluziune) continuta in A. Punctele multimii int (A) se numesc puncte
interioare ale lui A. In consecint#, = € int (A) daci si numai daci exista o
multime deschisa G astfel incat x € G C A. Multimea A este deschisa daca
si numai daca A = int (A).

Se numeste inchiderea multimii A, si se noteaza cu A, intersectia tuturor
multimilor inchise ce contin pe A. A poate fi definit& in mod echivalent ca
fiind cea mai micd multime inchisd (relativ la relatia de incluziune) care
include pe A. Punctele multimii A se numesc puncte aderente ale lui A.
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Se observd imediat ci « € A dacd si numai dacd pentru orice vecinitate V
alui z, VN A # (. Mulfimea A este inchisd dacd si numai dacd A = A.
Multimea A se numeste densa in X daca A = X. Se poate arata ca

X\ A =int(X\A) s X\int(4) =X\ A

Un punct z € X se numeste punct de acumulare (sau punct limita)

al lui A % oricare ar fi vecindtatea V a lui x, avem (V\{z})NA # 0.
Multimea punctelor de acumulare ale multimii A se noteaza cu A’ si se
numegte derivata multimii A. Un punct x € X se numeste punct izolat

al multimii A %L exista o vecindtate V a lui o astfel incat V N A = {z}.
Multimea A se numeste discretd daca orice punct al ei este izolat.

Se numeste exteriorul multimii A, gi se noteaza cu exterior (A), multimea
int (X \ A). Un punct z € exterior(A) se numeste punct esterior lui A.
Rezultd imediat ca x € exterior (A) daca si numai daca exista o vecinatate
V alui x astfel incat VN A = (.

Se numeste frontiera multimii A, si se noteaza cu Fr (A) sau 9 (A),
multimea AN X \ A. Elementele multimii Fr (A) se numesc puncte frontierd
ale lui A (puncte care nu apartin nici interiorului nici exteriorului multimii
A). Vom nota cu frn(A) = Fr(A)\ A = A\ A (multimea punctelor
frontiera ale lui A care nu apartin lui A).

Se poate arata ca:

- int (A) = A\ Fr (A);

- A=AUFr(A);

. Fr(X\ A) = Fr(A);

- Fr(AUB) C Fr(A)U Fr(B);

- Fr(ANB) C Fr(A)UFr(B);

- X = int (A) Uexterior (A) U Fr (A);
- Fr(A4) C Fr(A);

- Fr(int(A)) C Fr(A);
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- A este deschisd dac# si numai daci Fr (A) = A\ A;
- A este inchisa daca si numai dacd Fr(A) = A\ int (A).

Multimea A se numeste multime de tipul Gs daca se poate scrie sub
forma unei intersectii numarabile de multimi deschise ale lui X. Multimea A
se numeste multime de tipul F, daca se poate scrie sub forma unei reuniuni
numarabile de multimi inchise ale lui X.

Daci (X, 7) este un spatiu topologic si A o submultime a lui X,
atunci

Ta={ANG:G e}

este o topologie pe A numita topologia indusa pe A de topologia 7, sau
restrictia (urma) topologiei 7 pe A. Se mai spune cd A este subspatiu
topologic al lui X. Orice element al lui 74 se numegte multime deschisa in
A, iar orice submultime a lui A inchisa in topologia 74 (i.e. complementara
unui element al lui 74) se numegte multime inchisa in A. Multimea B este
T a-inchisd (inchisd in A) daca si numai daca existd o multime inchisd F
(relativ la 7) astfel incat B = F'N A. Inchiderea lui B in topologia 74 este
intersectia dintre inchiderea lui B in topologia 7 si A.

O familie B de multimi deschise in spatiul topologic X cu proprietatea
ca orice multime deschisa din X este reuniunea unei familii de elemente din
B se numegte bazi (de multimi deschise) pentru topologia lui X. Familia
B de multimi deschise ale spatiului topologic X este baza daca si numai
daca pentru orice x € X si orice vecinatate V' a lui x exista B € B astfel
incat x € B C V. O familie B de submultimi ale unei multimi X este baza
pentru o topologie pe X daca exista o topologie pe X astfel incat B sa fie
bazid pentru acea topologie (care se va numi topologia generatd de baza B).
Se arata usor ca B baza pentru o topologie pe X daca

Bl. U{B: B e B} =X,

B2. Pentru orice U gi V din B, UNV este reuniunea unei familii de elemente
din B.
Doua baze care genereaza aceeagi topologie se numesc baze echivalente.

Fie 71 ¢i 7o doud topologii pe X. Se spune cd 71 este mai slabd (sau

. . o . o . . o A d
mai putin find) decat To sau ca Ty este mai tare (sau mai fina) decat T4 24
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orice multime deschisd in topologia 71 este deschisd i in topologia 7o (cu
alte cuvinte, G € 71 = G € 13).

Un spatiu topologic X se numeste spatiu Ty sau spatiu (separat) Hausdorff
daca si numai daca oricare ar fi punctele distincte x,y € X, exista doua
multimi deschise disjuncte G, si G, astfel incat v € G, si y € G,,.

4.2 Siruri si functii pe spatii topologice

Fie X un spatiu topologic. Dupa cum stim deja se numeste sir de elemente
din X o functie f : N — X si se noteaza cu f = (f (n)), sau f = (z,), sau
(x,),, unde z,, = f (n) pentru orice n.

Definitia 4.2.1 (Limita unui sir) Fie X un spatiu topologic. Un punct
a € X se numeste limita sirului (z,,), din X (sau se spune cé (x,), converge

N . . . de . Ly . .o
laa in X ) i se scrie limx,, = a <:§ pentru orice vecinatate V' a lui a exista
n—oo

ny € N astfel incdt pentru orice n > ny avem x,, € V.

Este ugor de observat ca in definitia precedenta "orice vecindtate V' a
lui a" poate fi inlocuita cu "orice multime deschisa V' ce contine a" sau cu
"orice multime V' dintr-un sistem fundamental de vecinatati ale lui a". De
asemenea ca si in cazul girurilor de numere reale avem:

Teorema 4.2.2 (Unicitatate limitei unui sir) Dacd X este spatiu
separat (spativ Hausdorff), atunci limita unui sir din X (daca exista) este
unica.

Definitia 4.2.3 Un sir din spativ topologic X care are limita in X se
numegte convergent in X. Un gir care nu este convergent se numeste
divergent.

Un punct a € X se numeste punct limita al sirului (x,), daca si numai
daca pentru orice vecinatate V a lui a si orice n € N exista k > n, astfel
tncdt x, € V.

Se observa ca:
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- Daca (x,), este un sir din X cu proprietea ca x,, € A C X pentru orice n,
si dacd a este un punct limita al lui (z,,),, atunci @ € A (inchiderea
multimii A). (Intr-adevar, (pentru orice vecindtate V' alui a, VN A #

0)

- Un punct a este punct limita al sirului (x,), dacd si numai dacd exista
un subsir al girului (z,,), convergent la a.

- Daca a este limita unui sir (z,), cu proprietea ca x, € A C X pentru
orice n, atunci a € A.

Definitia 4.2.4 (Limita unei functii) Fie X Y doua spatii topologice,
A o submultime a lui X si fie f : A — Y o functie. Fie a un punct de
acumulare al lui A. Se spune ca f are limita b €Y in punctul a $i se scrie
lmf (z)=0b g pentru orice vecinatate V' a lui b exista o vecinatate Uy a

lui a astfel incat f (z) € V pentru orice v € (Uy \ {a}) N A.

In definitia precedents "orice vecinitate a lui b, respectiv a " poate fi
inlocuita cu "orice multime deschisa ce contine b, respectiv a" sau cu "orice
multime dintr-un sistem fundamental de vecinatati ale lui b, respectiv a".
Cu notatiile din definitia precedentd, daca f are limitd in a si (z,), este
un gir din A astfel incat x, # a pentru orice n si limx, = a, atunci

lim f(z,) = lim f (z). B

Teorema 4.2.5 (Unicitatate limitei unei functii) Fie X un spatiu
topologic, A o submultime a lut X i a un punct de acumulare al lui A.
Daca Y este spatiu separat (spativ Hausdorff), atunci limita unei functii
f: A=Y ina (daca exista) este unica.

Demonstratie. Fie by, by € Y astfel incat lim f (z) = by si lim f (z) = by.

Tr—a

Presupunem prin absurd ca b; # by. Atunci exista doua multimi deschise V;
si V5, astfel incat by € Vi, by € Vo 51 ViNVy = (. Cum lim f (x) = by, existd o
r—a

vecindtate U; a lui a astfel incat f (z) € V; pentru orice = € (U; \ {a}) N A.
Pe de altd parte din faptul cd lim f (x) = by rezultd ca existd o vecindtate

Uy a lui a astfel incat f(x) € Vi pentru orice z € (U \ {a}) N A. Deci

9



Madalina Roxana Buneci

pentru orice z € (U; N Uy N A)\ {a} avem f (z) € V1 NV; ceea ce contrazice
VinVa=0. m

Cu notatiile din teorema precedentd, daca (z,,),, si (y»),, sunt doud siruri
din A astfel incat x,, # a si y, # a pentru orice n,limz, = limy, = a

si lim f(x,) # lim f(y,), atunci f nu are limitd in punctul a (altfel
lim f () = lim f(x,) = lim f(y,)). Dacd A o submultime a unui spatiu
topologic X, a un punct de acumulare al lui A f este continud in a si (z),
este un sir din A astfel incat lim z,, = @, atunci lim f (z,) = lim f (2).
n—od n—oo Tr—a

Definitia 4.2.6 (Limitele laterale ale unei functii) Fie Y un spatiu
topologic, A C R (inzestrat cu topologia uzuala) gi fie f : A —Y o functie.
Punctul a € R se numeste punct de acumulare la stanga pentru A gi se scrie
aec Al g pentru orice vecindtatea V. a lui a avem (V \ {x >a})NA #0.
Se spune ca f are limita la stinga b € Y in punctul a € A, gi se scrie
lim f () =0 g pentru orice vecinatate V' a lui b exista o vecinatate Uy a

r<a

lui a astfel incdt f (x) € V pentru orice v € Uy N A, x < a.
Punctul a € R se numeste punct de acumulare la dreapta pentru A i se

scriea € A g pentru orice vecinatatea V- a lui a avem (V \ {z < a})NA #
(). Se spune cd f are limita la dreapta b € Y in punctul a si se scrie
lim f () =10 g pentru orice vecinatate V' a lui b exista o vecinatate Uy a

rx>a

lui a astfel incat f (z) € V pentru orice v € Uy N A, x > a.

Este ugor de observat in cazul in care Y este spatiu separat (spatiu
Hausdorff) f : A — Y are limitd in punctul a € A, N A/, dacd si numai daci
are limit# la stanga si la dreapta in a si cele doud limite laterale coincid. In
aceasta situatie glclirll;f (z) = lim f (z) = lim f (z).

r<a r>a
Definitia 4.2.7 (Functie continua) Fie X 1Y doua spatii topologice, A
o submultime a lui X gi fie f : A — Y o functie. Se spune ca f: A —Y
este continud intr-un punct a € A daca pentru orice vecinatate V- a lui f (a)
exista o vecinatate Uy a lui a astfel incdt f (z) € V pentru orice © € Uy NA.

Se spune ca f este continua pe Ay C A daca f este continua in orice
punct a € Ap.
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Se observa ca:
- f este continua in orice punct izolat din A.

- Dacd a € A este punct de acumulare pentru A, atunci f este continua in
a dacd si numai dacd lim f (z) = f (a).

- Daca f este continud in a si (z),, este un sir din X astfel incat lim z, = a,

atunci lim f (z,) = f (a). B

Teorema 4.2.8 (Conditii necesare si suficiente de continuitate globala)
Daca X 1Y sunt doua spatii topologice i f : X — Y este o functie, atunci
urmatoarele afirmatii sunt echivalente:

1. f continua pe X.
Pentru orice multime deschisa G CY, f~1(G) este deschisd in X .
Pentru orice multime inchisa F CY, f=1 (F) este inchisa in X.

Pentru orice A C X avem f (A) C f(A).

e e

5. Pentru orice B CY avem f~'(B) C f~'(B).

Definitia 4.2.9 Daca X i Y sunt doua spatii topologice gi f : X — Y
este o functie bijectivi, atunci f se numeste homeomorfism dacd f si f~!
sunt continue.

4.2.1 Limite uzuale de functii reale
I Limitele la +o00 ale polinoamelor si functiilor rationale

1. Daca a > 0, limx%:O

r—00

2. Daci @ € N*, lim + =0

3. Daca p > 0 i a, # 0, atunci

lim (apmp + ap_lxp_l + ... +ax+ ao) = a,00 =

Tr—00

oo, daca a, >0
—o0, daca a, < 0
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4. Daca p > 0 si a, # 0, atunci

lim (apxp + ap_la:p_l + ...+ ax+ ag) =
Tr——00
00, daca a, > 0 si p par
—o00, daca a, > 0 si p impar
—o0, daca a, < 0 si p par
00, daca a, < 0 si p impar

= (-1 a,00 =

5. Daca r > 0 si a,b, # 0, atunci

. apx? + ap_lxp*1 + ...+ a1x+ ag
im
z—o00 b, x” + by_12" 1 4+ ... + bix + by

00, dacd p > 7 si 32 >0

—o0, daca p>r sig? <0

Qa, v
3200, dacap >r

= ap, dacap=r = o
o ) p w,dacap=r
0,dacap<r br 9

0,dacap<r

6. Daca r > 0 si a,b, # 0, atunci

lim apz? + ap, 1277t + L+ 1w + ag
T——00 brﬂfr —+ br_ll'r_l + ...+ blfL' + bo

;

oo, dacd p >, 2 > 0sip—r par
—o0, dacd p > r, 32 > 0 si p — r impar
—o0, daca p >, 3> <0sip—r par
00, dacd p >, £ < 0 si p— r impar

ap,dacap=r
by

= (=1)""" oo, daca p > r
= «;l,dacép:r =

0,dacap<r

0,dacap<r

\

IT Limitele functiilor exponentiale si logaritmice la marginile inferiore si
superioare ale domeniilor de definitie

1. Daca a > 0 si a # 1, atunci

hma® — 4 daca a > 1
1 0,daci0<a<1

T—00
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2. Daca a > 0 si a # 1, atunci

lim a® =

r——00

0, daca a > 1
oo, daca 0 <a<1

P()

3. Daca a > 1 si P este o functie polinomiala, atunci hm = 0 si

lim a*P(x) = lima™*P(—t) = hm P( 2 — .

T——00 t—o00

4. Dacd a € (0,1) si P este o functie polinomiald, atunci lim a®P (z) =

Pz P(z . x e
xh_{glo(l/()iz =0si hmoo% = mEIPm (1)"P(z) =0.
5. Daca a > 0 si a # 1, atunci
lim log, () — oo, daca a > 1
ot 108 ) = —o0,dacd 0 < a <1
6. Daca a > 0 si a # 1, atunci
lim log, () — —00, dacd a > 1
any OB\ = 0o, dacd 0 < a <1
>0
7. Daca a > 1 si P este o functie polinomiala, atunci lim % =0 si
lim log, (z) P (z) = 0.
0
8. Dacda € (0, 1)si Pesteo funci;ie polinomiala, atunci lim m =
. log(i/4)(2) P(x
xh_)r&% =0 si hm ! g, (I = lim log(l/a) () P (z) = 0.
x>0 a:>0

IIT Limite de functii trigonometrice

1. lim@ — 1
z—0 T
2. im¥@) — Jjm 1@ _ 1
T a0 T roocos(z) =@

13
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3. lim&esin@ _ 4

arctg(z) _ 1

IV Numarul lui Euler

8|~

1. lim (1 +x)

z—0

= e (numarul lui Euler)

2. lim (14+2)"=e

Tr—00

V Alte limite
1. Dacd a > 0, atunci ling)% =1In (a).
2. hm Ly = 00

3. limi=:=-00
r—0
<0

4. lim% = = =00
x—0
>0

Exemple 4.2.10 Sa se calculeze urmatoarele limite

1. }:iir(l]—w,pEN,pZZ

R: Avem
. Vl+rz—=x ) (1+2)—1
lim ——— = lim
x—0 €x x—0
({/1—1—9& +</1+x ..—1—1)
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sin(x)

2. lim (—Si“(”) a=dn(a)

r—0 x

R: Avem lim 2@ — 1 st
z—0 ¥

sin(z) sin(z)—z sin(x)

lim (Sm w) O i ((1 + W) “) v
x—0 T 50 -

sin(z)
v = h

lim
ot ezHO

4.3 Spatii conexe, compacte si local-compacte

Definitia 4.3.1 Un spatiu topologic X se numeste compact daca din orice
acoperire deschisa a sa se poate extrage o subacoperire finitd (mai precis,
oricare ar fi familia {G;}, de multimi deschise cu proprietatea ca U G; =X,
) astfel incat U Gi, = X).
j=1

O submultime A a unui spatiu topologic X se numeste compacta daca
inzestrata cu topologia indusid de X este spatiu compact (sau echivalent,
pentru orice familie {G,}, de submultimi deschise ale lui X cu proprietatea

ca A C UG"’ exista o subfamilie finita {Gij} ) astfel incit A C

UJaGi,)
j=1

O submultime A a unui spatiu topologic X se numeste relativ compacta
daca A compacta (inchiderea multimii A este compacta,).

exista o subfamilie finita {Gij}je{l 2

je{1,2,...,n

Se poate arata ca

- Intr-un spatiu topologic in care fieccare punct are un sistem fundamental
numarabil de vecinatati este compact daca si numai daca din orice sir
se poate extrage un subsir convergent.
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- Orice submultime inchisa F' a unei multimi compacte K este compacta.
(Intr-adevdr, fie {G; }, o familie de submultimi deschise cu proprietatea

ca I C UGi si fie CF' complementara lui F'. Atunci {G;}, UCF

i
este o acoperire deschisa a multimii compacte K, gi deci admite o
subacoperire finita. Elimindnd eventual CF' din aceasta subacoperire
obtinem o subacoperire finitd a lui F')

- Orice submultime compacta K a unui spatiu Hausdorff este inchisa. (Tntr—
adevar, pentru x ¢ K si orice y € K existd doud multimi deschise
Upy st Vu, astfel incat x € U,,, y € Vyy si Uy NV, = 0. Din
acoperirea deschisa {Vx,y}ye - @lui K se poate extrage o subacoperire

finita {V,,, } Atunci = € () U,,, C CK (complementara

ie{1,2,...,n}" g
=

n
multimii K), si cum () U,,, este deschisd si x oarecare in CK, se
i'=1
obtine CK deschisd, ceea ce este echivalent cu K inchisd).

- Orice submultime a unui spatiu compact Hausdorff este relativ compacta.

Propozitia 4.3.2 (Borel-Lebesgue) O submultime a lui R (cu topologia
uzuald) este compacta dacd gi numai dacd este inchisa si marginita. (Pentru
demonstratie se poate consulta de exemplu, [Gh. Siretchi, Calcul diferential
si integral, Vol. 1 p. 145, Editura Stiintifica si Enciclopedica, Bucuresti,
1985].)

Teorema 4.3.3 Fie X i Y doua spatii topologice si f : X — Y este o
functie continua. Daca submultimea K C X este compacta, atunci atunci
f (K) este compactd in'Y .

Demonstratie. Fie {G;}, o familie de submultimi deschise ale lui ¥ cu
proprietatea cd f (K) C UG,; Deoarece f este continud, f~!(G;) este

(2
deschisa in X pentru orice ¢. In plus, cum pentru orice z € K, exista

i, astfel incat f(z) € G, (sau echivalent, z € f~'(G,,)), rezultd ci
K C U f71(Gi). Asadar {f!(G;)}, este o acoperire deschisd a mulfimii

compacte K si ca urmare admite o subacoperire finita { ft (Gij) }j (1.2}
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Deoarece K C U f (Gij), pentru orice z € K, existd j = j, € {1,2,...,n}
j=1

a astfel incat z € f~'(G;,) (echivalent, f(z) € G;;). Deci f(K) C

n

U G;si in consecintd, din {G;}, se poate extrage o subacoperire finita a
j=1

lui f(K). Ca urmare f (K) este compactd. m

Teorema 4.3.4 (Weierstrass) Daca X este un spatiu compact i f + X —
R este o functie continua, atunci f este marginita si isi atinge extremele,
adica existd Toin, Tmaz € X astfel tncdt

f(@min) < f(x) < f(Tmaz) pentru orice x € X.

Demonstratie. Multimea f (X) fiind o submultime compacta a lui R, este
inchisa si marginita. Deci f este marginita. Deoarece sup f (X) (respectiv
inf f (X)) este limita unui sir din f(X), sup f (X) (respectiv inf f (X))
apartine inchiderii lui f (X) ce coincide cu f (X). Ca urmare existd y,qe: €
f(X) (respectiv Ymin € f(X)) astfel Incat ymae = sup f(X) (respectiv
Ymin = inf f(X)) . In consecintd, existf e, € X (respectiv Zpmin € X)
astfel incat f (Tpmaz) = Ymaz = sup f(X) (respectiv f (Tmin) = Ymin =
inf f(X)). m

Definitia 4.3.5 Un spatiu topologic X se numeste local compact daca orice
punct al sau are o vecinatate compacta.

Exemplul 4.3.6 R (cu topologia uzuala) este spatiu local compact Hausdorff.

Definitia 4.3.7 Un spatiu topologic X se numeste conex daca singurele lui
submultimi in acelasi timp inchise si deschise sunt ) si X. O submultime A
a unut spatiu topologic X se numeste conexa g A inzestrata cu topologia
indusa de X este spatiu topologic conex.

Teorema 4.3.8 Singurele submultimi conere ale R inzetrat cu topologia
uzuald sunt intervalele. (Pentru demonstratie se poate consulta de exemplu,
[Gh. Siretchi, Calcul diferential si integral, Vol. 1 p. 143, Editura Stiintifica
gi Enciclopedica, Bucuresti, 1985].)
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Teorema 4.3.9 Fie X i Y doua spatii topologice si f : X — Y este o
functie continuda. Daca submultimea A C X este conexa, atunci atunci
f (A) este conexa ca submultime a lui Y.

Demonstratie. Presupunem prin absurd ca exista doua submultimi B;si
Bs ale lui Y in acelasi timp inchise gi deschise astfel incéat f (A) = (B U By)N
f(A). Atunci f~ (B;) si f~!(By) sunt submultimi in acelasi timp inchise
si deschise ale lui X si in plus, A = (f~' (B1) U f~'(Bz)) N A. Obtinem
astfel o contradictie cu faptul cd A este conexa. Asadar f (A) este conexa.
[

4.4 Spatii metrice

Definitia 4.4.1 (Metrica) Fie X o mulfime. Se numeste distanta (sau
metrica) pe X o functie d: X x X — R cu urmatoarele proprietati:

1. d(z,y) > 0 pentru orice z,y € X;
d(z,y) =0 daca si numai daci x =y;
(z,y) =

d(z,y) = d(y,z) pentru orice x,y € X;

e

d(z,y) < d(z,2) + d(z,y) pentru orice x,y,z € X. (inegalitatea
triunghiului)

Perechea (X,d) se numeste spatiu metric. Petru orice a € X gi orice
r > 0 se numegte bila (deschisa) din X centratd in a de razda r §i se noteazd
cu B (a,r) multimea:

B(a,r)={z € X :d(a,x) <r}.

Familia bilelor din spatiul metric (X, d) este o bazd pentru o topologie
numitd topologia asociata (canonic) distantei (metricii) d. O multime G
este deschisa in aceasta topologie daca pentru orice x € G exista r, > 0
astfel incat B(x,r,) C G. Doud distante (metrice) se numesc echivalente
daca topologiile asociate coincid. Un spatiu topologic se numeste metrizabil
daca exista o distantd (metricd) d pe X cu proprietatea ci topologia asociata
lui d coincide cu topologia de pe X.

18
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Exemplul 4.4.2 Functia d : R x R — R definita prin d(z,y) = |z — y|
pentru orice x,y € R este o distanta pe R. Topologia indusa de aceasta
metrica coincide cu topologia uzuala pe R.

In orice spatiu metric are sens notiunea de limit# deoarece orice spatiu
metric este un spatiu topologic. Astfel daca (X, d) este un spatiu metric
si (z,), un sir din X, atunci lim z,, = a € X (relativ la topologia indusa

n—oo

de metrica d) dacd si numai dacd pentru orice € > 0 existd n. € N astfel
incat pentru orice n > n. avem d (a,r,) < ¢. Ca urmare limz, = a &

n—o0

lim d (a, z,) = 0.

Definitia 4.4.3 (Sir Cauchy) Fie (X,d) un spativ metric si fie (z,),

un gir din X. Sirul (z,), se numeste sir Cauchy (sau fundamental) Y
pentru orice € > 0 exista n. € N astfel incdt pentru orice m,n > n. avem
d (T, x,) < € (sau echivalent, pentru orice € > 0 ezistd n. € N astfel incdt
pentru orice n > n. si orice p € N avem d (Tp4p, Tn) < €).

Propozitia 4.4.4 Orice gir convergent este sir Cauchy.

Demonstratie. Fie (x,), un sir convergent din X si fie a limita sa. Atunci
pentru orice ¢ > 0 existd n. € N astfel incat d(a,z,) < § pentru orice
n > n.. Ca urmare pentru orice n,m > ne,

d (Zm, 2n) < d(2m,a) + d(a,2,) < %+§ =e.

Deci (z,,),, este sir Cauchy. m
Reciproca nu este adevarata.

Definitia 4.4.5 (Spatiu metric complet) Un spatiu metric (X, d) in care
orice sir Cauchy este convergent se numeste spatiu metric complet.

Exemplul 4.4.6 R inzestrat cu distanta d : R x R — R, definita prin
d(z,y) = |z — y| pentru orice z,y € R, este un spatiu metric complet.

Este ugor de observat ci daca (X,d) este un spatiu metric gsi A C X,
atunci (A, d4) este un spatiu metric, unde ds : A x A — R, da(x,y) =
d (z,y) pentru orice x,y € A. Daca (X, d) este un spatiu metric complet si
A C X, atunci (A, d4) este un spatiu metric complet daca si numai daca A
este o submultime inchisa a lui X.
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Propozitia 4.4.7 Fie (X,dx) si (Y,dy) doua spatii metrice si fie f : X —
Y o functie. Pentru orice a € X urmatoarele afirmatii sunt echivalente

1. f continua in a.

2. Daca (x,,), esteun gir din X astfel incat lim x,, = a, atunci lim f (x,)

f (a/) ‘ n—oo n—oo

3. Pentru orice € > 0 exista d. > 0 astfel incdt pentru orice x € X cu
dx(x,a) < d. rezulta dy (f(x), f(a)) < e.

Demonstratie. 1. = 2. Este o implicatie valabila in spatii topologice
in general. Fie V' o vecindtate a lui f (a). Deoarece f este continud in a,
existd Uy o vecindtate a lui a astfel incat f (Uy) C V. Faptul ca limz,, = a

n—o0

implica existenta unui numar natural ny astfel incat x,, € Uy pentru orice
n > ny. De aici si din faptul c& f (Uy) C V, rezultd cd f (x,) € V pentru
orice n > ny si ca urmare le f(x,) = f(a).

2. = 3. Presupunem p?rinooabsurd ca existda g > 0 astfel incat pentru
orice 0 > 0 exista x5 > 0 astfel incat dx(zs,a) < § si dy (f(xs), f(a)) > co.
Notam x,, = x5, pentrud, = % Atunci dx(xs,a) < % si deci nhﬂrgod (a,x,) =

0. Ca urmare lim x, = a si in consecinta lim f (z,) = f (a). Asadar exista

n—oo

ny € N astfel incat dy (f(z,), f(a)) < eo pentru orice n > ng, ceea ce
contrazice dy (f(z,), f(a)) > €9 pentru orice n € N*.

3. = 1. Fie V o vecindtate a punctului f (a). Atunci existd ey > 0 astfel
incat B (f (a),ev) C V. Pe de altd parte existd 6., > 0 astfel incat pentru
orice z € X cu dx(z,a) < d., rezultd dy (f(z), f(a)) < ey sau cu alte
cuvinte f (B (a,0c,)) C B(f (a),ey). Deoarece B (a, ., ) este o vecindtate
aluiasi f(B(a,d:,)) C B(f(a),ey) CV, rezulta ca f este continud in
a.

Definitia 4.4.8 O functie f : X — Y intre spatiile metrice (X,dx) si
(Y,dy) se numeste uniform continud dacd pentru orice € > 0 exista §. > 0
astfel incdt pentru orice ,y € X cu proprietatea ci dx (x,y) < d., sa avem

dy (f(x), f(y)) <e.

Evident, orice functie uniform continua este continua.
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Propozitia 4.4.9 Daca X este spatiu metric compact, atunci orice functie
continua f : X — 'Y este uniform continuda.

4.5 Spatii normate si spatii Hilbert

Definitia 4.5.1 Fie V un spatiu vectorial peste corpul K (K =R sau K =
C). O norma pe V' este o functie p: V — [0,00) care satisface urmatoarele
conditi:

1. p(x) =0 daca gi numai daca x = 0.
2. p(x +y) < p(x) + ply) pentru orice x,y € V.

3. p(Ax) = |A|p(z) pentru orice X € K gi orice x € V.

Perechea (V,p) se numeste spatiuv normat (real daca K = R, respectiv
complex daca K = C).

Exemple 4.5.2 1. ConsideramV = R ca spatiu vectorial peste R. Atunci
p:R —[0,00), p(x) = |z| este o norma R.

2. Consideram 'V = C ca spatiu vectorial peste C. Atuncip : C — [0, 00),
p(z) =|z| =Va?+b* (z=a+1ib, a,b € R) este o norma C.

In cele ce urmeazi vom nota p(z) = ||z|| pentru orice z € V si vom
spune cd V' este un spatiu normat in loc de (V,||-]|), atunci cand norma |||
se subintelege. Pe orice spatiu normat se poate defini o metrica (distanta)
canonica d prin d(z,y) = ||z — y|| pentru orice z,y € V. Prin urmare
oricarui spatiu normat i se pot asocia in mod canonic o structura metrica si
o structurd topologici(asociata distantei d(z,y) = ||z — y||). Pentru orice
xo € V i orice r > 0 vom nota cu B(xg,r) bila din V' centrata in z( de raza
T

B (zg,r)={z eV |z —xo|| <7}.

Pentru orice spatiu normat V' (inzestrat cu structura metrica si structura
topologica asociate in mod canonic) sunt adevirate urmatoarele afirmatii:

- Qirul (z,,),, din V' converge la € V' daca gi numai daca lim ||z, —z|| = 0.
n—oo
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- Sirul (x,,),, din V este gir Cauchy (fundamental) daca si numai daca pentru
orice ¢ > 0 existd n. € N astfel incat ||z, — x| < € pentru orice
m,n > neg.

- ||A]] : V — [0, 00) este o aplicatie continua.

- Functiile (z,y) 2 4+y [V xV = V]si (\,2) = Az[: K x V — V] sunt
continue (V' x Vgi K x V sunt inzestrate cu topologia produs).

- Daca W este un alt spatiu normat, A C V, a € A’, atunci o functie
f A — W are limita b € W in punctul a < pentru orice ¢ > 0
existd J. > 0 astfel incat pentru orice z € A\ {a} cu ||z —al| < 4.,
avem || f (z) — b|| < e.

Definitia 4.5.3 O norma pe un spatiu vectorial V' peste corpul K (K =R
sau K = C) se numeste completa daca metrica asociata ei este completa
(i.e. daca orice sir Cauchy este convergent). Un spatiu normat se numeste
spatiu Banach daca norma cu care este inzestrat este completa.

Definitia 4.5.4 Doua norme p1 st pa pe spatiul vectorial V se numesc
echivalente daca topologiile asociate lor (in mod canonic) coincid. Pentru
a desemna faptul ca py i po sunt echivalente vom folosi notatia py ~ ps.

Se poate arata ca normele p; si po sunt echivalente daca si numai daca
exista M, m > 0 astfel incat

mp1(z) < pa(z) < Mpy(z) pentru orice xz € V.

Exemple 4.5.5 Fie (Vi,p1), (Va,p2), ..., (Vo,pn) n spatii normate peste
corpul K (K =R sau K = C). Daca pe

Vix Vox ... xV,=A{(x1,29,...,2,) : x; € V;, oricare ar fii € {1,2,...n}}
definim adunarea st inmultirea cu scalari din K in maniera de mai jos

(r1, 22, .. ) + (Y1, 020 - ¥n) = (T + Y1, T2+ Yo, o, T+ Un)
a(xy, Ta, ..., Ty)

(axy, azy, ..., ax,),
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atunci este usor de observat ca sunt indeplinite conditiile cerute de definitia
spatiului vectorial si deci Vi x Vo X ... X V,, este spatiu vectorial peste K.
Vom nota cu peo, 1,2 : Vi X Vo X ... XV, — [0, 00) aplicatiile definite prin:

Poo (T1, %2, -, %) = max p; (z;)

P (x1>$27 s 73:71) = ij (I‘])
j=1

n 1/2
P2 (-/L‘th)"‘?ITL) - <ij (x]>2)
7=1

pentru orice x = (1, Ta, ..., xy) € Vi X Vo X ... X V,,. Atunci peo, p1,p2 sunt
norme echivalente pe Vi X Vo X ... X V,,. Intr-adevar, avem

(@) < poo (@) < (0) i %Pz (2) < poc (2) < p2 ()

pentru orice x = (x1,T2,...,%T,) € Vi X Vo x ... x V.. Topologia asociata
oricareia dintre aceste norme coincide cu topologia produs pe Vi xVax...xV,.

Definitia 4.5.6 Fie H un spaliu vectorial peste corpul peste corpul K (K =
R sau K = C). Se numeste produs scalar pe H o aplicatie p : H x H — K
care are urmatoarele proprietati:

1. oz +y,2) = p(z,2) + vy, 2) pentru orice x,y,z € H.
2. o(Ax,y) = Ap(z,y) pentru orice A € K gix € H.

3. p(z,y) = ¢ (y,x) (deci p(x,y) = o(y,z) pentru K = R) pentru orice
r,y € H.

4. ¢ (z,x) > 0 pentru orice x # 0.

Vom nota ¢(z,y) = (x,y) pentru orice x,y € H. Se spune ci norma
spatiului normat (H, ||Al||) provine dintr-un produs scalar (-,-) daca

lz]] = v/ (2, 2)

pentru orice x € H. Un spatiu pre-Hilbert este un spatiu normat in care
norma provine dintr-un produs scalar, iar un spatiu Hilbert este un spatiu
pre-Hilbert complet (cu norma completa).
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