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Capitolul 4

Spatii topologice (continuare
din cursul 5)

4.6 Spatiul R”

Daca pe
R™" = {(aq, g, ..., ) : oy € R, oricare ar fii € {1,2,...n}}
definim adunarea si inmultirea cu scalari din R in maniera de mai jos
(a1, 0, ... an) + (B1, B9, -, 8,) = (a1+ B, 02+ Bo,...,an+f,)
alag, e, ..., an) = (aag,aas, ... a0,

atunci este ugor de observat ca sunt indeplinite conditiile cerute de definitia
spatiului vectorial si deci R™ este spatiu vectorial peste R.
Pe acest spatiu orice doud norme sunt echivalente. Vom nota cu ||-||co,

l|"||1, ||||2 urmatoarele norme uzuale pe R™:
n n 1/2
2
lalloo = max [z, llally = D lo1. o]l = (Zw )
j=1 j=1
pentru orice © = (x1, g, ..., T,) € R

Norma ||-||2 se numeste norma euclidianda si provine din produsul scalar
n
(z,y) = E LiYj
j=1
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pentru orice x = (x1,Z2,...,2,) $i ¥y = (Y1, Y2, -.-,Yn) € R". Acest produs
scalar este numit produsul scalar canonic pe R™. Distanta asociata acestei
norme este

d(z,y)= | > lv; =yl
j=1

pentru orice x = (z1,Za,...,%,), ¥ = (Y1,Y2,---,Yn) € R" gi este numita
distanta euclidiana pe R™. Pentru n = 2 (respectiv, n = 3) distanta
euclidiana dintre (aq, az) si (b1, by) (respectiv, (a1, as, as) si (by, ba, b3)) coincide
cu lungimea segmentului de capete A (aj,as) si B (b1, bs) (respectiv, de
capete A (a1, az,a3) si B (b, b, b3)).

- R™ este spatiu Hilbert (in raport cu produsul scalar canonic) si deci R™ este
spatiu Banach (in raport cu norma ||-||2 indusd de produsul scalar).
In particular, R™ este spatiu metric complet (in raport cu distanta
euclidiand, adicd indusad de norma ||||) si deci R™ este spatiu topologic
(in raport cu topologia indusa de distanta euclidiand).

- Normele ||||s, |||z si ||-||2 sunt norme echivalente pe R™. Ca urmare
induc aceeasi topologie pe R™. Mai mult, se poate arata ca orice
norma pe R" este echivalentd cu ||-||. Topologia indusi de ||-||2 se
numeste topologia uzualda pe R™.

- In raport cu topologia uzuali, R™ este spatiu local compact.

- In raport cu topologia uzuali, o submultime A C R” este compactd
dacd gi numai daca este inchisa (echivalent, contine limita fiecdrui sir
convergent cu termeni din A) gi marginita (echivalent, exista M > 0
astfel incat ||z||s < M pentru orice z € A).

- Sirul (ap)p din R, unde a, = (Tp1,%p2,-..,Tp,) pentru orice p, este
convergent daca gi numai daca pentru orice k € {1,2,..,n} sirul (acpk)p

este convergent. In aceasta situatie avem

lim a, = (hm T1p, lim @9, ..., lim acnp> .
pP—00 pP—00 p—00 p—00
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In cazul n = 2 vom scrie (z,y) in loc de (x1,x2), iar in cazul n = 3 vom
scrie (x,y, 2) in loc de (21, xo, x3).

Exemplul 4.6.1 In R* avem

1 1\* 1\?
1. — 1+— s _— ,p =
pooce (p ( p) ( 2) \/ﬁ)

N " . " .
=(lm—, lim (1+-) ,lim (—= | , lim ¢p | = (0,e,0,1)).
p—00 P p—00 p p—00 2 p—0o0

Exemple 4.6.2 Sa se studieze continuitatea in punctul (0,0) a umdatoarelor
functii:

1. f:R? - R
T 0,0
f(I,y): m7($7y)7§(7 )
0, (z,y) = (0,0)
R: Aratam ca ( l)irrzo O)f(x,y) =0 = f(0,0) $i ca urmare f este
w7y — b

continud in (0,0). Fie e > 0. Pentru orice (z,y) # (0,0) avem

0< Py _ (a4 D)’ 20yl
I N A o 7 R e R

Ca urmare daca luam 6. = 5 > 0, avem |f (z,y) — 0| < & pentru orice
(z,y) # (0,0) cu ||(z,y) — (0,0)||, < d. (sau echivalent |x| < &,

ly| < 0.).
2. f:R2—=R
2 (ay) £ 0.0)
fzy) ‘{ 0. (x.) = (0,0)

R: Aratam ca f nu are limita in (0,0) ca urmare nu este continua

11
in (0,0). Fie girurile (ay), st (b,), definite prin a, = (— —> §i

)
n n

1 2
b, = <—,—) pentru orice n € N. Atunci a, # (0,0), b, # (0,0),

n n

11
lim a, = lim b, = (0,0) g¢ lim f(a,) = lim f (— —) =1, ar

n—oo n—oo n—oo
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lim f(b,) = lim f (l,g> = % Deoarece lim f (a,) # Jirgof(bn),

n—00 n—00 nn n—00

rezulta ca f nu are limita in (0,0).
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Calcul diferential

5.1 Derivatele functiilor de o variabila reala
cu valori vectoriale

Definitia 5.1.1 (Derivata) Fie A C R, E un spatiu normat real, B C F,
f:+A— B o functie sia € ANA" (un punct din A care este si punct de

acumulare). Functia f se numeste derivabild in a Y exist in E limita
) 1
lim (f (x) = f (a)) .
daf

r—a T —a
Daca exista limita precedentd se noteaza cu f'(a) sau - (a) §i se numeste
derivata lui f in a.

Daca Ay € AN A, functia f : A — E se numeste derivabila pe A, daca
este derivabila in orice punct a € A;. Daca

A={a€ AnA": f:A— E este derivabild in a},

se noteaza cu f’ functia f': Ay — E care asociaza fiecarui element a € Ay
derivata functiei f in a, adica functia a — f’(a) [: Ay — E]. Functia f’ este
numitd derivata (de ordinul I) functiei f.

Functia f : A — FE se numeste derivabila la stdnga (respectiv, la

d VRN o
dreapta) in a “l existd in E limita

lim L (f () ~ £ (a)) (respectiv, im —— (f (x) ~ f (a))).
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Daca existd limita precedentd se noteaza cu f! (a) (respectiv, f;(a)) si se
numeste derivata la stanga(respectiv, la dreapta) lui f in a. Este ugor de
observat ca f este derivabila in a daca si numai daca f este derivabila la
stanga si la dreapta in a si f! (a) = f}(a). In plus, in acest caz

f'(a) = fi(a) = fi(a).

Propozitia 5.1.2 (Derivabilitatea = continuitatea) Fie A C R, E
un spatiu normat real, f : A — E o functie sia € ANA'. Daca [ este
derivabila in a, atunci [ este continua in a.

Demonstratie. Pentru orice t € A, t # a, avem

If (z) = fa)l =

u_a)( ! <f<x>—f<a>>—f’<a>+f'<a))H

T —a
1

T —a

< v —aq (f (@) = f () = f' (@) || + |z —al [/ (a)]] -

Ca urmare lim f (x) = f (a), de unde rezulta ca f este continud in a. =

r—a

Propozitia 5.1.3 (Operatii cu functii derivabile) Fie E un spatiu normat
real.

1. Daca ACR,ae ANA, f,g: A— FE sunt doua functii derivabile in
a st dacd o, € R, atunci functia of + Bg este derivabila in a si

(af + Bg) (a) = af' (a) + By (a) -

2. Daca ACR,ae AnNAliar f : A— R gig: A— E sunt doud functii
derivabile in a, atunci fg este derivabila in a si

(f9) (@) = f'(a) g (a) + f (a) ¢ (a).

3. Daca ACR,ae€ AnAliar f: A — R este o functie derivabila in a
cu proprietatea ca f (t) # 0 pentru orice t € A, atunci functia % este

derivabila in a st
A )
(7) @=-Fy

8
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4. Daca A C R, a € AnNAliarg: A — R gi f: A— E sunt doud
functii derivabile in a gi g (t) # 0 pentru orice t € A, atunci éf este
derivabila in a si

1 1 ' :
() @ = s 0@ £ @ -5 @5 @),

5. Daca A,B C R, g: A— B este o functie derivabila in a € AN A" gi
f: B — E o functie derivabild in g (a) € BN B’, atunci functia f o g
este deriwvabila in a g1

(fog)'(a) =g (a) f'(g(a)).
Demonstratie. Se utilizeaza definitia derivatei si inegalitati de tipul
oz + Byl < |a||z| + |8 |ly|]| pentru orice a, 3 € Rgiz,y € E.
[ ]

Propozitia 5.1.4 (Formule de derivare) Fie A C R o reuniune de intervale
deschise, f: A — R o functie derivabila pe A gi f': A — R derivata lui f.

In cele ce urmeazi scriem (f (z)) in loc de f'(z) (x € A). Avem

1. (¢)) =0, ¢ constanti
2. (x) =
3 (2" =nz" ', 2 €R (ne€N, n>2, n fizat)
4. (a") =na" !, 2 € R* (n € Z, n fizat)
, . . _ IR 1
5. (z%) = ax® ', 2 >0 (0 € R, « fivat). In particular, | - | = ——,
x x
1 /!
1 -
z € R* dar (z) = 3 x> 0 sau mai general, (Yz) = | 2P | =
1
——1
Ly
P pV/ Pl
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6. (a®) = a®In(a), z € R (a > 0, a fivzat). In particular, (e*) = e,

z € R.
1 .
7. (log, (7)) = T ()’ x>0 (a>0,a#1,a fizat). In particular,
1
(In(z))' ==, > 0.
x

8. (sin(z)) = cos (z), z € R

9. (cos (z)) = —sin(z), z €R

10. (tg (z)) = = 1+tg? (2), xeR\{(QkJrl)g, keZ}

co? (1)
11. (ctg (z)) = _Smj(x) — 1 —ctg? (z), 7 € R\ {kr, k € Z}
12. (arcsin (z))" = \/11_7:52 x € (-1, 1)

13. (arccos (z)) = —ﬁ, ve (=1, 1)

1. (arctg (z)) = ﬁ TER

Exemple 5.1.5 Sa se calculeze derivatele urmatoarelor functii:

1. Fie f :R — R, f(x) = cos (x?arctg (v)).
R: Deoarece f (z) = g (u(z)) unde g (u) = cos (u) iaru (z) = x2arctg (),

pentru orice x € R avem

f@) = g (u(@)u (v)

= —sin (2%arctg (2)) (z%arctg (z))’

(
= —sin (2%arcty () ((zQ)/arctg (z) — 2® (arctg (x))')
(

2

) x
= — t 2 t — .
sin (¢*arctg () < zarctg (x) 1—|—x2>

10
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2. Fie I C R o reuniune de intervale deschise gi fie a,b: I — R, doua
functii derivabile pe I astfel incat a (x) > 0 pentru orice v € I. Atunci
pentru orice x € I avem

/
(a <m)b<w>) = a(@)"n(a(@)V (z) +b(z)a (@)@ d ().
R: Intr-adevir, pentru orice x € I avem:
2\’ n(a(z)*® ! z)In(a(z)))’
<a(3:)b( )) _ <€1 (@) )) = (et

e?@m@@) (b (2)1n (a (z)))
b(@) Infa(@)) (b’ (x)In(a(z))+b(x)(In(a (33)))/)

Propozitia 5.1.6 Fie A C R, f = (f1, fo, .-, fu) : A — R™ o functie
sia € ANA. Functia f este derivabila in a daca si numai daca toate
componentele ei scalare f1, fa, ..., fn sunt derivabile in a. In plus,

f(a) = (fi(a), fz(a), ... [, (a)) .

Demonstratie. Deoarece pentru orice t € A, t # a, avem

L f-fa)=

t—a

:< 1 (fl(t)_fl(a))’%(fZ(t)—fg(a)),_“’

(0= fu@))

t—a t—

rezulta ca

11
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Exemplul 5.1.7 Fie f : R — R? functia definita prin
f ()= (sin(t),t* +1,arctg (t)) pentruorice t € R.

Atunct

)= <cos (t), 3t

, m) pentru orice t € R.

Teorema 5.1.8 (J. Dieudonné) Fie a,b € R astfel incit a < b, E un
spatiuv normat real, f : [a,b] — E si g : [a,b] — R doud functii continue pe
[a,b] si derivabile la dreapta in orice punct x € (a,b). Daca || f (x)| < ¢ ()
pentru orice x € (a,b), atunci ||f (b) — f(a)|| < g(b) —g(a). ([P. Flondor
g1 O. Stanagila, Lectii de analizd matematicd /p. 98, Editia a Il-a, Editura
ALL, Bucuresti, 1996])

Teorema 5.1.9 (Teorema cresterilor finite) Fie a,b € R astfel incdt
a < b, E un spatiu normat real si f : [a,b] — E o functie continua pe |a, b]
derivabila pe (a,b). Atunci

If () = f(a)ll < sup [If" ()] (b—a).

z€(a,b)

Demonstratie. Daca sup,c, [|.f' (7)|| = oo, atunci rezultatul este evident.
Dacd M = sup,c(,p [If (z)|| < oo, atunci ludm g : [a,b] — R, definita prin
g (z) = Mz pentru orice x € R. Deoarece ||f' (z)|| < ¢ (x) pentru orice
x € (a,b), conform teoremei anterioare, avem

1 (0) = f (@)l < g(b) —g(a) = sup || ()] (b—a).

z€(a,b)

Definitia 5.1.10 (Derivate de ordin superior) Fie ACR,a € ANA/,
V' o vecinatate a lui a, E un spatiu normat real si f : A — E o functie
derivabila pe V N A. Se spune ca f este de doud ori derivabila in a daca
(flvna) este derivabila in a. In acest caz se noteazi ((f|vm,4)'), (a) = f"(a)
gt se numeste derivata de ordinul 2 a lui f in a. Daca

Asy={ac ANA": f:A— E este de doua ori derivabila in a},

12
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se noteazd cu f" sau f® functia f" : Asy — E care asociazd fiecdrui
element a € Ay s derivata de ordinul 2 functiei f in a, adica functia a —
f"(a)[: Asy — E]. Functia f" este numita derivata de ordinul 2 a functiei
f. Mai general, prin recursivitate se defineste derivata de ordinul n a
functiei f, notatd f™, ca fiind derivata derivatei de ordinul n — 1 a lui
f:

F) = (f(n—l))" n>2.

Se noteazi f© = f.

Exemple 5.1.11 Fien € N gi f : Dy — R o functie de n ori derivabila pe
Dy.

1. Daca a € (0,00) \ {a} si f(x) = a® pentru orice z € R, atunci
f™ (x) =1n" (a) a® pentru orice x € R. In particular, dacd f (z) = €*
pentru orice x € R, atunci f(”) (x) = e pentru orice x € R.

2. Daci f () = sin (z) pentru orice v € R, atunci f™ (z) = sin (z + n%)
pentru orice x € R.

8. Daci f () = cos (z) pentru orice z € R, atunci f™ (z) = cos (z + n%)
pentru orice x € R.

4. Daca f = (ax + b pentru orice x € R (unde k € N), atunci
o ( ). (k—n+1)a" (ax + )", dacan <k
dacan > k.

pentru orice x E R.

5. Daci f(x) = (ax+b)* pentru orice © € (—2,00) (unde a 7é 0
sik ¢ N), atunci f® () = k(k—1)...(k—n+1)a" (ax+ )"~
pentru orice x € (—%, oo).

6. Dact f(z) = — pentru orice x € R\ {-2} (unde k € N*),

(ax—i—b)

atunci f™ (z) = (—a)n% pentru orice v € R\ {2
In particular, daci f(z) = -1 pentru orice z € R\ {a}, atunci

f0 (z) = (=1)" # pentru orice v € R\ {a}.

13
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7. Dacd f(x) = In(az +b) pentru orice x € (—2,00) (unde a # 0),

atunci f (z) = (—a)"" a(g;;g; pentru orice x € (—2,00) sin > 1.

Pentru verificarea afirmatiilor de mai sus se rationeazd prin inductie
dupa n.

Definitia 5.1.12 Fie A C R, E un spatiu normat real i f : A — FE o
functie. Presupunem ca f este de n-ori derivabila in a € A. Se numeste
polinomul Taylor de ordinul n asociat functiei f in a polinomul notat T, (f,a)
st definit prin

(X —a)
1!

(X —a)"
n!

7 (@+Mﬂ2> (@)+..+

. 1% (a).

T (f,a) (X) = f(a)+

Teorema 5.1.13 (Formula Taylor) Fie A C R o multime dechisa, E un
spatiu normat real g1 f : A — E o functie. Presupunem ca f este de n-ori
derivabila in a € A. Atunci exista o functie R, (f,a) : A — E, numita
restul de ordinul n, astfel incdt pentru orice x € A

f (@) =Tu(f,0) (@) + By (f,0) (z),

§t
lim %Rn (f,a)(z) =0.

z—a (T — a)
Demonstratie. Pentru orice z € A, definim
Rn(faa) (l’) = f(%) _Tn (f>a> (l‘)

Demonstram prin inductie dupa n ca

P(n) : lim— (f (#) = Tu (fra) (1)) = 0

T—a (aj — a)n
pentru orice functie f de n ori derivabila in a.

este adevarata pentru orice n > 1. Pasul de verificare:

P(1) : lim— (f () - T\ (f.a) (x)) = 0

pentru orice functie f derivabild in a.

14
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Deoarece pentru orice functie f derivabila in a, avem

f (@ ) = 7 @),
rezulta ca 1
o V@ -l a@) =
I A (i) E=9)
— i (@ (@ + U @)

z—a (x — a)
= f'(a) = f'(a)
= 0.

~

Demonstrdm P (n) = P(n+1). Fiee > 0 i f o functie de n + 1 ori
derivabild in a. Atunci f’ este de m-ori derivabild in a gi ca urmare din
ipoteza de inductie P (n) rezulta

(f () = T (f'; ) () = 0.

. 1
lim ~
z—a (T — a)

Ca urmare existd §. > 0 astfel incat pentru orice x € (a — d.,a+6.) C A
avem

1" () = To (f', @) (@) || < €] —al”. (5.1)

Pe de alta parte, pentru orice x € (a — d,, a + d.), conform teoremei cregterilor
finite, avem

1 (2) = Tora (f,0) () = (f (@) = Tosa (f, 0) ()| < M |z —af,

unde M = sup.; ||/ (z) = T,y (f,a) (2)|, iar I, = [a, 2] dacd a < z sau
I, = [z,a] dacd z < a.
Cum T, (f,a) (a) =a

1f (2) = Tosa (. @) (@)l < sup || £ (2) = T11y (f.a) (2)]] |2 — a

z€ly

15
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si deoarece T, (f,a) (2) =T, (f',a) (2) avem

I (#) = Toir (f,0) (W)l 1

< ———sup||lff(z) =T, (f,a)(z

e e LACROIE]

1
< =€ | — al
1) |r—al
= e
Ca urmare )
tim ey () = T () () =0

si deci P (n+ 1) este adevaratd. m

5.2 Teoremele Fermat, Rolle, Lagrange, Cauchy
si aplicatii

Definitia 5.2.1 Fie f : A — B C R o functie si a € A. Punctul a se
numeste

- punct de minim (global) pentru f “ f(a) < f(x) pentru orice x € A;
- punct de maxim (global) pentru f 24 f(a) > f(x) pentru orice x € A;

- punct de extrem (global) pentru f Y 4 este punct de minim (global) sau
de maxim (global).

Daca in plus, A este o submultime a unui spatiu topologic, punctul a se
numeste

- punct de minim local pentru f Y eqisti o vecindtate V. a lui a astfel
incat f (a) < f (x) pentru orice x € ANV,

- punct de maxim local pentru f Y evisti o vecindtate V. a lui a astfel
incat f(a) > f(x) pentru orice x € ANV;

16
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- punct de extrem local pentru f L o este punct de minim local sau de
maxim local.

Teorema 5.2.2 (Teorema lui Fermat) Fie I un interval deschis de numere
reale, a € I si f : I — R o functie derivabila in a. Daca a este punct de
extrem local pentru f, atunci f'(a) = 0.

Demonstratie. Tindnd cont ca a este punct de maxim local pentru f
daca si numai daca a este punct de minim local pentru — f, fara a reduce
generalitatea, putem presupune ca a este punct de minim pentru f. Ca
urmare exista o vecinatate V' a lui a pe care o putem presupune inclusa in
I astfel incat f (a) < f(x) pentru orice z € V. De aici rezulta cd

f(x) = f(a)

Tr—a

< 0 pentru orice x < a

WZOpentru orice x > a.
Asgadar -

fl(a):fé(a):%g%ﬁéo
i (z) — [ (a)

£ = fito) = iy K=

In consecinta, f/ (a) =0. m

Definitia 5.2.3 Fie a,b € R astfel incit a < b.0 functie f : [a,b] — R se
numeste functie Rolle “

1. f este continua pe |a, b
2. f este derivabila pe (a,b).
Teorema 5.2.4 (Teorema lui Rolle) Fie f : [a,b] — R o functie Rolle

cu proprietatea ca f (a) = f(b). Atunci exista ¢ € (a,b) astfel incat f'(c) =
0.

17
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Demonstratie. Daca f este o functie constanta, atunci concluzia este
evidenta. Presupunem in continuare ca f nu este constantid. Deoarece f
este o functie continud pe intervalul compact [a,b], f isi atinge extremele
(conform teoremei Teorema 4.3.4 (Weierstrass)), adica exista Tmin, Tmax € X
astfel incat

f(@min) < f(z) < f(Zmae) pentru orice x € [a, b] .

Cum f (a) = f (b) si f nu este constanta, cel putin unul dintre punctele
Tmin SAU Tmax este n interiorul intervalului [a,b]. Dacd notdm cu c¢ acest
punct, atunci conform teoremei lui Fermat 5.2.2 f'(¢) =0. =

Teorema 5.2.5 (Teorema lui Lagrange) Fie f : [a,b] — R o functie
Rolle. Atunci exista ¢ € (a,b) astfel incdt

f0) = fla)=(b—a)f ().
Demonstratie. Fie functia ¢ : [a,b] — R definita prin
p(z)=(f(0) = fla)z—(b—a)f(z)

pentru orice z € [a,b]. Atunci ¢ este o functie Rolle si ¢ (a) = ¢ (b).
Conform teoremei lui Rolle 5.2.4 existd ¢ € (a,b) astfel incat ¢’ (¢) = 0 sau
echivalent

f(0) = fla)=(b—a) f'(c) =0

Teorema 5.2.6 (Teorema lui Cauchy) Fie f,g: [a,b] — R doud functii
Rolle. Atunci exista ¢ € (a,b) astfel incdt

f(0) = f(a)g'(c) = (g(b) —g(a)) f' (c).

Demonstratie. Fie functia ¢ : [a,b] — R definitd prin

p(x) = (f(b) = f(a))g(z) —(g(b) —g(a)) f(2)

pentru orice z € [a,b]. Atunci ¢ este o functie Rolle si ¢ (a) = ¢ (b).
Conform teoremei lui Rolle 5.2.4 exista ¢ € (a,b) astfel incat ¢ (¢) = 0 sau

echivalent
(f(0) = f(a) g (c) = (g(b) — g (a)) f(c) =0.

18
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Daca in plus, ¢’ () # 0 pentru orice z € (a,b), rezultatul din teorema
precedentd poate fi reformulat in felul urméator: exista ¢ € (a,b) astfel incat

Teorema 5.2.7 (Formula lui Taylor cu restul Lagrange) Fie [ C R
un interval deschis, a € I i f : A — R o functie de n + 1-ori derivabila pe
A. Atunci pentru orice x € I exista t, € (0,1) astfel incat

(I’ o a)n+1

] Jr P (atts (@ - a)),

fx) =T (fa) (x) +

unde T, (f,a) este polinomul Taylor de ordinul n asociat functiei f in a:

(z —a)
1!

(z—a)’

P (@)

T (f,a) () = f(a)+ f'(a)+

Demonstratie. Dacd z = a rezultatul este evident. Presupunem x # a,

notdm I, = { la,z] dacd a < x

- si consideram functia ¢ : I, — R definita
[z,a] dacd = < a
prin

ply) = f(x)=T.(f,y) (z)
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Pentru orice y € I, avem

S = —rw-% (%ﬂ“ ) + I e <y>> (5.2
= r)+ S G 6= £ S e )
= —f'(y)+ P y)jf(”” () -3 i y)kf(’““) (v)
7=0 j' k=1 k'
= f )+ )+ S e ) - 3 2o g
_ il ( ‘ )] (]—0—1) (y) . :_i (l‘ ;'y) f(k+1) (y) _ (l’ ;!y)nf(n—i-l) <y)
_ ( ~ ) f(n—i—l)( )

Definim functia ¢ : I, — R prin

)TL+1

w(y)zso(y)—kw

RN pentru orice y € I,

unde A este o constantd reald pe care o determindm punand conditia ¢ (a) =
¥ (z), care conduce la

(z —a)"™

Pla) = (n+1)!

=0,

sau echivalent A = ("H))nil). Functia v este o functie Rolle gi ¥ (a) = v (b).

Conform teoremei lui Rolle 5.2.4 exista ¢ € Ix astfel incat ¢’ (¢) = 0 sau

echivalent .
(n+1)(x—rc)

o' (c)+ A CE] = 0.
Tinand cont de (5.2) obtinem
(=0 x—c)"

O (e) + Al =0

n! n!
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de unde deducem A = ) (¢) i cum A = % rezultd

(n + 1)!90 (a) _ f(n+1) (C)

(I _ a)n+1
r—a " n+1
pla) = S ),
sau echivalent
F@) - T (fa) ) = E 0 g (g
B (n+1)!

Faptul ca c este in interiorul intervalului I, este echivalent cu existenta unui
t. € (0,1) astfel incat c =a +1t, (v —a) (ludm t, = &%), =

a

Observatia 5.2.8 Daca P, este un polinom de grad m si T, (Py,a) este
polinomul Taylor de ordinul n asociat functiei polinomiale x — Py, (x) in
a, atunci Ty, (P, a) (x) = Py, (z) pentru orice n > m. Intr-adevir, conform
formuler Taylor cu restul lui Lagrange avem:

)n-l—l

%Pﬁﬂ) (a+t, (x —a)),

si tindand cont ca P* (y) = 0 pentru orice k > m si orice y € R, obtinem
P, (x) =T, (Pn,a)(x) pentru orice n > m.

Exemplul 5.2.9 Calculam sin (62°) cu patru cifre zecimale exacte. Aplicam
formula Taylor cu restul lur Lagrange:

(.T — a)"Jrl (n+1)
f(x):Tn(f,a)(x)Jer (a+ts (x —a))
in punctul a = 60° = %, pentru x = 62° = 3;)1—; st functia f : R — R, definita

prin f (z) = sin (z) pentru orice x € R. Deoarece f"V (y) = sin (y + nZ)
pentru orice y € R, avem

(z —a)"™

(z—a) (z—a)™
(n+1)!

magrd et @-o) <
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Notam h = x — a $i punem conditia

hn+1 1
< —.
(n+1)! 104
Pentru n = 0 se obtine h = & = 0.0349..., n = 1 se obtine %2 = % =
3 3 _ .
0.0006..., zar pentru n = 2, % = 371000 — 10 5 x 0.7.... Deci pentru

n = 2 restul din formula Taylor este in modul mai mic decit 107*. Ca
urmare polinomul Taylor Ty ( 1, ;_r) (3;—0”) aprorimeaza sin (395r ) cu patru cifre
zecimale exacte. Avem

n(13) () = 1) i (5)+ 5 (5)
<§>+hcos<ﬂ>—%2sm<§>

+ T 1 w2 \/5
902 16200 2
T 72/3

180  32400°

+

ofgels &

Aprozimand /3 = 1.732...si m = 3.141, se obtine Tj (f, g) (31“) = 0.8829...
gi deci 0.8829 este o aproximatie a lui sin (62°) cu patru cifre zeczmale
exacte.

Teorema 5.2.10 (Formula lui Mac Laurin) Fie I C R un interval deschis
cu proprietatea ca 0 € I st f : I — R o functie de n+ 1-ori derivabila pe I.
Atunci pentru orice x € I exista t, € (0,1) astfel incdt

n+1

Gy )

T x? z"
£ @)= FO)+ 1 0+ T 1D (0) 4 21 (0) +

Demonstratie. Se aplica formula Taylor cu restul Lagrange in punctul
a =0 (teorema 5.2.7). m

Exemple 5.2.11 Aplicind formula Mac Laurin functilor f (cu f(x) =
e’, f(x) = sin(z), f(z) = cos(x), f(x) = In(1+ x), respectiv, f(x) =
(1+x)%) se obtin formulele:
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1. Pentru orice x € R exista t, € (0,1) astfel incdt
T 332 " n+1
e :14—?4—5—1—...4—5‘1‘

(n+1)!

trex

2. Pentru orice x € R ezista t, € (0,1) astfel incat

$3 213'5 x?n—i—l x2n+2

™
Cn+ 1) (2nt2 2

I sin <txx +(2n +2) 2) .

3. Pentru orice x € R ezista t, € (0,1) astfel incat

xQ x4 xQn x2n+1
- 1
cos(#) = 1ot gt U it g )

cos <txx +(2n+1) g) .

4. Pentru orice v € (—1,00) existi t, € (0,1) astfel incdt

2 n n+1 1

x n-17T n
In(l+2)=1+2x——+ ...+ (-1 — 4+ (=1 .

5. Pentru orice x € (—1,00) exista t, € (0,1) astfel incat

ala—1) ala—1)..(a—n+1)

a o 2 n
(1+2) —1+ﬁx+Tx +...+ " "+
—1)... — 1 —
Q (Oé ) (a n + ) (Oé n) $n+1 (1 + tmx)oz—n—l )
(n+1)!

Teorema 5.2.12 (Teorema lui L’Hospital) Fie a,b € R, a < b, I un
interval astfel incdt (a,b0) C I C [a,b], xo € [a,b] si f,g : I\ {xo} doua
functii cu proprietatile

1. lim f(z)= lim g(z) =0 (respectiv, lim |g(z)| = o0)
T—x0

T—T0 T—To

2. f si g sunt derivabile gi ' (x) # 0 pentru orice x € I \ {zo}.

3. lim gl(i) existd (in R).

T—T0 ,( )
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Atunci g (x) # 0 pentru orice x € I\ {xo} (respectiv, existi o vecinatate

V' a lui xo astfel incdt g (x) # 0 pentru orice x € VN 1T\ {xo}) i limita
lim % existd si este egala cu lim g :Eg . ([Gh. Siretchi, Calcul diferential
T—x0 T—x0

si integral, Vol. 1/p. 217, Editura Stiintifica i Enciclopedica, Bucuresti,
1985])

v . ln($)—$2+1 . Q
Exemplul 5.2.13 Sa se calculeze QICLII{ ) = [0},
R: Avem
(In(z) — 22 +1) L — 2 1

2—1 (sin (7 (z — 1)))’ 2ol Wcosw(w (z—1)) T

.1 —z241
Ca wrmare lim 2@—2"+1 _ _ 1
s sin(m(z—1))
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