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Capitolul 4

Spa̧tii topologice (continuare
din cursul 5)

4.6 Spa̧tiul Rn

Dac¼a pe

Rn = f(�1; �2; : : : ; �n) : �i 2 R, oricare ar � i 2 f1; 2; : : : ngg
de�nim adunarea şi înmuļtirea cu scalari din R în maniera de mai jos

(�1; �2; : : : ; �n) + (�1; �2; : : : ; �n) = (�1 + �1; �2 + �2; : : : ; �n + �n)

�(�1; �2; : : : ; �n) = (��1; ��2; : : : ; ��n),

atunci este uşor de observat c¼a sunt îndeplinite condi̧tiile cerute de de�ni̧tia
spa̧tiului vectorial şi deci Rn este spa̧tiu vectorial peste R.
Pe acest spa̧tiu orice dou¼a norme sunt echivalente. Vom nota cu jj�jj1,

jj�jj1; jj�jj2 urm¼atoarele norme uzuale pe Rn:

jjxjj1 = max
1�j�n

jxjj; jjxjj1 =
nX
j=1

jxjj ; jjxjj2 =
 

nX
j=1

jxjj2
!1=2

pentru orice x = (x1; x2; : : : ; xn) 2 Rn.
Norma jj�jj2 se numeşte norm¼a euclidian¼a şi provine din produsul scalar

hx; yi =
nX
j=1

xjyj
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pentru orice x = (x1; x2; : : : ; xn) şi y = (y1; y2; : : : ; yn) 2 Rn. Acest produs
scalar este numit produsul scalar canonic pe Rn. Distaņta asociat¼a acestei
norme este

d (x; y) =

vuut nX
j=1

jxj � yjj2

pentru orice x = (x1; x2; : : : ; xn), y = (y1; y2; : : : ; yn) 2 Rn şi este numit¼a
distanţa euclidian¼a pe Rn. Pentru n = 2 (respectiv, n = 3) distaņta
euclidian¼a dintre (a1; a2) şi (b1; b2) (respectiv, (a1; a2; a3) şi (b1; b2; b3)) coincide
cu lungimea segmentului de capete A (a1; a2) şi B (b1; b2) (respectiv, de
capete A (a1; a2; a3) şi B (b1; b2; b3)).

� Rn este spa̧tiu Hilbert (în raport cu produsul scalar canonic) şi deci Rn este
spa̧tiu Banach (în raport cu norma jj�jj2 indus¼a de produsul scalar).
În particular, Rn este spa̧tiu metric complet (în raport cu distaņta
euclidian¼a, adic¼a indus¼a de norma jj�jj2) şi deciRn este spa̧tiu topologic
(în raport cu topologia indus¼a de distaņta euclidian¼a).

� Normele jj�jj1, jj�jj1 şi jj�jj2 sunt norme echivalente pe Rn. Ca urmare
induc aceeaşi topologie pe Rn. Mai mult, se poate ar¼ata c¼a orice
norm¼a pe Rn este echivalent¼a cu jj�jj2. Topologia indus¼a de jj�jj2 se
numeşte topologia uzual¼a pe Rn.

� În raport cu topologia uzual¼a, Rn este spa̧tiu local compact.

� În raport cu topologia uzual¼a, o submuļtime A � Rn este compact¼a
dac¼a şi numai dac¼a este închis¼a (echivalent, coņtine limita �ec¼arui şir
convergent cu termeni din A) şi m¼arginit¼a (echivalent, exist¼a M > 0
astfel încât jjxjj2 �M pentru orice x 2 A).

� Şirul (ap)p din Rn, unde ap = (xp1; xp2; : : : ; xpn) pentru orice p, este
convergent dac¼a şi numai dac¼a pentru orice k 2 f1; 2; ::; ng şirul (xpk)p
este convergent. În aceast¼a situa̧tie avem

lim
p!1

ap =

�
lim
p!1

x1p; lim
p!1

x2p; :::; lim
p!1

xnp

�
.
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Analiz¼a Matematic¼a - curs 6

În cazul n = 2 vom scrie (x; y) în loc de (x1; x2), iar în cazul n = 3 vom
scrie (x; y; z) în loc de (x1; x2; x3).

Exemplul 4.6.1 În R4 avem

lim
p!1

�
1

p
;

�
1 +

1

p

�p
;

�
�1
2

�p
; p
p
p

�
=

=

�
lim
p!1

1

p
; lim
p!1

�
1 +

1

p

�p
; lim
p!1

�
�1
2

�p
; lim
p!1

p
p
p

�
= (0; e; 0; 1)).

Exemple 4.6.2 S¼a se studieze continuitatea în punctul (0; 0) a um¼atoarelor
funcţii:

1. f : R2 ! R

f (x; y) =

(
x2+y2

jxj+jyj ; (x; y) 6= (0; 0)
0; (x; y) = (0; 0)

R: Ar¼at¼am c¼a lim
(x;y)!(0;0)

f (x; y) = 0 = f (0; 0) şi ca urmare f este

continu¼a în (0; 0). Fie " > 0. Pentru orice (x; y) 6= (0; 0) avem

0 � x2 + y2

jxj+ jyj =
(jxj+ jyj)2

jxj+ jyj � 2 jxj jyj
jxj+ jyj � jxj+ jyj .

Ca urmare dac¼a lu¼am �" =
"
2
> 0, avem jf (x; y)� 0j < " pentru orice

(x; y) 6= (0; 0) cu k(x; y)� (0; 0)k1 < �" (sau echivalent jxj < �",
jyj < �").

2. f : R2 ! R

f (x; y) =

� 2xy
x2+y2

; (x; y) 6= (0; 0)
0; (x; y) = (0; 0)

R: Ar¼at¼am c¼a f nu are limit¼a în (0; 0) ca urmare nu este continu¼a

în (0; 0). Fie şirurile (an)n şi (bn)n de�nite prin an =

�
1

n
;
1

n

�
şi

bn =

�
1

n
;
2

n

�
pentru orice n 2 N. Atunci an 6= (0; 0), bn 6= (0; 0),

lim
n!1

an = lim
n!1

bn = (0; 0) şi lim
n!1

f (an) = lim
n!1

f

�
1

n
;
1

n

�
= 1, iar
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lim
n!1

f (bn) = lim
n!1

f

�
1

n
;
2

n

�
=
4

5
. Deoarece lim

n!1
f (an) 6= lim

n!1
f (bn),

rezult¼a c¼a f nu are limit¼a în (0; 0).
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Capitolul 5

Calcul difereņtial

5.1 Derivatele funçtiilor de o variabil¼a real¼a
cu valori vectoriale

De�ni̧tia 5.1.1 (Derivata) Fie A � R, E un spaţiu normat real, B � E,
f : A ! B o funcţie şi a 2 A \ A0 (un punct din A care este şi punct de

acumulare). Funcţia f se numeşte derivabil¼a în a
def, exist¼a în E limita

lim
x!a

1

x� a
(f (x)� f (a)) .

Dac¼a exist¼a limita precedent¼a se noteaz¼a cu f 0 (a) sau df
dx
(a) şi se numeşte

derivata lui f în a.

Dac¼a A1 � A \A0, funçtia f : A! E se numeşte derivabil¼a pe A1 dac¼a
este derivabil¼a în orice punct a 2 A1. Dac¼a

Af = fa 2 A \ A0 : f : A! E este derivabil¼a în ag ,
se noteaz¼a cu f 0 funçtia f 0 : Af ! E care asociaz¼a �ec¼arui element a 2 Af
derivata funçtiei f în a, adic¼a funçtia a 7! f 0 (a) [: Af ! E]. Funçtia f 0 este
numit¼a derivata (de ordinul I) funçtiei f .
Funçtia f : A ! E se numeşte derivabil¼a la stânga (respectiv, la

dreapta) în a
def, exist¼a în E limita

lim
x!a
x<a

1

x� a
(f (x)� f (a)) (respectiv, lim

x!a
x>a

1

x� a
(f (x)� f (a)) ).
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Dac¼a exist¼a limita precedent¼a se noteaz¼a cu f 0s (a) (respectiv, f
0
d (a)) şi se

numeşte derivata la stânga(respectiv, la dreapta) lui f în a. Este uşor de
observat c¼a f este derivabil¼a în a dac¼a şi numai dac¼a f este derivabil¼a la
stânga şi la dreapta în a şi f 0s (a) = f 0d (a). În plus, în acest caz

f 0 (a) = f 0s (a) = f 0d (a) .

Propozi̧tia 5.1.2 (Derivabilitatea ) continuitatea) Fie A � R, E
un spaţiu normat real, f : A ! E o funcţie şi a 2 A \ A0. Dac¼a f este
derivabil¼a în a, atunci f este continu¼a în a.

Demonstra̧tie. Pentru orice t 2 A, t 6= a, avem

kf (x)� f (a)k =





(x� a)

�
1

x� a
(f (x)� f (a))� f 0 (a) + f 0 (a)

�




� jx� aj





 1

x� a
(f (x)� f (a))� f 0 (a)





+ jx� aj kf 0 (a)k .

Ca urmare lim
x!a

f (x) = f (a), de unde rezult¼a c¼a f este continu¼a în a.

Propozi̧tia 5.1.3 (Opera̧tii cu funçtii derivabile) Fie E un spaţiu normat
real.

1. Dac¼a A � R, a 2 A\A0, f; g : A! E sunt dou¼a funcţii derivabile în
a şi dac¼a �, � 2 R, atunci funcţia �f + �g este derivabil¼a în a şi

(�f + �g)0 (a) = �f 0 (a) + �g0 (a) .

2. Dac¼a A � R, a 2 A\A0iar f : A! R şi g : A! E sunt dou¼a funcţii
derivabile în a, atunci fg este derivabil¼a în a şi

(fg)0 (a) = f 0 (a) g (a) + f (a) g0 (a) .

3. Dac¼a A � R, a 2 A \ A0iar f : A ! R este o funcţie derivabil¼a în a
cu proprietatea c¼a f (t) 6= 0 pentru orice t 2 A, atunci funcţia 1

f
este

derivabil¼a în a şi �
1

f

�0
(a) = � f

0 (a)

f 2 (a)
.
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4. Dac¼a A � R, a 2 A \ A0iar g : A ! R şi f : A ! E sunt dou¼a
funcţii derivabile în a şi g (t) 6= 0 pentru orice t 2 A, atunci 1

g
f este

derivabil¼a în a şi�
1

g
f

�0
(a) =

1

g2 (a)
(g (a) f 0 (a)� g0 (a) f (a)) .

5. Dac¼a A;B � R, g : A! B este o funcţie derivabil¼a în a 2 A \ A0 şi
f : B ! E o funcţie derivabil¼a în g (a) 2 B \B0, atunci funcţia f � g
este derivabil¼a în a şi

(f � g)0 (a) = g0 (a) f 0 (g (a)) .

Demonstra̧tie. Se utilizeaz¼a de�ni̧tia derivatei şi inegalit¼a̧ti de tipul

k�x� �yk � j�j kxk+ j�j kyk pentru orice �; � 2 R şi x; y 2 E.

Propozi̧tia 5.1.4 (Formule de derivare) Fie A � R o reuniune de intervale
deschise, f : A! R o funcţie derivabil¼a pe A şi f 0 : A! R derivata lui f .
În cele ce urmeaz¼a scriem (f (x))0 în loc de f 0 (x) (x 2 A). Avem

1. (c)0 = 0, c constant¼a

2. (x)0 = 1

3. (xn)0 = nxn�1, x 2 R (n 2 N, n � 2, n �xat)

4. (xn)0 = nxn�1, x 2 R� (n 2 Z, n �xat)

5. (x�)0 = �xa�1, x > 0 (� 2 R, � �xat). În particular,
�
1

x

�0
= � 1

x2
,

x 2 R� iar (
p
x)
0
=

1

2
p
x
, x > 0 sau mai general, ( p

p
x)
0
=

0B@x1p
1CA
0

=

1

p
x

1

p
�1
=

1

p
p
p
xp�1

).
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6. (ax)0 = ax ln (a), x 2 R (a > 0, a �xat). În particular, (ex)0 = ex,
x 2 R.

7. (loga (x))
0 =

1

x ln (a)
, x > 0 (a > 0, a 6= 1, a �xat). În particular,

(ln (x))0 =
1

x
, x > 0.

8. (sin (x))0 = cos (x), x 2 R

9. (cos (x))0 = � sin (x), x 2 R

10. (tg (x))0 =
1

cos2 (x)
= 1 + tg2 (x), x 2 Rn

n
(2k + 1)

�

2
, k 2 Z

o
11. (ctg (x))0 = � 1

sin2 (x)
= �1� ctg2 (x), x 2 Rn fk�, k 2 Zg

12. (arcsin (x))0 =
1p
1� x2

, x 2 (�1; 1)

13. (arccos (x))0 = � 1p
1� x2

, x 2 (�1; 1)

14. (arctg (x))0 =
1

1 + x2
, x 2 R

Exemple 5.1.5 S¼a se calculeze derivatele urm¼atoarelor funcţii:

1. Fie f : R! R, f (x) = cos (x2arctg (x)).
R: Deoarece f (x) = g (u (x)) unde g (u) = cos (u) iar u (x) = x2arctg (x),
pentru orice x 2 R avem

f 0 (x) = g0 (u (x))u0 (x)

= � sin
�
x2arctg (x)

� �
x2arctg (x)

�0
= � sin

�
x2arctg (x)

� ��
x2
�0
arctg (x)� x2 (arctg (x))0

�
= � sin

�
x2arctg (x)

��
2xarctg (x)� x2

1 + x2

�
.
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Analiz¼a Matematic¼a - curs 6

2. Fie I � R o reuniune de intervale deschise şi �e a; b : I ! R, dou¼a
funcţii derivabile pe I astfel încât a (x) > 0 pentru orice x 2 I. Atunci
pentru orice x 2 I avem�

a (x)b(x)
�0
= a (x)b(x) ln (a (x)) b0 (x) + b (x) a (x)b(x)�1 a0 (x) .

R: Într-adev¼ar, pentru orice x 2 I avem:�
a (x)b(x)

�0
=

�
eln(a(x)

b(x))
�0
=
�
eb(x) ln(a(x))

�0
= eb(x) ln(a(x)) (b (x) ln (a (x)))0

= eb(x) ln(a(x))
�
b0 (x) ln (a (x)) + b (x) (ln (a (x)))0

�
= eb(x) ln(a(x))

�
b0 (x) ln (a (x)) + b (x)

a0 (x)

a (x)

�
= eln(a(x)

b(x))
�
b0 (x) ln (a (x)) +

b (x) a0 (x)

a (x)

�
= a (x)b(x)

�
b0 (x) ln (a (x)) +

b (x) a0 (x)

a (x)

�
= a (x)b(x) ln (a (x)) b0 (x) + b (x) a (x)b(x)�1 a0 (x) .

Propozi̧tia 5.1.6 Fie A � R, f = (f1; f2; :::; fn) : A ! Rn o funcţie
şi a 2 A \ A0. Funcţia f este derivabil¼a în a dac¼a şi numai dac¼a toate
componentele ei scalare f1, f2, ..., fn sunt derivabile în a. În plus,

f 0 (a) = (f 01 (a) ; f
0
2 (a) ; :::; f

0
n (a)) .

Demonstra̧tie. Deoarece pentru orice t 2 A, t 6= a, avem

1

t� a
(f (t)� f (a)) =

=

�
1

t� a
(f1 (t)� f1 (a)) ;

1

t� a
(f2 (t)� f2 (a)) ; :::;

1

t� a
(fn (t)� fn (a))

�
,

rezult¼a c¼a

lim
t!a

1

t� a
(f (t)� f (a)) =

=

�
lim
t!a

1

t� a
(f1 (t)� f1 (a)) ; lim

t!a

1

t� a
(f2 (t)� f2 (a)) ; :::; lim

t!a

1

t� a
(fn (t)� fn (a))

�
.
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Exemplul 5.1.7 Fie f : R! R3 funcţia de�nit¼a prin

f (t) =
�
sin (t) ; t3 + 1; arctg (t)

�
pentruorice t 2 R.

Atunci

f 0 (t) =

�
cos (t) ; 3t2;

1

1 + t2

�
pentru orice t 2 R.

Teorema 5.1.8 (J. Dieudonné) Fie a; b 2 R astfel încât a < b, E un
spaţiu normat real, f : [a; b] ! E şi g : [a; b] ! R dou¼a funcţii continue pe
[a; b] şi derivabile la dreapta în orice punct x 2 (a; b). Dac¼a kf 0d (x)k � g0d (x)
pentru orice x 2 (a; b), atunci kf (b)� f (a)k � g (b) � g (a). ([P. Flondor
şi O. St¼an¼aşil¼a, Leçtii de analiz¼a matematic¼a/p. 98, Ediţia a II-a, Editura
ALL, Bucureşti, 1996])

Teorema 5.1.9 (Teorema creşterilor �nite) Fie a; b 2 R astfel încât
a < b, E un spaţiu normat real şi f : [a; b]! E o funcţie continu¼a pe [a; b]
derivabil¼a pe (a; b). Atunci

kf (b)� f (a)k � sup
x2(a;b)

kf 0 (x)k (b� a) .

Demonstra̧tie. Dac¼a supx2(a;b) kf 0 (x)k =1, atunci rezultatul este evident.
Dac¼a M = supx2(a;b) kf 0 (x)k <1, atunci lu¼am g : [a; b]! R, de�nit¼a prin
g (x) = Mx pentru orice x 2 R. Deoarece kf 0 (x)k � g0 (x) pentru orice
x 2 (a; b), conform teoremei anterioare, avem

kf (b)� f (a)k � g (b)� g (a) = sup
x2(a;b)

kf 0 (x)k (b� a) .

De�ni̧tia 5.1.10 (Derivate de ordin superior) Fie A � R, a 2 A\A0,
V o vecin¼atate a lui a, E un spaţiu normat real şi f : A ! E o funcţie
derivabil¼a pe V \ A. Se spune c¼a f este de dou¼a ori derivabil¼a în a dac¼a
(f jV \A)0 este derivabil¼a în a. În acest caz se noteaz¼a

�
(f jV \A)0

�0
(a) = f 00 (a)

şi se numeşte derivata de ordinul 2 a lui f în a. Dac¼a

A2;f = fa 2 A \ A0 : f : A! E este de dou¼a ori derivabil¼a în ag ,

12
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se noteaz¼a cu f 00 sau f (2) funcţia f 00 : A2;f ! E care asociaz¼a �ec¼arui
element a 2 A2;f derivata de ordinul 2 funcţiei f în a, adic¼a funcţia a 7!
f 00 (a) [: A2;f ! E]. Funcţia f 00 este numit¼a derivata de ordinul 2 a funcţiei
f . Mai general, prin recursivitate se de�neşte derivata de ordinul n a
funcţiei f , notat¼a f (n), ca �ind derivata derivatei de ordinul n � 1 a lui
f :

f (n) =
�
f (n�1)

�0
, n � 2.

Se noteaz¼a f (0) = f:

Exemple 5.1.11 Fie n 2 N şi f : Df ! R o funcţie de n ori derivabil¼a pe
Df .

1. Dac¼a a 2 (0;1) n fag şi f (x) = ax pentru orice x 2 R, atunci
f (n) (x) = lnn (a) ax pentru orice x 2 R. În particular, dac¼a f (x) = ex

pentru orice x 2 R, atunci f (n) (x) = ex pentru orice x 2 R.

2. Dac¼a f (x) = sin (x) pentru orice x 2 R, atunci f (n) (x) = sin
�
x+ n�

2

�
pentru orice x 2 R.

3. Dac¼a f (x) = cos (x) pentru orice x 2 R, atunci f (n) (x) = cos
�
x+ n�

2

�
pentru orice x 2 R.

4. Dac¼a f (x) = (ax+ b)k pentru orice x 2 R (unde k 2 N), atunci

f (n) (x) =

�
k (k � 1) ::: (k � n+ 1) an (ax+ b)k�n , dac¼a n � k

0, dac¼a n > k.
pentru orice x 2 R.

5. Dac¼a f (x) = (ax+ b)k pentru orice x 2
�
� b
a
;1
�
(unde a 6= 0

şi k =2 N), atunci f (n) (x) = k (k � 1) ::: (k � n+ 1) an (ax+ b)k�n

pentru orice x 2
�
� b
a
;1
�
.

6. Dac¼a f (x) = 1

(ax+b)k
pentru orice x 2 R n

�
� b
a

	
(unde k 2 N�),

atunci f (n) (x) = (�a)n k(k+1):::(k+n�1)
(ax+b)k+n

pentru orice x 2 R n
�
� b
a

	
.

În particular, dac¼a f (x) = 1
x�a pentru orice x 2 R n fag, atunci

f (n) (x) = (�1)n n!
(x�a)n+1 pentru orice x 2 R n fag.
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7. Dac¼a f (x) = ln (ax+ b) pentru orice x 2
�
� b
a
;1
�
(unde a 6= 0),

atunci f (n) (x) = (�a)n�1 a (n�1)!
(ax+b)n

pentru orice x 2
�
� b
a
;1
�
şi n � 1.

Pentru veri�carea a�rmaţiilor de mai sus se raţioneaz¼a prin inducţie
dup¼a n.

De�ni̧tia 5.1.12 Fie A � R, E un spaţiu normat real şi f : A ! E o
funcţie. Presupunem c¼a f este de n-ori derivabil¼a în a 2 A. Se numeşte
polinomul Taylor de ordinul n asociat funcţiei f în a polinomul notat Tn (f; a)
şi de�nit prin

Tn (f; a) (X) = f (a)+
(X � a)

1!
f 0 (a)+

(X � a)2

2!
f (2) (a)+:::+

(X � a)n

n!
f (n) (a) .

Teorema 5.1.13 (Formula Taylor) Fie A � R o mulţime dechis¼a, E un
spaţiu normat real şi f : A! E o funcţie. Presupunem c¼a f este de n-ori
derivabil¼a în a 2 A. Atunci exist¼a o funcţie Rn (f; a) : A ! E, numit¼a
restul de ordinul n, astfel încât pentru orice x 2 A

f (x) = Tn (f; a) (x) +Rn (f; a) (x) ,

şi

lim
x!a

1

(x� a)n
Rn (f; a) (x) = 0.

Demonstra̧tie. Pentru orice x 2 A, de�nim

Rn (f; a) (x) = f (x)� Tn (f; a) (x) .

Demonstr¼am prin induçtie dup¼a n c¼a

P (n) : lim
x!a

1

(x� a)n
(f (x)� Tn (f; a) (x)) = 0

pentru orice funçtie f de n ori derivabil¼a în a.

este adev¼arat¼a pentru orice n � 1. Pasul de veri�care:

P (1) : lim
x!a

1

(x� a)
(f (x)� T1 (f; a) (x)) = 0

pentru orice funçtie f derivabil¼a în a.

14
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Deoarece pentru orice funçtie f derivabil¼a în a, avem

lim
x!a

1

(x� a)
(f (x)� f (a)) = f 0 (a) ,

rezult¼a c¼a

lim
x!a

1

(x� a)
(f (x)� T1 (f; a) (x)) =

= lim
x!a

1

(x� a)

�
f (x)�

�
f (a) +

(x� a)

1!
f 0 (a)

��
= lim

x!a

1

(x� a)
(f (x)� f (a))� f 0 (a)

= f 0 (a)� f 0 (a)

= 0.

Demonstr¼am P (n) ) P (n+ 1). Fie " > 0 şi f o funçtie de n + 1 ori
derivabil¼a în a. Atunci f 0 este de n-ori derivabil¼a în a şi ca urmare din
ipoteza de induçtie P (n) rezult¼a

lim
x!a

1

(x� a)n
(f 0 (x)� Tn (f

0; a) (x)) = 0.

Ca urmare exist¼a �" > 0 astfel încât pentru orice x 2 (a� �e; a+ �") � A
avem

kf 0 (x)� Tn (f
0; a) (x)k < " jx� ajn . (5.1)

Pe de alt¼a parte, pentru orice x 2 (a� �e; a+ �"), conform teoremei creşterilor
�nite, avem

kf (x)� Tn+1 (f; a) (x)� (f (a)� Tn+1 (f; a) (a))k �M jx� aj ,

unde M = supz2Ix


f 0 (z)� T 0n+1 (f; a) (z)



, iar Ix = [a; x] dac¼a a � x sau
Ix = [x; a] dac¼a x < a.
Cum Tn (f; a) (a) = a

kf (x)� Tn+1 (f; a) (x)k � sup
z2Iy



f 0 (z)� T 0n+1 (f; a) (z)


 jx� aj

15
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şi deoarece T 0n+1 (f; a) (z) = Tn (f
0; a) (z) avem

kf (x)� Tn+1 (f; a) (y)k
jx� ajn+1

� 1

jx� ajn supz2Iy
kf 0 (z)� Tn (f

0; a) (z)k

<
(5:1)

1

jx� ajn " jx� ajn

= ".

Ca urmare

lim
x!a

1

(x� a)n+1
(f (x)� Tn+1 (f; a) (x)) = 0

şi deci P (n+ 1) este adev¼arat¼a.

5.2 Teoremele Fermat, Rolle, Lagrange, Cauchy
şi aplica̧tii

De�ni̧tia 5.2.1 Fie f : A ! B � R o funcţie şi a 2 A. Punctul a se
numeşte

� punct de minim (global) pentru f
def, f (a) � f (x) pentru orice x 2 A;

� punct de maxim (global) pentru f
def, f (a) � f (x) pentru orice x 2 A;

� punct de extrem (global) pentru f
def, a este punct de minim (global) sau

de maxim (global).

Dac¼a în plus, A este o submulţime a unui spaţiu topologic, punctul a se
numeşte

� punct de minim local pentru f
def, exist¼a o vecin¼atate V a lui a astfel

încât f (a) � f (x) pentru orice x 2 A \ V ;

� punct de maxim local pentru f
def, exist¼a o vecin¼atate V a lui a astfel

încât f (a) � f (x) pentru orice x 2 A \ V ;

16



Analiz¼a Matematic¼a - curs 6

� punct de extrem local pentru f
def, a este punct de minim local sau de

maxim local.

Teorema 5.2.2 (Teorema lui Fermat) Fie I un interval deschis de numere
reale, a 2 I şi f : I ! R o funcţie derivabil¼a în a. Dac¼a a este punct de
extrem local pentru f , atunci f 0 (a) = 0.

Demonstra̧tie. Ţinând cont c¼a a este punct de maxim local pentru f
dac¼a şi numai dac¼a a este punct de minim local pentru �f , f¼ar¼a a reduce
generalitatea, putem presupune c¼a a este punct de minim pentru f . Ca
urmare exist¼a o vecin¼atate V a lui a pe care o putem presupune inclus¼a în
I astfel încât f (a) � f (x) pentru orice x 2 V . De aici rezult¼a c¼a

f (x)� f (a)

x� a
� 0 pentru orice x � a

şi
f (x)� f (a)

x� a
� 0 pentru orice x � a.

Aşadar

f 0 (a) = f 0s (a) = limx!a
x<a

f (x)� f (a)

x� a
� 0

şi

f 0 (a) = f 0d (a) = limx!a
x>a

f (x)� f (a)

x� a
� 0.

În conseciņt¼a, f 0 (a) = 0.

De�ni̧tia 5.2.3 Fie a; b 2 R astfel încât a < b:O funcţie f : [a; b] ! R se
numeşte funcţie Rolle

def,

1. f este continu¼a pe [a; b]

2. f este derivabil¼a pe (a; b).

Teorema 5.2.4 (Teorema lui Rolle) Fie f : [a; b] ! R o funcţie Rolle
cu proprietatea c¼a f (a) = f (b). Atunci exist¼a c 2 (a; b) astfel încât f 0 (c) =
0.

17
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Demonstra̧tie. Dac¼a f este o funçtie constant¼a, atunci concluzia este
evident¼a. Presupunem în continuare c¼a f nu este constant¼a. Deoarece f
este o funçtie continu¼a pe intervalul compact [a; b], f î̧si atinge extremele
(conform teoremei Teorema 4.3.4 (Weierstrass)), adic¼a exist¼a xmin; xmax 2 X
astfel încât

f(xmin) � f(x) � f(xmax) pentru orice x 2 [a; b] .

Cum f (a) = f (b) şi f nu este constant¼a, cel pu̧tin unul dintre punctele
xmin sau xmax este în interiorul intervalului [a; b]. Dac¼a not¼am cu c acest
punct, atunci conform teoremei lui Fermat 5.2.2 f 0 (c) = 0.

Teorema 5.2.5 (Teorema lui Lagrange) Fie f : [a; b] ! R o funcţie
Rolle. Atunci exist¼a c 2 (a; b) astfel încât

f (b)� f (a) = (b� a) f 0 (c) .

Demonstra̧tie. Fie funçtia ' : [a; b]! R de�nit¼a prin

' (x) = (f (b)� f (a))x� (b� a) f (x)

pentru orice x 2 [a; b]. Atunci ' este o funçtie Rolle şi ' (a) = ' (b).
Conform teoremei lui Rolle 5.2.4 exist¼a c 2 (a; b) astfel încât '0 (c) = 0 sau
echivalent

f (b)� f (a)� (b� a) f 0 (c) = 0.

Teorema 5.2.6 (Teorema lui Cauchy) Fie f ,g : [a; b]! R dou¼a funcţii
Rolle. Atunci exist¼a c 2 (a; b) astfel încât

f (b)� f (a) g0 (c) = (g (b)� g (a)) f 0 (c) .

Demonstra̧tie. Fie funçtia ' : [a; b]! R de�nit¼a prin

' (x) = (f (b)� f (a)) g (x)� (g (b)� g (a)) f (x)

pentru orice x 2 [a; b]. Atunci ' este o funçtie Rolle şi ' (a) = ' (b).
Conform teoremei lui Rolle 5.2.4 exist¼a c 2 (a; b) astfel încât '0 (c) = 0 sau
echivalent

(f (b)� f (a)) g0 (c)� (g (b)� g (a)) f (c) = 0.
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Dac¼a în plus, g0 (x) 6= 0 pentru orice x 2 (a; b), rezultatul din teorema
precedent¼a poate � reformulat în felul urm¼ator: exist¼a c 2 (a; b) astfel încât

f (b)� f (a)

g (b)� g (a)
=
f 0 (c)

g0 (c)
.

Teorema 5.2.7 (Formula lui Taylor cu restul Lagrange) Fie I � R
un interval deschis, a 2 I şi f : A! R o funcţie de n+ 1-ori derivabil¼a pe
A. Atunci pentru orice x 2 I exist¼a tx 2 (0; 1) astfel încât

f (x) = Tn (f; a) (x) +
(x� a)n+1

(n+ 1)!
f (n+1) (a+ tx (x� a)) ,

unde Tn (f; a) este polinomul Taylor de ordinul n asociat funcţiei f în a:

Tn (f; a) (x) = f (a)+
(x� a)

1!
f 0 (a)+

(x� a)2

2!
f (2) (a)+:::+

(x� a)n

n!
f (n) (a) .

Demonstra̧tie. Dac¼a x = a rezultatul este evident. Presupunem x 6= a,

not¼am Ix =

�
[a; x] dac¼a a < x
[x; a] dac¼a x < a

şi consider¼am funçtia ' : Ix ! R de�nit¼a

prin

' (y) = f (x)� Tn (f; y) (x)

= f (x)� f (y)�
nP
k=1

(x� y)k

k!
f (k) (y) , y 2 Ix
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Pentru orice y 2 Ix avem

'0 (y) = �f 0 (y)�
nP
k=1

 
�k (x� y)k�1

k!
f (k) (y) +

(x� y)k

k!
f (k+1) (y)

!
(5.2)

= �f 0 (y) +
nP
k=1

(x� y)k�1

(k � 1)! f
(k) (y)�

nP
k=1

(x� y)k

k!
f (k+1) (y)

= �f 0 (y) +
n�1P
j=0

(x� y)j

j!
f (j+1) (y)�

nP
k=1

(x� y)k

k!
f (k+1) (y)

= �f 0 (y) + f 0 (y) +
n�1P
j=1

(x� y)j

j!
f (j+1) (y)�

nP
k=1

(x� y)k

k!
f (k+1) (y)

=
n�1P
j=1

(x� y)j

j!
f (j+1) (y)�

n�1P
k=1

(x� y)k

k!
f (k+1) (y)� (x� y)n

n!
f (n+1) (y)

= �(x� y)n

n!
f (n+1) (y) :

De�nim funçtia  : Ix ! R prin

 (y) = ' (y)� �
(x� y)n+1

(n+ 1)!
pentru orice y 2 Ix,

unde � este o constant¼a real¼a pe care o determin¼am punând condi̧tia  (a) =
 (x), care conduce la

' (a)� �
(x� a)n+1

(n+ 1)!
= 0,

sau echivalent � = (n+1)!'(a)

(x�a)n+1 . Funçtia  este o funçtie Rolle şi  (a) =  (b).

Conform teoremei lui Rolle 5.2.4 exist¼a c 2
�
Ix astfel încât  

0 (c) = 0 sau
echivalent

'0 (c) + �
(n+ 1) (x� c)n

(n+ 1)!
= 0.

Ţinând cont de (5.2) ob̧tinem

�(x� c)n

n!
f (n+1) (c) + �

(x� c)n

n!
= 0
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de unde deducem � = f (n+1) (c) şi cum � = (n+1)!'(a)

(x�a)n+1 rezult¼a

(n+ 1)!' (a)

(x� a)n+1
= f (n+1) (c)

' (a) =
(x� a)n+1

(n+ 1)!
f (n+1) (c) :

sau echivalent

f (x)� Tn (f; a) (x) =
(x� a)n+1

(n+ 1)!
f (n+1) (c) .

Faptul c¼a c este în interiorul intervalului Ix este echivalent cu existeņta unui
tx 2 (0; 1) astfel încât c = a+ tx (x� a) (lu¼am tx =

c�a
x�a).

Observa̧tia 5.2.8 Dac¼a Pm este un polinom de grad m şi Tn (Pm; a) este
polinomul Taylor de ordinul n asociat funcţiei polinomiale x 7! Pm (x) în
a, atunci Tn (Pm; a) (x) = Pm (x) pentru orice n � m. Într-adev¼ar, conform
formulei Taylor cu restul lui Lagrange avem:

Pm (x) = Tn (Pm; a) (x) +
(x� a)n+1

(n+ 1)!
P (n+1)m (a+ tx (x� a)) ,

şi ţinând cont c¼a P km (y) = 0 pentru orice k > m şi orice y 2 R, obţinem

Pm (x) = Tn (Pm; a) (x) pentru orice n � m.

Exemplul 5.2.9 Calcul¼am sin (62�) cu patru cifre zecimale exacte. Aplic¼am
formula Taylor cu restul lui Lagrange:

f (x) = Tn (f; a) (x) +
(x� a)n+1

(n+ 1)!
f (n+1) (a+ tx (x� a))

în punctul a = 60� = �
3
, pentru x = 62� = 31�

90
şi funcţia f : R! R, de�nit¼a

prin f (x) = sin (x) pentru orice x 2 R. Deoarece f (n+1) (y) = sin
�
y + n�

2

�
pentru orice y 2 R, avem�����(x� a)n+1

(n+ 1)!
f (n+1) (a+ tx (x� a))

����� �
�����(x� a)n+1

(n+ 1)!

����� .
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Not¼am h = x� a şi punem condiţia

hn+1

(n+ 1)!
<

1

104
.

Pentru n = 0 se obţine h = �
90
= 0:0349::: , n = 1 se obţine h2

2
= �2

16200
=

0:0006:::, iar pentru n = 2, h3

3!
= �3

4374000
= 10�5 � 0:7:::. Deci pentru

n = 2 restul din formula Taylor este în modul mai mic decât 10�4. Ca
urmare polinomul Taylor T2

�
f; �

3

� �
31�
90

�
aproximeaz¼a sin

�
31�
90

�
cu patru cifre

zecimale exacte. Avem

T2

�
f;
�

3

��31�
90

�
= f

��
3

�
+
h

1!
f 0
��
3

�
+
h2

2!
f (2)

��
3

�
= sin

��
3

�
+ h cos

��
3

�
� h2

2
sin
��
3

�
=

p
3

2
+

�

90

1

2
� �2

16200

p
3

2

=

p
3

2
+

�

180
� �2

p
3

32400
.

Aproximând
p
3 = 1:732:::şi � = 3:141, se obţine T2

�
f; �

3

� �
31�
90

�
= 0:8829:::,

şi deci 0:8829 este o aproximaţie a lui sin (62�) cu patru cifre zecimale
exacte.

Teorema 5.2.10 (Formula lui Mac Laurin) Fie I � R un interval deschis
cu proprietatea c¼a 0 2 I şi f : I ! R o funcţie de n+1-ori derivabil¼a pe I.
Atunci pentru orice x 2 I exist¼a tx 2 (0; 1) astfel încât

f (x) = f (0)+
x

1!
f 0 (0)+

x2

2!
f (2) (0)+ :::+

xn

n!
f (n) (0)+

xn+1

(n+ 1)!
f (n+1) (txx) .

Demonstra̧tie. Se aplic¼a formula Taylor cu restul Lagrange în punctul
a = 0 (teorema 5.2.7).

Exemple 5.2.11 Aplicând formula Mac Laurin funcţiilor f (cu f(x) =
ex, f(x) = sin (x), f(x) = cos (x), f(x) = ln (1 + x), respectiv, f(x) =
(1 + x)�) se obţin formulele:
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1. Pentru orice x 2 R exist¼a tx 2 (0; 1) astfel încât

ex = 1 +
x

1!
+
x2

2!
+ :::+

xn

n!
+

xn+1

(n+ 1)!
etxx.

2. Pentru orice x 2 R exist¼a tx 2 (0; 1) astfel încât

sin (x) = x�x
3

3!
+
x5

5!
+:::+(�1)n x2n+1

(2n+ 1)!
+

x2n+2

(2n+ 2)!
sin
�
txx+ (2n+ 2)

�

2

�
.

3. Pentru orice x 2 R exist¼a tx 2 (0; 1) astfel încât

cos (x) = 1�x
2

2!
+
x4

4!
+:::+(�1)n x2n

(2n)!
+

x2n+1

(2n+ 1)!
cos
�
txx+ (2n+ 1)

�

2

�
.

4. Pentru orice x 2 (�1;1) exist¼a tx 2 (0; 1) astfel încât

ln (1 + x) = 1+ x� x2

2
+ :::+ (�1)n�1 x

n

n
+ (�1)n x

n+1

n+ 1

1

(txx+ 1)
n+1 .

5. Pentru orice x 2 (�1;1) exist¼a tx 2 (0; 1) astfel încât

(1 + x)� = 1+
�

1!
x+

� (a� 1)
2!

x2+ :::+
� (�� 1) ::: (�� n+ 1)

n!
xn+

� (�� 1) ::: (�� n+ 1) (�� n)

(n+ 1)!
xn+1 (1 + txx)

��n�1 .

Teorema 5.2.12 (Teorema lui L�Hospital) Fie a; b 2 R, a < b, I un
interval astfel încât (a; b) � I � [a; b], x0 2 [a; b] şi f; g : I n fx0g dou¼a
funcţii cu propriet¼aţile

1. lim
x!x0

f (x) = lim
x!x0

g (x) = 0 (respectiv, lim
x!x0

jg (x)j = 1)

2. f şi g sunt derivabile şi g0 (x) 6= 0 pentru orice x 2 I n fx0g.

3. lim
x!x0

f 0(x)
g0(x) exist¼a (în R).
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Atunci g (x) 6= 0 pentru orice x 2 I n fx0g (respectiv, exist¼a o vecin¼atate
V a lui x0 astfel încât g (x) 6= 0 pentru orice x 2 V \ I n fx0g) şi limita
lim
x!x0

f(x)
g(x)

exist¼a şi este egal¼a cu lim
x!x0

f 0(x)
g0(x) . ([Gh. Sireţchi, Calcul difereņtial

şi integral, Vol. 1/p. 217, Editura Ştiinţi�c¼a şi Enciclopedic¼a, Bucureşti,
1985])

Exemplul 5.2.13 S¼a se calculeze lim
x!1

ln(x)�x2+1
sin(�(x�1)) =

�
0
0

�
.

R: Avem

lim
x!1

(ln (x)� x2 + 1)
0

(sin (� (x� 1)))0
= lim

x!1

1
x
� 2x

� cos (� (x� 1))0
= � 1

�
.

Ca urmare lim
x!1

ln(x)�x2+1
sin(�(x�1)) = �

1
�
.
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