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Capitolul 5

Calcul difereņtial (continuare
din cursul 7)

5.5 Derivate paŗtiale (continuare din cursul
7)

Teorema 5.5.1 (Formula de calcul a difereņtialei) Fie A o submulţime
deschis¼a a lui Rn şi a 2 A. Dac¼a funcţia f : A! R,

(x1; x2; :::; xn)
f7! f (x1; x2; :::; xn)

este diferenţiabil¼a în a, atunci pentru orice k 2 f1; 2; :::; ng funcţia f este
derivabil¼a parţial în a în raport cu variabila xk şi

@f

@xk
(a) = dfa (ek) ,

unde ek = (0; 0; :::0; 1; 0; :::; 0) este cel de al k-lea vector al bazei canonice
din Rn. În plus, pentru orice x = (x1; x2; :::; xn) 2 Rn avem

dfa (x) =
nP
k=1

@f

@xk
(a)xk.

Demonstra̧tie. Faptul c¼a f este derivabil¼a paŗtial în a în raport cu
variabila xk şi

@f
@xk
(a) = dfa (ek) este o conseciņt¼a direct¼a a propozi̧tiei 5.4.3.
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Fie x = (x1; x2; :::; xn) 2 Rn. Atunci x =
nP
k=1

xkek şi ca urmare

dfa (x) = dfa

�
nP
k=1

xkek

�
=

nP
k=1

xkdfa (ek) =
nP
k=1

xk
@f

@xk
(a) .

Tradi̧tional pentru orice k 2 f1; 2; :::; ng aplica̧tiile liniare prk : Rn ! R
de�nite prin

prk (x1; x2; :::; xn) = xk, (x1; x2; :::; xn) 2 Rn

se noteaz¼a cu dxk. Folosind aceste nota̧tii ob̧tinem urm¼atoarea formul¼a de
calcul a difereņtialei (de ordinul I) a funçtiei f :

dfa : Rn ! R

dfa =
nP
k=1

@f

@xk
(a) dxk

În particular, în cazul n = 2 avem

dfa : R2 ! R, dfa =
@f

@x
(a) dx+

@f

@y
(a) dy

iar în cazul n = 3

dfa : R3 ! R, dfa =
@f

@x
(a) dx+

@f

@y
(a) dy +

@f

@z
(a) dz.

Conform teoremei 5.5.1 orice funçtie difereņtiabil¼a admite derivate paŗtiale.
În general, reciproca nu este adev¼arat¼a pentru n > 1.

Teorema 5.5.2 (Criteriu de difereņtiabilitate) Fie A � Rn o submulţime
deschis¼a şi a 2 A. Dac¼a funcţia f : A! R,

(x1; x2; :::; xn)
f7! f (x1; x2; :::; xn)

admite derivate parţiale în orice punct dintr-o vecin¼atate Va a punctului a
şi dac¼a derivatele parţiale

x 7! @f

@xk
(x)

sunt continue în a pentru orice k 2 f1; 2; :::; ng, atunci funcţia f este
diferenţiabil¼a în a.
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Analiz¼a Matematic¼a - curs 8

Demonstra̧tie. În cele urmeaz¼a consider¼am pe Rn norma kk = kk1.
Deoarece Va este vecin¼atate a punctului a, exist¼a r > 0 astfel încâtB (a; r) �
Va. Deoarece funçtia

x 7! @f

@xk
(x)

este continu¼a în a, pentru orice " > 0 exist¼a �" > 0 astfel încât pentru orice
z 2 B (a; r) cu kz � ak < �" s¼a avem���� @f@xk (z)� @f

@xk
(a)

���� < ". (5.1)

Fie r" = min f�"; rg şi x = (x1; x2; :::; xn) un punct �xat din B (a; r").
Consider¼am punctele

y0 = x

yk = (a1; a2; :::; ak; xk+1; xk+2; :::; xn) pentru orice k 2 f1; 2; :::; ng

şi observ¼am c¼a

kyk � ak = k(0; 0; :::; 0; xk+1 � ak+1; xk+2 � ak+2; :::; xn � an)k
� kx� ak
< r

Aşadar y0, y1, ..., yn 2 B (a; r"). Aplicând teorema creşterilor �nite 5.1.9
funçtiei

t
Fk7! f (a1; a2; :::; ak�1; t; xk+1; xk+2; :::; xn)� f (yk)�

@f

@xk
(a) (t� ak)

pe intervalul Ik de capete ak şi xk ob̧tinem

kFk (xk)� Fk (ak)k � sup
t2Ik

jF 0k (t)j jxk � akj .

Din faptul c¼a pentru orice t 2 Ik avem

k(a1; a2; :::; ak�1; t; xk+1; xk+2; :::; xn)� ak � kx� ak < r"
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rezult¼a c¼a (a1; a2; :::; ak�1; t; xk+1; xk+2; :::; xn) 2 B (a; r") şi ca urmare

jF 0k (t)j =

���� @f@xk (a1; a2; :::; ak�1; t; xk+1; xk+2; :::; xn)� @f

@xk
(a)

����(5.2)
<
(5:1)

"

Pe de alt¼a parte 



f (x)� f (a)� nP
k=1

@f

@xk
(a) (xk � ak)






=





 nP
k=1

(f (yk�1)� f (yk))�
nP
k=1

@f

@xk
(a) (xk � ak)






=





 nP
k=1

f (yk�1)� f (yk)�
@f

@xk
(a) (xk � ak)






�

nP
k=1





f (yk�1)� f (yk)� @f

@xk
(a) (xk � ak)






=

nP
k=1

kFk (xk)� Fk (ak)k

�
nP
k=1

sup
t2Ik

jF 0k (t)j jxk � akj

<
(5:2)

"
nP
k=1

jxk � akj

� "n kx� ak
de unde rezult¼a c¼a

lim
x!a





f (x)� f (a)� nP
k=1

@f
@xk
(a) (xk � ak)






kx� ak = 0.

Ca urmare, ţinând cont şi de faptul c¼a aplica̧tia

(x1; x2; :::; xn) 7!
nP
k=1

@f

@xk
(a)xk

este liniar¼a (̧si continu¼a), rezult¼a c¼a f este difereņtiabil¼a în a şi

dfa (x1; x2; :::; xn) =
nP
k=1

@f

@xk
(a)xk.
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Exemple 5.5.3 S¼a se calculeze diferenţialele urm¼atoarelor funcţii în punctul
a:

1. f : R2 ! R, f (x; y) = ln (1 + x2y4) pentru orice (x; y) 2 R2, a =
(1;�1).

R: Avem

@f

@x
(x; y) =

1

1 + x2y4
�
1 + x2y4

�0
x
=

1

1 + x2y4
y42x =

2xy4

1 + x2y4

@f

@y
(x; y) =

1

1 + x2y4
�
1 + x2y4

�0
y
=

1

1 + x2y4
x24y3 =

4x2y3

1 + x2y4
.

şi deci

@f

@x
(1;�1) =

2xy4

1 + x2y4

����
(x;y)=(1;�1)

= 1

@f

@y
(1;�1) =

4x2y3

1 + x2y4

����
(x;y)=(1;�1)

= �2.

Deoarece @f
@x
şi @f

@y
sunt continue pe R2şi în particular în a = (1;�1),

rezult¼a c¼a f este diferenţiabil¼a în a = (1;�1) şi

df(1;�1) =
@f

@x
(1;�1) dx+ @f

@y
(1;�1) dy

= dx� 2dy.

2. f : R3 ! R, f (x; y; z) = arctg
�

y
1+x2z2

�
pentru orice (x; y; z) 2 R3,

a = (1; 2;�1).
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R: Avem

@f

@x
(x; y; z) =

1

1 +
�

y
1+x2z2

�2 � y

1 + x2z2

�0
x

=
(1 + x2z2)

2

(1 + x2z2)2 + y2
(�y) (1 + x

2z2)
0
x

(1 + x2z2)2

= � 2xyz2

x4z4 + 2x2z2 + y2 + 1

@f

@y
(x; y; z) =

1

1 +
�

y
1+x2z2

�2 � y

1 + x2z2

�0
y

=
(1 + x2z2)

2

(1 + x2z2)2 + y2
1

1 + x2z2

=
1 + x2z2

x4z4 + 2x2z2 + y2 + 1

@f

@z
(x; y; z) = � 2x2yz

x4z4 + 2x2z2 + y2 + 1
.

şi ca urmare

@f

@x
(1; 0;�1) = � 2xyz2

x4z4 + 2x2z2 + y2 + 1

����
(x;y;z)=(1;2;�1)

= �1
2

@f

@y
(1; 0;�1) =

1 + x2z2

x4z4 + 2x2z2 + y2 + 1

����
(x;y;z)=(1;2;�1)

=
1

4

@f

@x
(1; 0;�1) = � 2x2yz

x4z4 + 2x2z2 + y2 + 1

����
(x;y;z)=(1;2;�1)

=
1

2
.

Deoarece @f
@x
, @f
@y
şi @f

@z
sunt continue pe R3şi în particular, în a =

(1; 2;�1), rezult¼a c¼a f este diferenţiabil¼a în a = (1; 2;�1) şi

df(1;2;�1) =
@f

@x
(1; 2;�1) dx+ @f

@y
(1; 2;�1) dy + @f

@z
(1; 2;�1) dz

= �1
2
dx+

1

4
dy +

1

2
dz.

8



Analiz¼a Matematic¼a - curs 8

De�ni̧tia 5.5.4 (Gradient) Fie A � Rn o submulţime deschis¼a, a 2 A
şi f : A ! R o funcţie cu proprietatea c¼a admite derivate parţiale în a
în raport cu toate variabilele xk, k 2 f1; 2; :::; ng. Se numeşte gradientul
asociat funcţiei f în punctul a, şi se noteaz¼a cu raf , vectorul

raf =

�
@f

@x1
(a) ;

@f

@x2
(a) ; :::;

@f

@xn
(a)

�
.

Dac¼a

Af = fa 2 A : f este derivabil¼a parţial în raport cu toate variabileleg ,

se noteaz¼a cu rf funcţia rf : Af ! R de�nit¼a prin

rf (a) = raf pentru orice a 2 Af
Funcţia rf este numit¼a gradientul lui f .

Exemplul 5.5.5 Fie f : R3 ! R, f (x; y; z) = x3 + 3xy � yz4 pentru orice
(x; y; z) 2 R3. Avem

rf (x; y; z) =

�
@f

@x
(x; y; z) ;

@f

@y
(x; y; z) ;

@f

@z
(x; y; z)

�
=

�
3x2 + 3y; 3x� z4;�4yz3

�
.

De�ni̧tia 5.5.6 Fie A � Rn o submulţime deschis¼a şi a 2 A. Funcţia
f : A ! R se numeşte de clas¼a C1 pe A (şi se scrie f 2 C1 (A)) def, f
admite derivate parţiale în orice punct din A şi derivatele parţiale

x 7! @f

@xk
(x)

sunt continue pe A.

Dac¼a f este de clas¼a C1 pe A, atunci f este difereņtiabil¼a în orice punct
din a şi ca urmare este continu¼a pe A.

Corolarul 5.5.7 Fie A � Rn o submulţime deschis¼a, a 2 A şi f : A ! R
o funcţie diferenţiabil¼a în a (în particular, o funcţie de clas¼a C1). Atunci
pentru orice x = (x1; x2; :::; xn) 2 Rn avem

dfa (x) = hraf; xi ,

unde h�; �i este produsul scalar canonic pe Rn.
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Demonstra̧tie. Este conseciņt¼a direct¼a a teoremei 5.5.1.

De�ni̧tia 5.5.8 (Matrice jacobian¼a) Fie A � Rn o submulţime deschis¼a,
a 2 A şi f = (f1; f2; :::; fm) : A ! Rm o funcţie (pentru orice i 2
f1; 2; :::; mg, fi = pri � f , unde pri : Rm ! R, pri (x1; x2; :::; xm) = xi).
Presupunem c¼a pentru orice i 2 f1; 2; :::; mg, funcţia fi : A ! R admite
derivate parţiale în a în raport cu toate variabilele xj, j 2 f1; 2; :::; ng. Se
numeşte matricea jacobian¼a asociat¼a funcţiei f în punctul a, şi se noteaz¼a
cu Jf (a), matricea

Jf (a) =

0BBB@
@f1
@x1
(a) @f1

@x2
(a) ::: @f1

@xn
(a)

@f2
@x1
(a) @f2

@x2
(a) ::: @f2

@xn
(a)

::: ::: ::: :::
@fm
@xn

(a) @fm
@x2

(a) ::: @fm
@xn

(a)

1CCCA
Dac¼a m = n, determinantul matricei jacobiene se numeşte jacobianul

funcţiei f (sau determinantul funcţional al funcţiilor f1, f2, :::, fn în raport
cu variabilele x1, x2, :::, xn) în punctul a şi se noteaz¼a cu

det (Jf (a)) =
D (f1; f2; :::; fn)

D (x1; x2; :::; xn)
(a) .

Exemplul 5.5.9 Fie f : R3 ! R2, f (x; y; z) = (x3 + 3xyz; x cos (y + z))
pentru orice (x; y; z) 2 R3. Avem f1 (x; y; z) = x3 + 3xyz, f2 (x; y; z) =
x cos (y + z) şi

Jf (x; y; z) =

 
@f1
@x
(x; y; z) @f1

@y
(x; y; z) @f1

@z
(x; y; z)

@f2
@x
(x; y; z) @f2

@y
(x; y; z) @f2

@z
(x; y; z)

!

=

�
3x2 + 3yz 3xz 3xy
cos (y + z) �x sin (y + z) �x sin (y + z)

�
.

De�ni̧tia 5.5.10 Fie A � Rn o submulţime deschis¼a, a 2 A şi f =
(f1; f2; :::; fm) : A ! Rm o funcţie (pentru orice i 2 f1; 2; :::; mg, fi =
pri � f , unde pri : Rm ! R, pri (x1; x2; :::; xm) = xi). Funcţia f se numeşte
de clas¼a C1 pe A (şi se scrie f 2 C1 (A)) def, toate componentele ei f1, f2,
:::, fn sunt de clas¼a C1 pe A.
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Evident funçtiile f = (f1; f2; :::; fm) : A! Rm de clas¼aC1 sunt difereņtiabile
în orice punct din A.

Teorema 5.5.11 Fie A � Rn o submulţime deschis¼a, a 2 A şi f =
(f1; f2; :::; fm) : A ! Rm o funcţie diferenţiabil¼a pe A (pentru orice i 2
f1; 2; :::; mg, fi = pri � f , unde pri : Rm ! R, pri (x1; x2; :::; xm) = xi).
Atunci pentru orice x = (x1; x2; :::; xn) 2 Rn avem

dfa (x)
t =

0BBB@
@f1
@x1
(a) @f1

@x2
(a) ::: @f1

@xn
(a)

@f2
@x1
(a) @f2

@x2
(a) ::: @f2

@xn
(a)

::: ::: ::: :::
@fm
@xn

(a) @fm
@x2

(a) ::: @fm
@xn

(a)

1CCCA
0BB@
x1
x2
:::
xn

1CCA

(ceea ce este echivalent cu faptul c¼a matricea jacobian¼a Jf (a) este matricea
asociat¼a aplicaţiei liniare dfa : Rn ! Rm în bazele canonice din Rn, Rm cu
convenţia scrierii vectorilor pe coloan¼a).

Aplicaţia dfa : Rn ! Rm este un izomor�sm liniar dac¼a şi numai dac¼a
m = n şi jacobianul det (Jf (a)) 6= 0.

Demonstra̧tie. Conform propozi̧tiei 5.3.8, f este difereņtiabil¼a în a dac¼a
şi numai dac¼a toate componentele ei f1, f2, :::, fn sunt difereņtiabile în a şi

dfa (x) = (df1a (x) ; df2a (x) ; :::; dfma (x)) .

Pentru orice i 2 f1; 2; :::; mg, conform teoremei 5.5.1, pentru orice x =
(x1; x2; :::; xn) 2 Rn avem

dfia (x) =
nP
k=1

@fi
@xk

(a)xk.
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Ca urmare pentru orice x = (x1; x2; :::; xn) 2 Rn avem

dfa (x)
t =

0BB@
df1a (x)
df2a (x)
:::

dfma (x)

1CCA

=

0BBBBBBB@

nP
k=1

@f1
@xk
(a)xk

nP
k=1

@f2
@xk
(a)xk

:::
nP
k=1

@fm
@xk

(a)xk

1CCCCCCCA

=

0BBB@
@f1
@x1
(a) @f1

@x2
(a) ::: @f1

@xn
(a)

@f2
@x1
(a) @f2

@x2
(a) ::: @f2

@xn
(a)

::: ::: ::: :::
@fm
@xn

(a) @fm
@x2

(a) ::: @fm
@xn

(a)

1CCCA
0BB@
x1
x2
:::
xn

1CCA
Aplica̧tia dfa : Rn ! Rm este un izomor�sm liniar dac¼a şi numai

dac¼a m = n şi matricea asociat¼a aplica̧tiei liniare dfa �xând baze în Rnşi
Rm este inversabil¼a. Ceea ce este echivalent cu Jf (a) inversabil¼a sau cu
det (Jf (a)) 6= 0.
Exemplul 5.5.12 Fie A � R2 o mulţime deschis¼a cu proprietatea c¼a A �
[0;1)�R şi f : A! R2, f (�; �) = (� cos (�) ; � sin (�)) pentru orice (�; �) 2
A. Avem f1 (�; �) = � cos (�), f2 (�; �) = � sin (�) şi

Jf (�; �) =

 
@f1
@�

@f1
@�

@f2
@�

@f2
@�

!

=

�
cos (�) �� sin (�)
sin (�) � cos (�)

�
.

Jacobianul lui f într-un punct (�; �) este

D (f1; f2)

D (�; �)
= det (Jf (�; �)) =

���� cos (�) �� sin (�)
sin (�) � cos (�)

����
= � cos2 (�) + � sin2 (�)

= �.
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Aplicaţia df(�;�) este izomor�sm dac¼a şi numai dac¼a � 6= 0. În plus, pentru
orice (u; v) 2 R2 avem

df(�;�) (u; v)
t =

�
cos (�) �� sin (�)
sin (�) � cos (�)

��
u
v

�
,

adic¼a

df(�;�) (u; v) = (u cos (�)� v� sin (�) ; u sin (�) + v� cos (�)) .

Propozi̧tia 5.5.13 (Derivarea paŗtial¼a a funçtiilor compuse) Fie A �
Rn şi B � Rm dou¼a mulţimi deschise, a 2 A, f = (f1; f2; :::; fm) : A !
B � Rm o funcţie

(x1; x2; :::; xn)
f7! f (x1; x2; :::; xn)

diferenţiabil¼a în a şi g = (g1; g2; :::; gp) : B ! Rp o funcţie

(y1; y2; :::; ym)
g7! g (y1; y2; :::; ym)

diferenţiabil¼a în f (a) (în particular, f şi g de clas¼a C1). Atunci pentru
orice i 2 f1; 2; :::; pg, gi � f : A ! R este derivabil¼a parţial în a în raport
cu toate variabilele şi în plus, pentru orice j 2 f1; 2; :::; ng avem

@ (gi � f)
@xj

(a) =
mP
k=1

@gi
@yk

(f (a))
@fk
@xj

(a) .

Demonstra̧tie. Conform teoremei 5.3.7 funçtia g � f este difereņtiabil¼a în
a şi

d (g � f)a = dgf(a) � dfa.

Deoarece matricea asociat¼a unei difereņtiale în bazele canonice (pe domeniu
şi codomeniu) este matricea jacobian¼a avem

J (g � f) (a) = Jg (f (a)) Jf (a) .

13
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Aşadar

0BBB@
@(g1�f)
@x1

(a) @(g1�f)
@x2

(a) ::: @(g1�f)
@xn

(a)
@(g2�f)
@x1

(a) @(g2�f)
@x2

(a) ::: @(g2�f)
@xn

(a)

::: ::: ::: :::
@(gp�f)
@xn

(a) @(gp�f)
@x2

(a) ::: @(gp�f)
@xn

(a)

1CCCA

=

0BBB@
@g1
@y1
(f (a)) @g1

@y2
(f (a)) ::: @g1

@ym
(f (a))

@g2
@y1
(f (a)) @g2

@y2
(f (a)) ::: @g2

@ym
(f (a))

::: ::: ::: :::
@gp
@y1
(f (a)) @gp

@y2
(f (a)) ::: @gp

@ym
(f (a))

1CCCA
0BBB@

@(f)
@x1

(a) @f1
@x2
(a) ::: @f1

@xn
(a)

@f2
@x1
(a) @f2

@x2
(a) ::: @f2

@xn
(a)

::: ::: ::: :::
@fm
@xn

(a) @fm
@x2

(a) ::: @fm
@xn

(a)

1CCCA
de unde rezult¼a c¼a pentru orice i 2 f1; 2; :::; pg şi orice j 2 f1; 2; :::; ng
avem

@ (gi � f)
@xj

(a) =
mP
k=1

@gi
@yk

(f (a))
@fk
@xj

(a) .

Exemplul 5.5.14 Fie ' : R2 ! R o funcţie diferenţiabil¼a pe R2 şi A � R3
o mulţime deschis¼a. Ar¼at¼am c¼a funcţia f : A! R de�nit¼a prin

f (x; y; z) = '
�
xy; x2 + y2 � z2

�
pentru orice (x; y; z) 2 A, veri�c¼a relaţia

xz
@f

@x
(x; y; z)� yz@f

@y
(x; y; z) +

�
x2 � y2

� @f
@z
(x; y; z) = 0.

Într-adev¼ar, dac¼a not¼am cu u, v cele dou¼a variabile de care depinde '
şi consider¼am funcţia g = (g1; g2) : A ! R2, unde g1 (x; y; z) = xy,
g2 (x; y; z) = x2 + y2 � z2 pentru orice (x; y; z) 2 A, obţinem f = ' � g

14
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şi

@f

@x
(x; y; z) =

@'

@u
(g (x; y; z))

@g1
@x

(x; y; z) +
@'

@v
(g (x; y; z))

@g2
@x

(x; y; z)

=
@'

@u
(g (x; y; z)) y +

@'

@v
(g (x; y; z)) 2x

@f

@y
(x; y; z) =

@'

@u
(g (x; y; z))

@g1
@y

(x; y; z) +
@'

@v
(g (x; y; z))

@g2
@y

(x; y; z)

=
@'

@u
(g (x; y; z))x+

@'

@v
(g (x; y; z)) 2y

@f

@z
(x; y; z) =

@'

@u
(g (x; y; z))

@g1
@z

(x; y; z) +
@'

@v
(g (x; y; z))

@g2
@z

(x; y; z)

=
@'

@v
(g (x; y; z)) (�2z)

Aşadar pentru orice (x; y; z) 2 A,

xz
@f

@x
(x; y; z) +

�
x2 � y2

� @f
@z
(x; y; z)

= xz

�
y
@'

@u
(g (x; y; z)) + 2x

@'

@v
(g (x; y; z))

�
+
�
x2 � y2

�
(�2z) @'

@v
(g (x; y; z))

= xyz
@'

@u
(g (x; y; z)) +

�
2x2z � 2x2z + 2y2z

� @'
@v
(g (x; y; z))

= yz

�
x
@'

@u
(g (x; y; z)) + 2y

@'

@v
(g (x; y; z))

�
= yz

@f

@y
(x; y; z) ,

şi deci

xz
@f

@x
(x; y; z) +

�
x2 � y2

� @f
@z
(x; y; z)� yz@f

@y
(x; y; z) = 0.

Propozi̧tia 5.5.15 Fie A � Rn şi B � Rn dou¼a mulţimi deschise, a 2 A,
f = (f1; f2; :::; fn) : A! B � Rn o funcţie

(x1; x2; :::; xn)
f7! f (x1; x2; :::; xn)

15
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diferenţiabil¼a în a şi g = (g1; g2; :::; gn) : B ! Rn o funcţie

(y1; y2; :::; yn)
g7! g (y1; y2; :::; yn)

diferenţiabil¼a în f (a) (în particular, f şi g de clas¼a C1). Dac¼a pentru pentru
orice i 2 f1; 2; :::; ng, not¼am hi = gi � f : A! R, atunci avem urm¼atoarea
relaţie între determinanţii funcţionali

D (h1; h2; :::; hn)

D (x1; x2; :::; xn)
(a) =

D (g1; g2; :::; gn)

D (y1; y2; :::; yn)
(f (a))

D (f1; f2; :::; fn)

D (x1; x2; :::; xn)
(a) .

Demonstra̧tie. Conform teoremei 5.3.7 funçtia g � f este difereņtiabil¼a în
a şi

d (g � f)a = dgf(a) � dfa.
Deoarece matricea asociat¼a unei difereņtiale în bazele canonice (pe domeniu
şi codomeniu) este matricea jacobian¼a avem

J (g � f) (a) = Jg (f (a)) Jf (a)

de unde rezult¼a

det (J (g � f) (a)) = det (Jg (f (a)) Jf (a))

= det (Jg (f (a))) det (Jf (a)) .

Ţinând cont c¼a g � f = (h1; h2; :::; hn) ob̧tinem

D (h1; h2; :::; hn)

D (x1; x2; :::; xn)
(a) =

D (g1; g2; :::; gn)

D (y1; y2; :::; yn)
(f (a))

D (f1; f2; :::; fn)

D (x1; x2; :::; xn)
(a) .

5.6 Difereņtiale de ordin superior

5.6.1 Aplica̧tii multiliniare

De�ni̧tia 5.6.1 (Aplica̧tie multiliniar¼a) Fie E1,E2, :::, En, F n + 1
spaţii liniare peste acelaşi corp K (K = R sau K = C). O aplicaţie

f : E1�E2�:::�En ! F se numeşte n-liniar¼a (sau multiliniar¼a)
def, pentru

16
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orice punct a = (a1; a2; :::; an) 2 E1�E2� :::�En şi orice k 2 f1; 2; :::; ng,
funcţia fk;a : Ek ! F de�nit¼a prin

fk;a (x) = f ((a1; a2; :::; ak�1; x; ak+1; :::; an))

pentru orice x 2 E este o aplicaţie liniar¼a, adic¼a pentru orice �, � 2 K şi
orice x,y 2 Ek

fk;a (�x+ �y) = �fk;a (x) + �fk;a (y) .

În cazul n = 1 no̧tiunea de aplica̧tie multiliniar¼a coincide cu no̧tiunea
de aplica̧tie liniar¼a. În cazul n = 2, aplica̧tiile 2-liniare se numesc biliniare.
Dac¼a f : E1�E2� :::�En ! F este o aplica̧tie multiliniar¼a, atunci este

uşor de observat c¼a:

� Dac¼a (x1; x2; :::; xn) 2 E1 � E2 � ::: � En şi exist¼a k 2 f1; 2; :::; ng astfel
încât xk = 0, atunci f (x1; x2; :::; xn) = 0.

� Dac¼a (x1; x2; :::; xn) 2 E1 � E2 � :::� En şi �1, �2, :::, �n 2 K, atunci

f (�1x1; �2x2; :::; �nxn) = �1�2:::�nf (x1; x2; :::; xn) .

� Dac¼a E1 = E2 = ::: = En = K, atunci .

f (x1; x2; :::; xn) = x1x2:::xnf (1; 1; :::; 1)

pentru orice (x1; x2; :::; xn) 2 Kn. Reciproc, pentru orice v 2 F ,
aplica̧tia fv : Kn ! F ,

fv (x1; x2; :::; xn) = x1x2:::xnv

pentru orice (x1; x2; :::; xn) 2 Kn, este o aplica̧tie n-liniar¼a şi

v = fv (1; 1; :::; 1) .

Prezent¼am pe scurt câteva no̧tiuni şi rezultate legate de aplica̧tiile multiliniare.
(Pentru demonstra̧tii se poate consulta de exemplu, [N. Boboc, Curs de
analiz¼a real¼a şi complex¼a/Difereņtiabilitate (2), p. 4-17, Universitatea din
Bucureşti, 1974].)
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Teorema 5.6.2 Fie E1,E2, :::, En, F n + 1 spaţii normate peste acelaşi
corp K (K = R sau K = C). Dac¼a f : E1 � E2 � ::: � En ! F este o
aplicaţie n-liniar¼a, atunci urm¼atoarele a�rmaţii sunt echivalente:

1. f este continu¼a.

2. f este continu¼a în (0; 0; :::; 0) 2 E1 � E2 � :::� En .

3. Exist¼a M > 0 cu proprietatea c¼a

jjf(x1; x2; :::; xn)jj �M jjx1jjjjx2jj:::jjxnjj

pentru orice (x1; x2; :::; xn) 2 E1 � E2 � :::� En.

4. sup
kxik�1

i2f1;2;:::;ng

kf(x1; x2; :::; xn)k <1.

În particular, dac¼a E1,E2, :::şi En sunt �nit dimesionale, atunci orice
aplicaţie n-liniar¼a f : E1 � E2 � :::� En ! F este continu¼a.

Dac¼a E1,E2, :::, En, F n+1 spa̧tii normate peste corpul K (K = R sau
K = C) , not¼am

Ln (E1; E2; :::; En;F ) = ff : E1 � E2 � :::� En ! F : f n-liniar¼a şi continu¼ag .

Este uşor de observat c¼a dac¼a f ,g 2 Ln (E1; E2; :::; En;F ) şi � 2 K, atunci
f + g 2 Ln (E1; E2; :::; En;F ) şi �f 2 Ln (E1; E2; :::; En;F ). Aşadar

Ln (E1; E2; :::; En;F )

este un spa̧tiu liniar peste corpul K.
În cazul în care E1 = E2 = ::: = En = E, not¼am

Ln (E;F ) = Ln (E;E; :::; E;F ) .

Teorema 5.6.3 (Norma unei aplica̧tii multiliniare) Fie E1,E2, :::, En,
F n+ 1 spaţii normate peste corpul K (K = R sau K = C) . Pentru orice

18
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f 2 Ln (E1; E2; :::; En;F ) avem

inf fM > 0 : jjf(x1; x2; :::; xn)jj �M jjx1jjjjx2jj:::jjxnjj8 (x1; x2; :::; xn)g
= sup

kxik�1
i2f1;2;:::;ng

kf(x1; x2; :::; xn)k

= sup
kxik=1

i2f1;2;:::;ng

kf(x1; x2; :::; xn)k

= sup
kxik<1

i2f1;2;:::;ng

kf(x1; x2; :::; xn)k

Dac¼a pentru orice f 2 Ln (E1; E2; :::; En;F ), de�nim

kfk = sup
kxik�1

i2f1;2;:::;ng

kf(x1; x2; :::; xn)k

(norma aplicaţiei n-liniare f), atunci (Ln (E1; E2; :::; En;F ) ; jj�jj) devine un
spaţiu normat.
Dac¼a F este spaţiu Banach, atunci spaţiul normat Ln (E1; E2; :::; En;F )

este spaţiu Banach.
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