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Capitolul 5

Calcul diferential (continuare
din cursul 8)

5.6 Diferentiale de ordin superior (continuare
din cursul 8)

5.6.1 Aplicatii multiliniare (continuare din cursul 8)

Reamintim ca pentru orice Fy,Es, ..., E,, I spatii normate peste corpul K
(K =R sau K = C), notam

L,(Ey,Ey, ... Ey F)={f:E X By x...x E, — F: f p-liniara si continua},
iar in cazul in care £y = B, = ... = F, = F, notam
L,(E;F)=1L,(E,E,.. EF).

Fie E1,Es, ..., Epin, F m+n+1 spatii normate peste corpul K (K =R
sau K = C). Consideram aplicatia

U Liin (Bvy ooy By F) — Ly (B ooy By Ly (Eppity ooy Epns )
definita prin

U (f) (z1,22, ooy Tm) (Y1, Y2y s Yn) = f(T1, T2, ooy Tony Y1, Y2, oy Yn) (5.1)
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pentru orice f € Lyt (E1, Eay ooy Enyn; F)y (21,22, o0y T) € By X Eg X ... X
Em st (y1,92, -, Yn) € Emy1 X Epya X oo X By, Aplicatia W este corect
definita si

(AN = 11l
pentru orice f € Lyiy (B, Es, ..., Eppin; F). In plus, U este bijectiva si

U Loy (B o, B Ly (Bt oo By F)) = Lipn (B oy B F)
este definita prin
\Il_l (g) ((xlwr% ”'7xm+n) =g (‘Ihx% ,l‘m> (xm+1,xm+2, (XS] xm-l-n)

pentru orice aplicatie g € Ly, (E1, Ea, ..., Ep; Ly (Epit, Emaoy ooy Ban; F))
si orice (21,2, .o, Tymin) € Fy X Ey X ... X Epyy . Deci W este un izomorfism.
In cele ce urmeaza vom identifica spatiile

Lm+n (Ela E27 sy Em+na F) ~ Lm (Ela E27 sy Ema Ln (Em—i-la Em+27 sy Em+n7 F))
prin intermediul lui W.

Definitia 5.6.1 (Aplicatie multiliniara simetrica) Fie E si F' doud spatii
normate peste acelagi corp K (K =R sau K = C) . O aplicatie n-liniara
f € L, (E;F) se numeste simetrica daca pentru orice permutare

o:{1,2,...n} = {1,2,...,n}
gi orice (x1,Z9,....,2,) € E X E X ... X E avem

f (1,32, 0, 20) = [ (To(1)s To(2)s - To(n)) -

5.6.2 Diferentiala unei aplicatii multiliniare

Propozitia 5.6.2 Fie Fy,Fs, ..., E,, F n+ 1 spatii normate peste corpul
K (K =R sau K = C) gia= (a,a9,...,a,) € E1 X Ey X ... X E,,.
Atunci orice f € L, (Ey, Es,...,E,; F) este diferentiabila in a gi pentru
orice © = (X1, Ta, ..., Ty) € 1 X Fy X ... X E,, avem

n
dfa (I‘) - Z f (a17a27 vy Qf—1, Tky A1, k42, "'7a’ﬂ) .
k=1

4
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Demonstratie. In cele urmeazi considerim pe E1 X Ey X ... X E, norma
|(z1, o, .oy ) || = max ||z:||. Fiee > 0six = (21,22, ..., 2,) un punct fixat
<i<n
din B (a,€). Pentru orice k € {1,2,...,n} avem
lor —ail < Jlz—al <e (5.2)
lorll < llze — axll + llax|
< e+ ||al

Fie k € {1,2,...,n} fixat. Definim functia gy : Ex, — F prin
gk (t) = f (al, vey Ag—1, t, Lt 1y -y Jjn) — f (al, ey A—1, t, A1y -+ an)
pentru orice t € Eji. Deoarece functiile

t — f(al,a2,...,ak,l,t,xkﬂ,xkﬂ,...,a:n)
l = f(a17a2a"'7ak—17t7ak+17ak+27"‘aa'n)

sunt liniare gi continue pe Ej, rezulta ca functia g, este liniara si continua
pe Er (k€{1,2,....,n}). Consideram punctele

Yo = (al,ag...,ak,l,t,xkﬂ, ,xn)

Vi = (a1, .oy Q1 b, Q1 vy Qpriy Tprist---, Tp) pentru orice i € {1,2,....,n — k}.

Pentru orice t € E}, avem

si ca urmare

n—Fk
lge O < 2 1f (yim1) = f ()
n—k
= ||f (ah vy A1, t) Qft1y ovry Thti — ak+i7mk+i+1---7$n)||
i=1
n—k
S 1 @l - a1l 1E] 12xsi — ansill [@nrall - [J2n]
k— n—k
< (n=k) £ lal* (lal +2)" " [l —a] |1t]
(5.2)
n—1
< n(lall +e)" £l lz — all [I¢]

5
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de unde rezulta

lgx @I < 7 (llall + )" £ 1|z — all. (5.3)

Consideram aplicatia T : Fy X Ey X ... X E, — F definita prin
n
T(2)= > fla1,a9, ..., 051, 2k, Gk+1, Af12, -, Op)
k=1

pentru orice z = (z1, 22, ..., 2, ), precum si punctele

Vo — X
ve = (ay,a9,...,05, Try1, Thro, -, Ty) pentru orice k € {1,2,...,n}.
Avem

1f(z) = f(a) =T (z —a)|
(f (k1) = f (o) =T (v —a)

M=

ES
Il
—_

||f ('Uk—l) - f (Uk) - f (a17a27 vy Ak —1, 2y Q415 A42, ...,Cln)H

VAN
NgE

B
Il
—

Il
NgE

lgr (2x) = gr (ar) ]

b
Il
—

[\
NgE

gkl |2 — axl

n(llall +)" " 1 f ] 1z — al

IA
b
£

(5.3)

de unde rezulta ca

i W (@) = fla) =T (@ -a)| _

@—a [ = all

Ca urmare, tinand cont si de faptul ca aplicatia 1" este liniara si continua,
rezulta ca f este diferentiabila in a si

n

df(l (l’l,.ﬁUQ, S xn) =T (ZU) - Z f (a’17 A2y ooy 15 Ty Q15 A2 -4y an) .
k=1
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Corolarul 5.6.3 Fie E, F1,Es, ..., E,, F n+2 spatii normate peste corpul
K (K =R sau K = C), A C E o multime deschisa, a € E i functia
9="(91,92, -, 9n) : A — E1 X E3 X ... X E, diferentiabila in a. Atunci orice
f €L, (Fy, Es,...,E.; F), functia T = fog este diferentiabila in a si pentru
orice v € E avem

dTa (CL‘) = kzi:l f (91 (a) » 92 (a) y ooy Gk—1 <a> >dgk,a (33) y Jk+1 (a) y Jk+2 (a) y oy 9n (a)) .

Demonstratie. Deoarece T' = f o g rezulta ca T este diferentiabila in a
pentru orice z € E avem

dT, (x)
= dfg(a) (@) dga ((L‘)

= kZZ:I f (gl (a) xp) (&) y ooy Jk—1 (CL) ’dgk,a (l’) y Jk+1 (CL) y Jk+2 (a) y oy 9n (a)) .
|

Propozitia 5.6.4 Fie E, Fy,F>, ..., E,, F n + 2 spatii normate peste
corpul K (K = R sau K = C), A C E o multime deschisd, a € E gi
functia g = (91,92, -, gn) : A — Ey X Ey X ... X E,, diferentiabila in a. Fie
f:A— L, (E1, Es, ..., E,; F) diferentiabila ina siT : A — F definita prin

T(x) = f(x) (91 (), 92 (%) ;0 gn (7))

pentru orice x € A. Atunci T este diferentiabila in a §i pentru orice v € E
avem

T, (x) = dfa (2) (91 (@) , 92 () ;.. gn (@) +

kXZZl fa)(g1(a),g2(a),....gk-1(a),dgra (), grs1 (@), gri2 (@), ... gn (@) .

Demonstratie. Consideram aplicatia multiliniara (de evaluare)
h: Ln(El,EQ,...,En;F) XFEixFEyx..xE, - F

definita prin
h(S,x1,29,....x,) = S(x1, 29, ..., T,)

7
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pentru orice S € L, (E1, Ea, ..., Ey; F) si (21, %9, ..., x,) € By X Ey X ... X E,,.
Aplicatia h este continua fiindca

|\h (S, 21,20, oy z)|| = ||S(x1, 22, ..y ) ||
< STzl 2]l flznll -

Se observa cd T'= ho (f, 91,92, .-, gn) $i ca urmare T este diferentiabild in
a pentru orice x € FE avem

dTCL (ZL’) = dh(f7917927---,9n)(a) od (f7 91,92y -+ gn)a (l’)
= kZh(dfa(l“),gl(a),---,gn(a))+
=1

NE

h (f (a) » g1 (a) 3oy Gk—1 (a) 7dgk,a (l‘) ) Jk+1 (a) e 9n (a)) .
g1(a),...,gn (@) +

f (a) (91 (a) 3o Gk—1 (a) 7dgk,a (SE) » Jk+1 (a) o Gn (a)) :

k

= dfa (ZL’)

Il
—

M= =

k=1

Propozitia 5.6.5 Fie E si F' doua spatii normate peste acelasi corp K
(K =R sau K =C) . Daca f,g € L, (E; F) sunt doua aplicatii n-liniare
continue simetrice cu proprietatea ca

flr,z,....,x) =g (z,x,.. x)
pentru orice v € E. Atunci f = g.

Demonstratie. Demonstram afirmatia prin inductie dupa n > 2. Pentru
n = 2, deorece f si g sunt 2-liniare si simetrice avem

Fnms) = 5 (7@t aam 4 ) — f(am) - f (r2,22)
1
2

g(w1,12) = (9 (21 + 22,21 + 22) — g (21, 21) — g (72, 22))

de unde rezultd f = g. Presupunem afirmatia adevaratd pentru n, si
consideram doua aplicatii n + 1-liniare continue simetrice cu proprietatea
ca
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pentru orice z € E. Pentru orice x € E definim functiile f,, g, : £ x E... X
FE — F prin

f$(y17y2a"'7yn) = f(x7y1ay27"'ayn)
gw(y17y2;---7yn) = g(x7y17y27"‘7yn)

pentru orice (y1, Y2, ..., Yn) € EX E...x E — F. Atunci f,, g, sunt n-liniare,
continue si simetrice. Functia 7' : A — F definitd prin

T =fWyy) =9y, .. y)

pentru orice y € A, este diferentiabila in orice a € A. Pentru orice © € E
avem pe de o parte

dT, () = > fl(a,a,...,a,z,a,a,...,a)

k=1
n

= > fl(x,a,a,..,a)
k=1

= nf;(a,a,..,a)

si pe de alta parte

dT, () = > g(a,a,...,a,z,a,a,...,a)

k=1
n

= > g(z,a,a,..,a)
k=1

= ng,(a,a,..,a)

Ca urmare avem
fe(a,a,...;a) =g, (a,a,...,a)

pentru orice a € A. Aplicand ipoteza de inductie rezulta f, = g,. Asadar

f%(y17y27"'ayn> = g:c(y17y27"'7yn>
f(xayby%“'?yn) = 9(1'73/1,3/%---,%)

pentru orice x, Y1, Y, ..., Yn € F. In consecintd, f =g. m

9
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Definitia 5.6.6 Fie E i F' doua spatii normate peste acelagi corp K (K =
R sau K =C) .
O aplicatie ¢ : E — F se numegte:

. d, . . .
- polinom omogen de grad n (n > 1) . exista f € L,(E;F) o aplicatie
n-liniara continua simetrica astfel incdt pentru orice x € K

o(x)=f(z,x, .., x).
(¢ se numeste polinomul omogen asociat lui f).

. def . o . . 4 .
- polinom © se poate scrie ca suma a unut numar finit de polinoame
omogene.

Din propozitia 5.6.5, rezulta ca exista o corespondenta bijectiva intre
multimea aplicatiilor n-liniare continue simetrice f : E X Ex .. x E — F si
multimea polinoamelor omogene de grad n ¢ : £ — F.

5.6.3 Diferentiabilitatea de ordin superior

Definitia 5.6.7 Fie E i F' doua spatii normate peste acelagi corp K (K =
R sau K =C), A C E o submultime deschisi, a € A gi f : A — F o functie
diferentiabila pe o vecinatate deschisa V, C A a lui a. Se spune ca f este
de doua ori diferentiabila in a daca df : V, — L(E,F) este diferentiabila
in a. In acest caz se noteazd d*f, = d(df), si se numeste diferentiala de
ordinul 2 a lui f in a. Daca

Ayp={acA: f:A— E este de doua ori diferentiabila a} ,

se noteaza cu d* f functia d*f : Asy — L (E,L(E,F)) care asociazd fiecarui
element a € Ay diferentiala de ordinul 2 a functiei f in a, adica functia
definita prin d*f (a) = d*f, pentru orice a € Asy. Functia d*f este
numita diferentiala de ordinul 2 o functiei f. Mai general, prin recursivitate
se defineste diferentiala de ordinul n a functiei f, notata d"f, ca fiind
diferentiala diferentialer de ordinuln — 1 a lui f:

d"f=d(d"f), n>2.
Se noteaza d°f = f.

10
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Tinand cont ¢ L (E,L(E,F)) ~ Ly (E;F) (identificarea (5.1)), d*f,
poate fi privita ca o aplicatie biliniara. Mai departe,

&f, e L(E,L(E,L(E,F)))~L(E,Ly(E;F))~ L3 (E;F).

Mai general, presupunand ca functia f este de n — 1 ori diferentiabila
pe o vecinatate dechisa V' a punctului a si ca este de n-ori diferentiabila in
a, atunci

dnfa S L(E’Ln—l (EaF)) ~ Ln (E7F)

Astfel pentru orice n > 2, diferentiala de ordinul n a functiei f intr-un
punct a va fi identificata cu o aplicatie n-liniara.

Teorema 5.6.8 (Criteriul lui Young de comutativitate) Fie E §i F
doud spatii normate peste acelagi corp K (K =R sau K =C), ACE o
submultime deschisa, a € A gi f : A — F o functie de n-ori diferentiabila
in a. Atunci d"f, este o aplicatie n-liniara simetrica.

Demonstratie. [N. Boboc, Curs de analiza reala i complexa /Diferentiabilitate
(2), p. 21, Universitatea din Bucuresti, 1974] m

Definitia 5.6.9 Fie E gi F' doua spatii normate peste acelasi corp K (K =
R sau K = C), A C E o submultime deschisa, a € A i f : A — F o
functie de n-ori diferentiabila in a. Se numeste polinomul Taylor de ordinul
n asociat functiei f in a, functia notata T, (f,a) i definita prin

Tn(f,a)(x):f(a)—k%dfa(a:—a)—ir%d2fa(:c—a,:c—a)+...
+%d"fa($—a,x—a,...,x—a), r € F.

Teorema 5.6.10 (Formula Taylor) Fie E si F' doua spalii normate peste
acelagi corp K (K =R sau K = C), A C E o submultime deschisa, a € A
si [+ A— F o functie de n-ori diferentiabila in a. Atunci exista o functie
R, (f,a) : A — F, numita restul de ordinul n, astfel incdt pentru orice
reA

f(x)=T,(f,a)(x) + Ru(fa) (x),
§t
lim— R (f,a)(z) = 0.

11
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Demonstratie. Pentru orice z € A, definim

Ry (f,a) (x) = f(2) = Tu(f,a) (z).

Demonstram prin inductie dupa n ca

P(n) : lim— (f (x) = Tu (f.0) () = 0

a=a ||z — af”
pentru orice functie f de n-ori diferentiabila in a.

este adevarata pentru orice n > 1. Pasul de verificare:

P) ¢ lim o (f (2) = Ty (f,0) (2)) = 0

=—a ||l’ all

pentru orice functie f diferentiabila in a.

Deoarece pentru orice f este diferentiabila in a, avem

lim N (f(x) =Ty (f,a)(x)) =

w=a ||z — all

- hi“nxlq (f(:c)— (f(a)+%dfa(x—a)>)

= lim o (f () = [ (a) = dfa (z — a))

Demonstrdm P (n) = P(n+1). Fiee > 0 s f o functie de n + 1 ori
diferentiabila in a. Atunci df este de n-ori diferentiabila in a si ca urmare
din ipoteza de inductie P (n) rezultd

lim ——— (df () — T, (df. a) (x)) = 0.

v=a ||z —a"
Ca urmare existd 6. > 0 astfel incat pentru orice x € B (a,d.) C A avem
ldf () = T (df, a) ()] < e |l —all". (5:4)

12
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Pe de altd parte, pentru orice x € B (a,d.), conform teoremei cresterilor
finite, avem

1 () = Toyr (f,0) (2) = (f (@) = Toya (f, 0) (@) < M |2 —af,
unde M = sup.c;, [[df (2) — d(Toi1 (f,a)) (2)]), iar
I =la,z]={(1—-t)a+tx:te]0,1]}.
Cum 7,41 (f,a) (a) = a, avem

1 (@) = Tosa (f 0) (@) < sup [|df (2) — d (Thsa (f; 0)) (2)] [l — all

ZGIz

Daca pentru k € {1,2,...,n + 1} notdm p; aplicatia py : E — F, definita
prin

pr (z) = —dkfa( a,r —a,...,r —a) pentru orice z € E,
avem
1k
dp (2) (1) = k_z "oz —a,.z2—a,t,z—a,..z—a)
= —d"f.(z—a,..,z—a,t)
_ 1 k-1 _ _
= (k:—l)!d (df), (z—a,...,z—a)(t)
pentru orice t € E, si deci dpy (2) = = 1)'alk Ldf),(z—a,...z—a). Ca
urmare
n+1 b1
d(Thi1 (f,a)(2) = )y )d —(df), (z—a,...,z—a)

(k —
no1 ”
= kzogd( f), (z—a,..,z—a)
= T, (df,a)(2).

In consecinta

_T 1
If (= )||:c _Zlngla)( Wl W§2P||df(z)—Tn (df,a) (2)]|
1 n
& Ta—ar 170
= E.

13
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Asadar |
m ——————= (f(z) = Th41 (f,a) (z)) = 0

w=a [z —df

si deci P (n+ 1) este adevarata. m

5.7 Derivate partiale de ordin superior

Definitia 5.7.1 (Derivate partiale de ordin superior) Fie A C R" o

submultime deschisa, a € A gi f : A — R, (21,22, ..., Tp) N f (1, g, .y xy),
o functie derivabila partial in raport cu variabila x; (i € {1,2,...,n}) in
fiecare punct dintr-o vecinatate V, a punctului a. Functia f se numeste
derivabila partial de ordinul doi in raport cu perechea de variabile (x;,x;)

(G € {1,2,....,m}) in punctul a Y functia % este derivabila partial in a

in raport cu variabila x;. In acest caz derivata partiala a functiei % ina
0

in raport cu variabila x; (adicd 5 - (%) (a)) se noteazd cu axa’?ng (a) si se
J g J 1
numeste derivata partiala de ordinul doi a lui f in raport cu perechea de

variabile (x;,x;) in punctul a. In cazul i = j se utilizeazd notatia
0*f *f

Daca Ay, ; este multimea punctelor a € A in care f : A — R este

derivabila partial de ordinul doi in raport cu perechea de variabile (x;, x;),
62,28];1‘ functia % : Ari i — R care asociaza fiecarui
element a € Ay, ; derivata partiala de ordinul doi a lui f in raport cu
perechea de variabile (z;,x;) in punctul a, adicd functia
0 f
Omj(‘?xi

(numitd derivata partiala de ordinul doi in raport cu perechea de variabile
(wi,z;) a functiei f ).

Derivatele partiale de ordin p (p > 2) se definesc inductiv. Pentru orice
(i1, 19y ..., ip) € {1,2,...,n}" definim

CACB ) R (s S,
axh@mb...@xip @)= Oa:il 8%28@3...&% a4

14
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oPf
0w Oxiy ...8931-1)

cu sistemul de variabilele (a:ip, Tiy gy ey xil) in punctul a.

§t numim (a) derivata partiala de ordinul p a functiei f in raport

Daca V' este multimea punctelor a in care f are derivate partiale de
ordinul p in raport cu orice sistem de variabile (a:ip, Tiy ys e xil), atunci se
obtin n? aplicatii

orf

H
890,-1 8%2 . ..8xip

a

(@) [V —R]

numite derivatele partiale de ordinul p ale functiei f.

Exemple 5.7.2 Sa se calculeze derivatele partiale de ordinul doi ale urmatoarelor
functii:

1. f:R* =R, f(z,y) =sin(xcos(y)) pentru orice (z,y) € R%. Avem

% (x,y) = cos(zcos(y))(xcos (y)); = cos (z cos (y)) cos (y)
g—g (x,y) = cos(xcos(y)) (vcos (y)); = —cos (z cos (y)) zsin (y)
% (z,y) = % (%) (z,y) = — cos (y) sin (z cos (y)) (z cos (y)).,

= —cos? (y)sin (2 cos (y))

92 f 9 (of
a_yg(x7y) = G_y(a_y) (z,9)

= —x <(cos (x cos (y))); sin (y) + cos (z cos (y)) cos (y))

—x (sin (z cos (y)) o sin® (y) + cos (z cos (y)) cos (y))
—a%sin? (y) sin (2 cos (y)) — cos (y) cos (x cos (y))

92 f o (of
) a—(a—y) (2,9)

= —sin(y) (cos (zcos (y)), = + cos (z cos (y)))
= —sin(y) (—sin (x cos(y)) cos (y) x + cos (z cos (y)))
= xsin (x cos (y)) sin (y) cos (y) — sin (y) cos (z cos (y))

15
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0 f

y0r (z,y)

2. f 1 R? — R,

Avem

g—i (2,9, 2)

0
a_i (2.9, 2)

% (z,y,2)

0 f
@([L’,Q,Z) -

0 f
a_yg('xayvz) =

of
022

(r,y,2) =

(% (g—i) (z,9)

(cos (x cos (y ))) cos (y) — cos (x cos (y)) sin (y)
—sin (z cos (y)) = (—sin (y)) — cos (x cos (y)) sin (y)
xsin (x cos (y)) sin (y) — sin (y) cos (x cos (y))

f(z,y,2) = e cos (z) pentru orice (z,y,z) € R3.

= cos(z) (e“Zyz); = cos (2) "2V (v + 2y2)),

= cos(z)e" T2

o z+2yz\! x+2yz /
= cos(2) (e y)y—cos(z)e Y (x4 2y2),

= 2zcos (z)e"TV2

_ (ex+2yz)’z cos (2) + et T2yz (—sin (2))

= "7 (2 + 2y2)’ cos (z) — sin (z) "2V

r+2yz r+42yz

2y cos(z)e —sin(2)e

oz (gi) (z,y,2) = cos (2) (e""27)"

cos (z) e*T2v*

agy <g_§) (xvya Z) = 2z cos (Z) (em+2yz);

4z2 cos (z) e T2

92 (gf) (2, 2)

—2ysin (2) "7 + 4y® cos (z) "7 —
cos (z) €"?Y* — 2ysin (2) e

—4ysin (2) e" T2V + 4y cos (z) €% — cos (z) e T2V

T+2yz

16
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o d (0 ,
axéf (z,y,2) = O <a—‘£> (z,y,2) = 2z cos (2) (€$+2yz)$

= 2zcos(2)e" T (z + 2yz))
)

= 2zcos(z)e" T2
o2 f 9 (0f
- —9 T+2yz
- ( O (2.9 2) = 2zcos () ¢
81;62: 7y7 - y7
= 2ycos z) e“QyZ) — sin (2) (e”””yz):D
= 2ycos z) TH2UZ _gin (2) e" 27
I () =
82’8 T y,Z - .T y7
— 2y COS )€w+2yz sm( ) T+2yz

a2f(x Z)_gg(x 2
Oydz v Oy \ 0z Y
= 2cos(z) € 4 2y cos (2) (ex“yz); — sin (2) (6x+2yz);
= 2cos(2) """ 4 dyz cos (2) €Y% — 2z sin (2) e TH7

o (o
828 (JI y,Z) - &(Fy) (J;’yaz)

= 2cos(2) " 4 4yzcos () €T — 2z sin (z) T2
Teorema 5.7.3 Fie A C R" o submultime deschisa, a € A i

f:A->R, (x1,29,...,2,) EN f(z1, .y xy),

o functie de p-ori diferentiabila in a. Atunci f admite derivate partiale de
ordinul p in a in raport cu orice sistem de variabile (:Ul-p, Tip gy ees xil) i

o f

ax‘ ax ax (CL) = dpfa (61'176@'2, ...,eip)
1 2" ip

unde {e1, e, ...,e,} este baza canonica din R™.

17
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Demonstratie. Demonstram prin inductie dupa p. Pentru p = 1 rezultatul
este adevarat conform teoremei 5.5.4. Presupunem ca orice functie g de p-
ori diferentiabila in a admite derivate partiale de ordinul p in raport cu orice
sistem de variabile (xip, Tiy gy eees mil) si

oPg
(%cil 8:@2 .. .&Cip

(a) = dPyq, (eiheig, s el-p)

si consideram o functie f de p + 1 ori diferentiabild in a si un sistem de
indici (1,92, ..., ip+1) € {1,2, ...,n}pH. Atunci f este de p-ori diferentiabila
in orice punct dintr-o vecinatate deschisa V, C A a lui a. Din ipoteza de
inductie rezulta ca pentru orice x € V, avem

or f

81‘2-2 aﬂ:ig . ..8.Z'ip+1

(z) = d" fo (ei.Ci5, - €01 (5.5)
Fie h : V, — R definita prin

h
P
x—dlf, (€¢2,€i3, ey eipﬂ)

pentru orice x € V,. Conform propozitie 5.6.4, h este diferentiabila in a
(deoarece d? f este diferentiabild in a) si pentru orice z € R"

dhe () = d(d’f),(x) (eiQ,eiS, . eipﬂ)
=t P, (x, Ciy,Cigs -y eipH)

In particular,
dha (€i1> = derlfa (61'1 s 61'2762‘3, ey €Z'p+1) .
oh

si deoarece Do (a) = dhg (€;,) (conform teoremei 5.5.4), rezultd

oh
8;1:il

(a) = d"™ fo (€, €in,Cigs s €y ) - (5.6)

Pe de alta parte din (5.5) pentru orice = € V,
orf

8@2 8131'3 . ..aZL’iP+1

h(x)

()

18
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si deci

@) = 2 CAR I, )
8:70,-1 “ N 8[El‘1 8%28@3..0%1,“ “

or+1
= / (a).

axil (‘3@-3 . .8xip+l

In consecintd, tinand cont si de (5.6), rezultd

ap-‘rlf

8.1'1'1 8901-3 .. .aLEip_H

(G) = dpfa (ei1,ei2a iy} 67lp+1) .
|

Teorema 5.7.4 (Formula de calcul a diferentialei de ordin p) Fie A
o submultime deschisa a lui R™, a € A i

f:A-R, (x1,29,...,2,) N [z, 22, 0 x),
o functie de p-ori diferentiabila in a. Atunci f admite derivate partiale de
ordinul p in a si pentru orice (x',x% ...,2P) € R" x R" x ... x R" (2* =
(2%, ab, ..., 2t) € R™ pentru orice i € {1,2,...,p}) avem

d’ f, (a:l,x2,...,1:p) = > orf

a)x
(il,iz,...,ip)efp (9xi1 8xi2 ...(‘3@»1)

unde I, = {1,2,...,n}".

Demonstratie. Fie {ej,es,...,e,} este baza canonicd din R". Conform
teoremei anterioare f admite derivate partiale de ordinul p in a in raport
cu orice sistem de variabile (mip, Tiy gy eens a:il) si

orf

al'il 8.1'1'2 .. .al’ip

(a) =dPf, (eil,eiQ, i eip) )
Pe de altid parte pentru orice (x!, 22, ...,27) € R" x R" x ... x R" avem

n n n
1,2 E Z 2 Z
dpfa (-77 » L 7"'7$p) = dpfa ( x;‘Lleim ) LigCigs --es ) .Tfp@ip)
i

1=1 i2=1 11=1

n n n
= > > .. x}lxi...xfpd”fa (€ir,€i5r v €3,)
11=1142=1 i1=1
orf
1 2 p
= X, T, ...T; a
Z e K4 Oa:h@xiz,..ﬁxip ( )

(il,i27...,ip)61p

19
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Observatia 5.7.5 Fie A o submultime deschisa a lui R" si a € A. Daca
o functie f : A — R admite derivate partiale de ordin p (p > 1) in orice
punct dintr-o vecinatate V, a lui a st daca toate derivatele partiale de ordin

p
orf

H
81'2'1 83% . ..8xip

()

X

sunt continue in a, atunci si derivatele partiale de ordin p — 1 sunt continue
in a.

Teorema 5.7.6 (Criteriu de diferentiabilitate de ordin p ) Fie A C
R"™ o submultime deschisa si a € A. Daca functia f : A — R,

(1, T2,y vy Tp) EA fxy, g, ... xy)

are proprietatea ca admite derivate partiale de ordin p in orice punct dintr-o
vecinatate V, a punctului a gi daca derivatele partiale de ordin p
orf

H
8:62-1 (9331‘2 . ..(9.1'1‘17

()

X

sunt continue in a pentru orice (i, iz, ...,4,) € {1,2,...,n}’, atunci functia
f este de p-ori diferentiabila in a.

Demonstratie. Demonstram prin inductie dupa p. Pentru p = 1 rezultatul
este adevarat conform teoremei 5.5.5. Presupunem ca orice functie g care
admite derivate partiale de ordin p in orice punct dintr-o vecinatate V,
continue in a, este de p-ori diferentiabila in a. Consideram o functie f care
admite derivate partiale de ordin p+1 in orice punct dintr-o vecinatate V, a
lui @, continue in a. Atunci f admite in particular derivate partiale de ordin
p, continue in a. Conform ipotezei de inductie, f este de p-ori diferentiabila
in a. Fie (iy,2,...,1p) € {1,2,...,n}" si functia h : V, — R definitd prin

h orf

—
8:1:i1(935i2 . ..0xip

Xz

()

20
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pentru orice x € V,. Functia h admite derivate partiale de ordinul 1:

oh a< o f ) oL

81‘]‘ B 81‘]‘ 8%18@2...8@-10 B 0mj8xi18mi2...8xip

continue in a pentru orice j. Conform teoremei 5.5.5 functia h este diferentiabila
in a. Ca urmare, dacd notdm cu p;, 4, ., functia p; ;, ., : (R")” — R
definita prin
1,2 1,2
pil,iQ,...,ip (?/ Y "'7yp) = yhyig"'yfp
pentru orice (y', 4%, ...,97) € (R")" (y' = (v8,v5,...,y,) € R™ pentru orice
i€ {l1,2,...,p}), atunci functia

T = h(2) Piy g,y [ Ua — Ly (R™;R)]

este diferentiabila in a. In consecinta,

or f

€I, 8.1'1'1 833'1'2 .. .al’ip

x—dPf, = >

(i1:i27"'aip)

(x)pi1,ig,...,ip

este diferentiabila in a. Asadar f este de p + 1 ori diferentiabild in a. m

Definitia 5.7.7 Fie A C R" o submultime deschisa. Functia f : A — R

se numeste de clasa C° pe A (si se scrie f € C°(A)) g f este continua
pe A. Functia f : A — R se numegte de clasa C? (p > 1) pe A (si se scrie

fecr(A)) 24 f admite derivate partiale de ordin p in orice punct a € A
gt toate derivatele partiale de ordin p
orf

~ 81'2'1 83% . .Oa:ip (x)

X

sunt continue pe A
Se noteaza cu

O™ (A) = f’jo C* (A).

Functiile din C* (A) se numesc functii indefinit derivabile pe A.
Functia g = (91,92, -+, gm) : A — R™ se numeste de clasa C? pe A

(p > 0) (si se scrie g € C?(A)) . toate componentele ei g; : A — R,
1 <i < m, sunt de clasa C? pe A.

21
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Daca A C R™ o multime deschisa si functia f : A — R este de clasa
C! pe A, atunci f este diferentiabild pe A si, tinand cont ci pentru orice
a,b € Asiz=(r1,22,..,2,) € R" avem

n |0 0
) - i@ < 3|5 @ - L)l
of of
< x| 2 @ - 2Ll

rezultd cd df : A — L (R™,R) este continua. Reciproc dacd f: A — R este
diferentiabild si df : A — L (R",R) este continud, atunci f este de clasi C!
pe A (deoarece g—i (a) = df, (e;)) . Astfel putem defini functiile de clasa C?
intr-un context mai general.

Definitia 5.7.8 Fie E gi F' doua spatii normate peste acelasi corp K (K =
R sau K = C) gi A C E o multime deschisi. Functia f : A — F se numeste

de clasa C° pe A (i se scrie f € C°(A)) “ f este continua pe A. Functia
f A — F senumeste de clasa C? (p > 1) pe A (si se scrie f € C?(A))

24 f este de p-ori diferentiabila pe A gi
d’'f:A— L,(E;F)
este continua.

Teorema 5.7.9 (Criteriul lui Schwarz de comutativitate) Fie A C R"
o submultime deschisa si a € A. Daca functia f: A — R,

(T1, %9, .., Tp) EN fxy,xa, .. xy)

are proprietatea ca admite derivate partiale de ordin p in orice punct dintr-o
vecinatate V, a punctulut a 1 daca derivatele partiale de ordin p
orf

v 8:@18@2...8@1) (I’)

sunt continue in a pentru orice (iy,ia,...,7,) € {1,2,...,n}’, atunci pentru
orice permutare

o:4{1,2,...p} = {1,2,...,p}

22
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avem
rf

832'1'1 8xi2 . ..al'ip

orf

a&ﬁig(l) axia@) . al'Z

(@) ()

o (p)

Demonstratie. Conform teoremei 5.7.6, functia f este de p-ori diferentiabila
in a. Aplicind criteriul lui Young de comutativitate rezulta ca dPf, este
o aplicatie p-liniara simetricd. Ca urmare, dacd {ej,es,...,e,} este baza
canonicd a lui R”, atunci pentru orice (iy, i, ...,4,) € {1,2,...,n}" si orice
permutare

o:4{1,2,...,p} = {1,2,...,p}

avem
orf
a) = d’f, (€ €y, €
3%16%2...8902‘,,( ) fa(encias s,
— dpfa (61’0(1),61'0(2), ey eio(;;))
- il B—
3%‘0(1) 3xia(2) .. .3xia(p)

n

In particular, in cazul p = 2, criteriul lui Schwarz de comutativitate
implica
0 f 0 f
(a) = (a),
8@-81:]- 8:638:1:1

pentru orice functie f care are derivate partiale de ordinul 2 continue in a.
Cu alte cuvinte pentru o astfel de functie nu conteaza ordinea de derivare.

Definitia 5.7.10 Fie n > 1 un numar natural. Se numeste multi-indice
n-dimesional un sistem ordonat (tuplu) a = (aq,ag, ...,ap) € N™. Pentru
orice multi-indice a = (a1, Qg, ..., ) se numeste ordinul lui o, §i noteaza
cu |a| suma

la] = a1 +as + ... + .

Daca A C R"™ este o multime deschisa si f: A — R,

(1, T2,y vy Tp) EN fxy, o, ..y xy)
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este o functie de clasd C? pe A atunci pentru orice a = (a1, ag, ..., a,) € N”
se noteaza cu
olel f

= a1 a9 a

02" 05> ...0xon
functia obtinuta derivand (partial) succesiv pe f de «, ori in raport cu x,,
de «v,_; ori in raport cu x,,_1, ..., de a; ori in raport cu x;, unde daca oy, = 0
nu se efectueaza nici o derivare.

Folosind aceastd notatie pentru orice x = (x1, 23, ..., z,) € R" avem

d’fo(x,z,...,x) = > of

(i1,82,---ip)Elp axil axi? * 'axip

>0 @
= a) it ry?.x
al2p Qalagl.ap! 0z Oy, 0o T

D f :A—R

(a) Ty Tiy-. T,

Qn
n

(suma se face dupa toti multi-indicii o = («vg, g, ..., @) cu |a| = p). Daci
identificim aplicatia p-liniara continua simetrica d? f, cu polinomul omogen
asociat

= dPf, (x,x, ..., 2),

si daca notam dx; : R” — R proiectia pe componenta ¢, atunci

p! olel f

arlagl. ! 0x T 0252 .. .Oxon

& fo=

la|=p

(a) dzx{'dxg?...dxym.

In cazul p = 2 obtinem

2h=3 " @arve x2S

2
i=1 8% 1<i<j<n &Tiawj

(a) dx;dx;

In particular, in cazul n = 2, scriind (z,y) in loc de (21, 25) obtinem

02 f o2 f 57

2p _ 97T 29 g 2
d’f, 92 (a)dx* + 920y (a) dzdy + 3y (a) dy?,
iar in cazul n = 3, scriind (x,y, z) in loc de (1, 2, x3) obtinem

0 f 0*f 0?
2, 9T 2, O°J 2 9T 2
d°f, = 2 (a) dx* + By (a)dy” + 9.2 (a) dz"+

0 f 0 f 0*f

26$8y (a) dzdy + 28m02 (a) dzdz + 283/82 (a) dyd:z.
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Exemple 5.7.11 Sa se calculeze diferentialele de ordinul 1 i 2 ale urmatoarelor
functii in punctul a:

SR {(00) sy S0} R S () = €7 Ino) pentr orie (1.,
= (0,¢).
R: Avem (m y) =e*In(y) gi g—g (x,y) = exé. Derivatele partiale %

st g—f; ﬁmd funcw continue, [ este diferentiabila i

of of
= 51 (@ dz + 5 (a)dy.
Deoarece
of .
%(07 ) = e 1n(y)|(xy)—(oe):1
e = oo -2
0y Ylay=0e €
avem df o,y = dx + %dy.
82f o (0f .
Gx ) = 5 () e =eno)
5w = 2(U) @) =
o Y Ty \oy) Y y

o2 g (0 1
o) = o () =el.

O2f 92f 0%f _ 0%f
0x279y2 7920y — Oyox

fiind functii continue, f este de 2 ori diferentiabila

st
& 0 O°f
20, Y J 2 =y ?
o= 55 (@) da® + 2550 (a) dady + 55 (a) dy?.
Deoarece
0 f @
@ (0, ) e’ In <y>’(x y)=(0,e) 1
a2f 1 1
=5 (0,e) = —e'— -T2
0> (0.¢) Plem=0e ¢
2 1 1
0 f (0,¢) = e~ .
dxdxy Yl@y=0e €
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avem d? f(o.¢) = da® + 2dxdy — Sdy?.

R = R, f(x,y,2) = x¥y*cos(z) pentru orice (z,y,z) € R3,
a=(1,-23%).

R: Avem % (z,y,2) = 32%y?cos (2), ﬁ(a: y,z) = 2x3ycos(z) i
af L(x,y,2) = —2’y*sin (z). Derivatele partiale gi,gg §1 5 9f L fiind functii
contmue f este diferentiabila g1

dfa = gi( ) dx +g—‘£( ) dy +g—£() P
Deoarece
gi ¢ 2%) = 327y cos ()], - (1,2.7) = 6
% (1,—2, g) = =50 ()1 as) = 2V

avem df(lﬁz’%) = 6dx — 2dy — 2v/3dz.

c;z (,y,2) = %(8_2) (z,y,2) = —2*y* cos (2)
;g e = g (5) @) = st
e e0) = g5 (5F) )= 2ysints
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P Of R 0°F _ 0°f O _ 0°f Of _ 0°f gind functii continue,

27 0y?’ Oy2’ 0x0y ~ OyOx’0x0z ~ 020x’ Oydz ~ 020y
f este de 2 ori diferentiabila si
0% f 02 f 02 f
2 _ 97 2, 9 ) 2, 9 2
dfe = 92 (a) dz* + Oy (a) dy* + 522 (a)dz* +
02 f 0 f 0 f
2 2 2 .
900y (a) dxdy + 9205 (a) dxdz + 907 (a)dydz

Fiindcea

o0 f s 2
guz (123) = 6005 ()l (1 ag) =12
o7

™ 5 o
3y (1, -2, g) = 2z°cos <Z)|(x,y,z):(17727%) - 1
of T 3 2
022 (1’_2’5) = oy, 0,5 =2
o f . 2
oy (1 23) = Ve @iy (05 =
92
&Eafz (17 _27 %) - _3I2y2 SiIl (z)|(:p y z)—(l ) 1) = _6\/5
YT/ 3
*f T .
By0= (1, -2, 5) = —2z°ysin (Z)‘(m,y,z)=(1,72,g) —2V3

avem d2f<1 27) = 12d2? —dy?+-2dy? —12dxdy —12+/3dxdz+4v/3dydz.
T4y
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