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Capitolul 5

Calcul difereņtial (continuare
din cursul 8)

5.6 Difereņtiale de ordin superior (continuare
din cursul 8)

5.6.1 Aplica̧tii multiliniare (continuare din cursul 8)

Reamintim c¼a pentru orice E1,E2, :::, Ep, F spa̧tii normate peste corpul K
(K = R sau K = C), not¼am

Lp (E1; E2; :::; Ep;F ) = ff : E1 � E2 � :::� Ep ! F : f p-liniar¼a şi continu¼ag ,

iar în cazul în care E1 = E2 = ::: = Ep = E, not¼am

Lp (E;F ) = Lp (E;E; :::; E;F ) .

Fie E1,E2, :::, Em+n, F m+n+1 spa̧tii normate peste corpul K (K = R
sau K = C). Consider¼am aplica̧tia

	 : Lm+n (E1; :::; Em+n;F )! Lm (E1; :::; Em;Ln (Em+1; :::; Em+n;F ))

de�nit¼a prin

	(f) (x1; x2; :::; xm) (y1; y2; :::; yn) = f (x1; x2; :::; xm; y1; y2; :::; yn) (5.1)
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pentru orice f 2 Lm+n (E1; E2; :::; Em+n;F ), (x1; x2; :::; xm) 2 E1�E2� :::�
Em şi (y1; y2; :::; yn) 2 Em+1 � Em+2 � ::: � Em+n. Aplica̧tia 	 este corect
de�nit¼a şi

k	(f)k = kfk
pentru orice f 2 Lm+n (E1; E2; :::; Em+n;F ). În plus, 	 este bijectiv¼a şi

	�1 : Lm (E1; :::; Em;Ln (Em+1; :::; Em+n;F ))! Lm+n (E1; :::; Em+n;F )

este de�nit¼a prin

	�1 (g) ((x1; x2; :::; xm+n) = g (x1; x2; :::; xm) (xm+1; xm+2; :::; xm+n)

pentru orice aplica̧tie g 2 Lm (E1; E2; :::; Em;Ln (Em+1; Em+2; :::; Em+n;F ))
şi orice (x1; x2; :::; xm+n) 2 E1�E2� :::�Em+n. Deci 	 este un izomor�sm.
În cele ce urmeaz¼a vom identi�ca spa̧tiile

Lm+n (E1; E2; :::; Em+n;F ) � Lm (E1; E2; :::; Em;Ln (Em+1; Em+2; :::; Em+n;F ))

prin intermediul lui 	.

De�ni̧tia 5.6.1 (Aplica̧tie multiliniar¼a simetric¼a) Fie E şi F dou¼a spaţii
normate peste acelaşi corp K (K = R sau K = C) . O aplicaţie n-liniar¼a
f 2 Ln (E;F ) se numeşte simetric¼a dac¼a pentru orice permutare

� : f1; 2; :::; ng ! f1; 2; :::; ng

şi orice (x1; x2; :::; xn) 2 E � E � :::� E avem

f (x1; x2; ::; xn) = f
�
x�(1); x�(2); ::; x�(n)

�
.

5.6.2 Difereņtiala unei aplica̧tii multiliniare

Propozi̧tia 5.6.2 Fie E1,E2, :::, En, F n + 1 spaţii normate peste corpul
K (K = R sau K = C) şi a = (a1; a2; :::; an) 2 E1 � E2 � ::: � En.
Atunci orice f 2 Ln (E1; E2; :::; En;F ) este diferenţiabil¼a în a şi pentru
orice x = (x1; x2; :::; xn) 2 E1 � E2 � :::� En avem

dfa (x) =
nP
k=1

f (a1; a2; :::; ak�1; xk; ak+1; ak+2; :::; an) .
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Demonstra̧tie. În cele urmeaz¼a consider¼am pe E1 � E2 � :::� En norma
k(x1; x2; :::; xn)k = max

1�i�n
kxik. Fie " > 0 şi x = (x1; x2; :::; xn) un punct �xat

din B (a; "). Pentru orice k 2 f1; 2; :::; ng avem

kxk � akk � kx� ak < " (5.2)

kxkk � kxk � akk+ kakk
< "+ kak

Fie k 2 f1; 2; :::; ng �xat. De�nim funçtia gk : Ek ! F prin

gk (t) = f (a1; :::; ak�1; t; xk+1; :::; xn)� f (a1; :::; ak�1; t; ak+1; :::; an)

pentru orice t 2 Ek. Deoarece funçtiile

t 7! f (a1; a2; :::; ak�1; t; xk+1; xk+2; :::; xn)

t 7! f (a1; a2; :::; ak�1; t; ak+1; ak+2; :::; an)

sunt liniare şi continue pe Ek, rezult¼a c¼a funçtia gk este liniar¼a şi continu¼a
pe Ek (k 2 f1; 2; :::; ng). Consider¼am punctele

y0 = (a1; a2:::; ak�1; t; xk+1; :::; xn)

yi = (a1; :::; ak�1; t; ak+1; :::; ak+i; xk+i+1:::; xn) pentru orice i 2 f1; 2; :::; n� kg .

Pentru orice t 2 Ek avem

gk (t) =
n�kP
i=1

(f (yi�1)� f (yi))

şi ca urmare

kgk (t)k �
n�kP
i=1

kf (yi�1)� f (yi)k

=
n�kP
i=1

kf (a1; :::; ak�1; t; ak+1; :::; xk+i � ak+i; xk+i+1:::; xn)k

�
n�kP
i=1

kfk ka1k ::: kak�1k ktk kxk+i � ak+ik kxk+1k ::: kxnk

�
(5:2)

(n� k) kfk kakk�1 (kak+ ")n�k kx� ak ktk

� n (kak+ ")n�1 kfk kx� ak ktk
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de unde rezult¼a

kgk (t)k � n (kak+ ")n�1 kfk kx� ak . (5.3)

Consider¼am aplica̧tia T : E1 � E2 � :::� En ! F de�nit¼a prin

T (z) =
nP
k=1

f (a1; a2; :::; ak�1; zk; ak+1; ak+2; :::; an)

pentru orice z = (z1; z2; :::; zn), precum şi punctele

v0 = x

vk = (a1; a2; :::; ak; xk+1; xk+2; :::; xn) pentru orice k 2 f1; 2; :::; ng .

Avem

kf (x)� f (a)� T (x� a)k

=





 nP
k=1

(f (vk�1)� f (vk))� T (x� a)






�
nP
k=1

kf (vk�1)� f (vk)� f (a1; a2; :::; ak�1; zk; ak+1; ak+2; :::; an)k

=
nP
k=1

kgk (xk)� gk (ak)k

�
nP
k=1

kgkk kxk � akk

�
(5:3)

n (kak+ ")n�1 kfk kx� ak2

de unde rezult¼a c¼a

lim
x!a

kf (x)� f (a)� T (x� a)k
kx� ak = 0.

Ca urmare, ţinând cont şi de faptul c¼a aplica̧tia T este liniar¼a şi continu¼a,
rezult¼a c¼a f este difereņtiabil¼a în a şi

dfa (x1; x2; :::; xn) = T (x) =
nP
k=1

f (a1; a2; :::; ak�1; xk; ak+1; ak+2; :::; an) .
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Corolarul 5.6.3 Fie E, E1,E2, :::, En, F n+2 spaţii normate peste corpul
K (K = R sau K = C), A � E o mulţime deschis¼a, a 2 E şi funcţia
g = (g1; g2; :::; gn) : A! E1�E2� :::�En diferenţiabil¼a în a. Atunci orice
f 2 Ln (E1; E2; :::; En;F ), funcţia T = f �g este diferenţiabil¼a în a şi pentru
orice x 2 E avem

dTa (x) =
nP
k=1

f (g1 (a) ; g2 (a) ; :::; gk�1 (a) ; dgk;a (x) ; gk+1 (a) ; gk+2 (a) ; :::; gn (a)) .

Demonstra̧tie. Deoarece T = f � g rezult¼a c¼a T este difereņtiabil¼a în a
pentru orice x 2 E avem

dTa (x)

= dfg(a) � dga (x)

=
nP
k=1

f (g1 (a) ; g2 (a) ; :::; gk�1 (a) ; dgk;a (x) ; gk+1 (a) ; gk+2 (a) ; :::; gn (a)) .

Propozi̧tia 5.6.4 Fie E, E1,E2, :::, En, F n + 2 spaţii normate peste
corpul K (K = R sau K = C), A � E o mulţime deschis¼a, a 2 E şi
funcţia g = (g1; g2; :::; gn) : A! E1 � E2 � :::� En diferenţiabil¼a în a. Fie
f : A! Ln (E1; E2; :::; En;F ) diferenţiabil¼a în a şi T : A! F de�nit¼a prin

T (x) = f (x) (g1 (x) ; g2 (x) ; :::; gn (x))

pentru orice x 2 A. Atunci T este diferenţiabil¼a în a şi pentru orice x 2 E
avem

dTa (x) = dfa (x) (g1 (a) ; g2 (a) ; :::; gn (a))+
nP
k=1

f (a) (g1 (a) ; g2 (a) ; :::; gk�1 (a) ; dgk;a (x) ; gk+1 (a) ; gk+2 (a) ; :::; gn (a)) .

Demonstra̧tie. Consider¼am aplica̧tia multiliniar¼a (de evaluare)

h : Ln (E1; E2; :::; En;F )� E1 � E2 � :::� En ! F

de�nit¼a prin
h (S; x1; x2; :::; xn) = S(x1; x2; :::; xn)
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pentru orice S 2 Ln (E1; E2; :::; En;F ) şi (x1; x2; :::; xn) 2 E1�E2� :::�En.
Aplica̧tia h este continu¼a �indc¼a

kh (S; x1; x2; :::; xn)k = kS(x1; x2; :::; xn)k
� kSk kx1k kx2k ::: kxnk .

Se observ¼a c¼a T = h � (f; g1; g2; :::; gn) şi ca urmare T este difereņtiabil¼a în
a pentru orice x 2 E avem

dTa (x) = dh(f;g1;g2;:::;gn)(a) � d (f; g1; g2; :::; gn)a (x)

=
nP
k=1

h (dfa (x) ; g1 (a) ; :::; gn (a)) +

nP
k=1

h (f (a) ; g1 (a) ; :::; gk�1 (a) ; dgk;a (x) ; gk+1 (a) ; :::; gn (a)) .

= dfa (x) (g1 (a) ; :::; gn (a)) +
nP
k=1

f (a) (g1 (a) ; :::; gk�1 (a) ; dgk;a (x) ; gk+1 (a) ; :::; gn (a)) .

Propozi̧tia 5.6.5 Fie E şi F dou¼a spaţii normate peste acelaşi corp K
(K = R sau K = C) . Dac¼a f; g 2 Ln (E;F ) sunt dou¼a aplicaţii n-liniare
continue simetrice cu proprietatea c¼a

f (x; x; :::; x) = g (x; x; :::; x)

pentru orice x 2 E. Atunci f = g.

Demonstra̧tie. Demonstr¼am a�rma̧tia prin induçtie dup¼a n � 2. Pentru
n = 2, deorece f şi g sunt 2-liniare şi simetrice avem

f (x1; x2) =
1

2
(f (x1 + x2; x1 + x2)� f (x1; x1)� f (x2; x2))

g (x1; x2) =
1

2
(g (x1 + x2; x1 + x2)� g (x1; x1)� g (x2; x2))

de unde rezult¼a f = g. Presupunem a�rma̧tia adev¼arat¼a pentru n, şi
consider¼am dou¼a aplica̧tii n + 1-liniare continue simetrice cu proprietatea
c¼a

f (x; x; :::; x) = g (x; x; :::; x)
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pentru orice x 2 E. Pentru orice x 2 E de�nim funçtiile fx; gx : E �E:::�
E ! F prin

fx (y1; y2; :::; yn) = f (x; y1; y2; :::; yn)

gx (y1; y2; :::; yn) = g (x; y1; y2; :::; yn)

pentru orice (y1; y2; :::; yn) 2 E�E:::�E ! F . Atunci fx; gx sunt n-liniare,
continue şi simetrice. Funçtia T : A! F de�nit¼a prin

T (y) = f (y; y; :::; y) = g (y; y; :::; y)

pentru orice y 2 A, este difereņtiabil¼a în orice a 2 A: Pentru orice x 2 E
avem pe de o parte

dTa (x) =
nP
k=1

f (a; a; :::; a; x; a; a; :::; a)

=
nP
k=1

f (x; a; a; :::; a)

= nfx (a; a; :::; a)

şi pe de alt¼a parte

dTa (x) =
nP
k=1

g (a; a; :::; a; x; a; a; :::; a)

=
nP
k=1

g (x; a; a; :::; a)

= ngx (a; a; :::; a) .

Ca urmare avem
fx (a; a; :::; a) = gx (a; a; :::; a)

pentru orice a 2 A. Aplicând ipoteza de induçtie rezult¼a fx = gx. Aşadar

fx (y1; y2; :::; yn) = gx (y1; y2; :::; yn)

f (x; y1; y2; :::; yn) = g (x; y1; y2; :::; yn)

pentru orice x; y1; y2; :::; yn 2 E. În conseciņt¼a, f = g:
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De�ni̧tia 5.6.6 Fie E şi F dou¼a spaţii normate peste acelaşi corp K (K =
R sau K = C) .
O aplicaţie ' : E ! F se numeşte:

� polinom omogen de grad n (n � 1)
def, exist¼a f 2 Ln (E;F ) o aplicaţie

n-liniar¼a continu¼a simetric¼a astfel încât pentru orice x 2 E

' (x) = f (x; x; :::; x) .

(' se numeşte polinomul omogen asociat lui f).

� polinom def, ' se poate scrie ca sum¼a a unui num¼ar �nit de polinoame
omogene.

Din propozi̧tia 5.6.5, rezult¼a c¼a exist¼a o corespondeņt¼a bijectiv¼a între
muļtimea aplica̧tiilor n-liniare continue simetrice f : E�E� ::�E ! F şi
muļtimea polinoamelor omogene de grad n ' : E ! F .

5.6.3 Difereņtiabilitatea de ordin superior

De�ni̧tia 5.6.7 Fie E şi F dou¼a spaţii normate peste acelaşi corp K (K =
R sau K = C) , A � E o submulţime deschis¼a, a 2 A şi f : A! F o funcţie
diferenţiabil¼a pe o vecin¼atate deschis¼a Va � A a lui a. Se spune c¼a f este
de dou¼a ori diferenţiabil¼a în a dac¼a df : Va ! L (E;F ) este diferenţiabil¼a
în a. În acest caz se noteaz¼a d2fa = d (df)a şi se numeşte diferenţial¼a de
ordinul 2 a lui f în a. Dac¼a

A2;f = fa 2 A : f : A! E este de dou¼a ori diferenţiabil¼a ag ,

se noteaz¼a cu d2f funcţia d2f : A2;f ! L (E;L (E;F )) care asociaz¼a �ec¼arui
element a 2 A2;f diferenţiala de ordinul 2 a funcţiei f în a, adic¼a funcţia
de�nit¼a prin d2f (a) = d2fa pentru orice a 2 A2;f . Funcţia d2f este
numit¼a difereņtiala de ordinul 2 a funcţiei f . Mai general, prin recursivitate
se de�neşte diferenţiala de ordinul n a funcţiei f , notat¼a dnf , ca �ind
diferenţiala diferenţialei de ordinul n� 1 a lui f :

dnf = d
�
dn�1f

�
, n � 2.

Se noteaz¼a d0f = f:
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Ţinând cont c¼a L (E;L (E;F )) � L2 (E;F ) (identi�carea (5:1)), d2fa
poate � privit¼a ca o aplica̧tie biliniar¼a. Mai departe,

d3fa 2 L (E;L (E;L (E;F ))) � L (E;L2 (E;F )) � L3 (E;F ) .

Mai general, presupunând c¼a funçtia f este de n � 1 ori difereņtiabil¼a
pe o vecin¼atate dechis¼a V a punctului a şi c¼a este de n-ori difereņtiabil¼a în
a, atunci

dnfa 2 L (E;Ln�1 (E;F )) � Ln (E;F ) .
Astfel pentru orice n � 2, difereņtiala de ordinul n a funçtiei f într-un

punct a va � identi�cat¼a cu o aplica̧tie n-liniar¼a.

Teorema 5.6.8 (Criteriul lui Young de comutativitate) Fie E şi F
dou¼a spaţii normate peste acelaşi corp K (K = R sau K = C) , A � E o
submulţime deschis¼a, a 2 A şi f : A ! F o funcţie de n-ori diferenţiabil¼a
în a. Atunci dnfa este o aplicaţie n-liniar¼a simetric¼a.

Demonstra̧tie. [N. Boboc, Curs de analiz¼a real¼a şi complex¼a/Difereņtiabilitate
(2), p. 21, Universitatea din Bucureşti, 1974]

De�ni̧tia 5.6.9 Fie E şi F dou¼a spaţii normate peste acelaşi corp K (K =
R sau K = C) , A � E o submulţime deschis¼a, a 2 A şi f : A ! F o
funcţie de n-ori diferenţiabil¼a în a. Se numeşte polinomul Taylor de ordinul
n asociat funcţiei f în a, funcţia notat¼a Tn (f; a) şi de�nit¼a prin

Tn (f; a) (x) = f (a) +
1

1!
dfa (x� a) +

1

2!
d2fa (x� a; x� a) + :::

+
1

n!
dnfa (x� a; x� a; :::; x� a) , x 2 E.

Teorema 5.6.10 (Formula Taylor) Fie E şi F dou¼a spaţii normate peste
acelaşi corp K (K = R sau K = C), A � E o submulţime deschis¼a, a 2 A
şi f : A! F o funcţie de n-ori diferenţiabil¼a în a. Atunci exist¼a o funcţie
Rn (f; a) : A ! F , numit¼a restul de ordinul n, astfel încât pentru orice
x 2 A

f (x) = Tn (f; a) (x) +Rn (f; a) (x) ,

şi

lim
x!a

1

kx� aknRn (f; a) (x) = 0.
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Demonstra̧tie. Pentru orice x 2 A, de�nim

Rn (f; a) (x) = f (x)� Tn (f; a) (x) .

Demonstr¼am prin induçtie dup¼a n c¼a

P (n) : lim
x!a

1

kx� akn (f (x)� Tn (f; a) (x)) = 0

pentru orice funçtie f de n-ori difereņtiabil¼a în a.

este adev¼arat¼a pentru orice n � 1. Pasul de veri�care:

P (1) : lim
x!a

1

kx� ak (f (x)� T1 (f; a) (x)) = 0

pentru orice funçtie f difereņtiabil¼a în a.

Deoarece pentru orice f este difereņtiabil¼a în a, avem

lim
x!a

1

kx� ak (f (x)� T1 (f; a) (x)) =

= lim
x!a

1

kx� ak

�
f (x)�

�
f (a) +

1

1!
dfa (x� a)

��
= lim

x!a

1

kx� ak (f (x)� f (a)� dfa (x� a))

= 0.

Demonstr¼am P (n) ) P (n+ 1). Fie " > 0 şi f o funçtie de n + 1 ori
difereņtiabil¼a în a. Atunci df este de n-ori difereņtiabil¼a în a şi ca urmare
din ipoteza de induçtie P (n) rezult¼a

lim
x!a

1

kx� akn (df (x)� Tn (df; a) (x)) = 0.

Ca urmare exist¼a �" > 0 astfel încât pentru orice x 2 B (a; �e) � A avem

kdf (x)� Tn (df; a) (x)k < " kx� akn . (5.4)
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Pe de alt¼a parte, pentru orice x 2 B (a; �"), conform teoremei creşterilor
�nite, avem

kf (x)� Tn+1 (f; a) (x)� (f (a)� Tn+1 (f; a) (a))k �M jx� aj ,
unde M = supz2Ix kdf (z)� d (Tn+1 (f; a)) (z)k, iar

Ix = [a; x] = f(1� t) a+ tx : t 2 [0; 1]g .
Cum Tn+1 (f; a) (a) = a, avem

kf (x)� Tn+1 (f; a) (x)k � sup
z2Ix

kdf (z)� d (Tn+1 (f; a)) (z)k kx� ak

Dac¼a pentru k 2 f1; 2; :::; n+ 1g not¼am pk aplica̧tia pk : E ! F , de�nit¼a
prin

pk (x) =
1

k!
dkfa (x� a; x� a; :::; x� a) pentru orice x 2 E,

avem

dpk (z) (t) =
1

k!

kP
j=1

dkfa (z � a; :::z � a; t; z � a; :::; z � a)

=
k

k!
dkfa (z � a; :::; z � a; t)

=
1

(k � 1)!d
k�1 (df)a (z � a; :::; z � a) (t)

pentru orice t 2 E, şi deci dpk (z) = 1
(k�1)!d

k�1 (df)a (z � a; :::; z � a). Ca
urmare

d (Tn+1 (f; a)) (z) =
n+1P
k=1

1

(k � 1)!d
k�1 (df)a (z � a; :::; z � a)

=
nP
k=0

1

k!
dk (df)a (z � a; :::; z � a)

= Tn (df; a) (z) .

În conseciņt¼a

kf (x)� Tn+1 (f; a) (y)k
kx� akn+1

� 1

kx� akn supz2Iy
kdf (z)� Tn (df; a) (z)k

<
(5:4)

1

kx� akn " kx� ak
n

= ".
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Aşadar

lim
x!a

1

kx� akn+1
(f (x)� Tn+1 (f; a) (x)) = 0

şi deci P (n+ 1) este adev¼arat¼a.

5.7 Derivate paŗtiale de ordin superior

De�ni̧tia 5.7.1 (Derivate paŗtiale de ordin superior) Fie A � Rn o
submulţime deschis¼a, a 2 A şi f : A! R, (x1; x2; :::; xn)

f7! f (x1; x2; :::; xn),
o funcţie derivabil¼a parţial în raport cu variabila xi (i 2 f1; 2; :::; ng) în
�ecare punct dintr-o vecin¼atate Va a punctului a. Funcţia f se numeşte
derivabil¼a parţial de ordinul doi în raport cu perechea de variabile (xi; xj)

(j 2 f1; 2; :::; ng) în punctul a def, funcţia @f
@xi

este derivabil¼a parţial în a

în raport cu variabila xj. În acest caz derivata parţial¼a a funcţiei
@f
@xi

în a

în raport cu variabila xj (adic¼a @
@xj

�
@f
@xi

�
(a)) se noteaz¼a cu @2f

@xj@xi
(a) şi se

numeşte derivat¼a parţial¼a de ordinul doi a lui f în raport cu perechea de
variabile (xi; xj) în punctul a. În cazul i = j se utilizeaz¼a notaţia

@2f

@x2i
(a) =

@2f

@xi@xi
(a) .

Dac¼a Af;i;j este mulţimea punctelor a 2 A în care f : A ! R este
derivabil¼a parţial de ordinul doi în raport cu perechea de variabile (xi; xj),
atunci se noteaz¼a cu @2f

@xj@xi
funcţia @2f

@xj@xi
: Af;i;j ! R care asociaz¼a �ec¼arui

element a 2 Af;i;j derivata parţial¼a de ordinul doi a lui f în raport cu
perechea de variabile (xi; xj) în punctul a, adic¼a funcţia

a 7! @2f

@xj@xi
(a) [: Af;i;j ! R]

(numit¼a derivata parţial¼a de ordinul doi în raport cu perechea de variabile
(xi; xj) a funcţiei f ).
Derivatele parţiale de ordin p (p � 2) se de�nesc inductiv. Pentru orice

(i1; i2; :::; ip) 2 f1; 2; :::; ngp de�nim
@pf

@xi1@xi2 :::@xip
(a) =

@

@xi1

�
@p�1f

@xi2@xi3 :::@xip

�
(a)

14
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şi numim @pf
@xi1@xi2 :::@xip

(a) derivata parţial¼a de ordinul p a funcţiei f în raport

cu sistemul de variabilele
�
xip ; xip�1 ; :::; xi1

�
în punctul a.

Dac¼a V este muļtimea punctelor a în care f are derivate paŗtiale de
ordinul p în raport cu orice sistem de variabile

�
xip ; xip�1 ; :::; xi1

�
, atunci se

ob̧tin np aplica̧tii

a 7! @pf

@xi1@xi2 :::@xip
(a) [: V ! R]

numite derivatele parţiale de ordinul p ale funcţiei f .

Exemple 5.7.2 S¼a se calculeze derivatele parţiale de ordinul doi ale urm¼atoarelor
funcţii:

1. f : R2 ! R, f (x; y) = sin (x cos (y)) pentru orice (x; y) 2 R2. Avem
@f

@x
(x; y) = cos (x cos (y)) (x cos (y))0x = cos (x cos (y)) cos (y)

@f

@y
(x; y) = cos (x cos (y)) (x cos (y))0y = � cos (x cos (y))x sin (y)

@2f

@x2
(x; y) =

@

@x

�
@f

@x

�
(x; y) = � cos (y) sin (x cos (y)) (x cos (y))0x

= � cos2 (y) sin (x cos (y))
@2f

@y2
(x; y) =

@

@y

�
@f

@y

�
(x; y)

= �x
�
(cos (x cos (y)))0y sin (y) + cos (x cos (y)) cos (y)

�
= �x

�
sin (x cos (y))x sin2 (y) + cos (x cos (y)) cos (y)

�
= �x2 sin2 (y) sin (x cos (y))� cos (y) cos (x cos (y))

@2f

@x@y
(x; y) =

@

@x

�
@f

@y

�
(x; y)

= � sin (y)
�
cos (x cos (y))0x x+ cos (x cos (y))

�
= � sin (y) (� sin (x cos (y)) cos (y)x+ cos (x cos (y)))
= x sin (x cos (y)) sin (y) cos (y)� sin (y) cos (x cos (y))

15
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@2f

@y@x
(x; y) =

@

@y

�
@f

@x

�
(x; y)

= (cos (x cos (y)))0y cos (y)� cos (x cos (y)) sin (y)
= � sin (x cos (y))x (� sin (y))� cos (x cos (y)) sin (y)
= x sin (x cos (y)) sin (y)� sin (y) cos (x cos (y))

2. f : R3 ! R, f (x; y; z) = ex+2yz cos (z) pentru orice (x; y; z) 2 R3.
Avem

@f

@x
(x; y; z) = cos (z)

�
ex+2yz

�0
x
= cos (z) ex+2yz (x+ 2yz)0x

= cos (z) ex+2yz

@f

@y
(x; y; z) = cos (z)

�
ex+2yz

�0
y
= cos (z) ex+2yz (x+ 2yz)0y

= 2z cos (z) ex+2yz

@f

@z
(x; y; z) =

�
ex+2yz

�0
z
cos (z) + ex+2yz (� sin (z))

= ex+2yz (x+ 2yz)0z cos (z)� sin (z) ex+2yz

= 2y cos (z) ex+2yz � sin (z) ex+2yz

@2f

@x2
(x; y; z) =

@

@x

�
@f

@x

�
(x; y; z) = cos (z)

�
ex+2yz

�0
x

= cos (z) ex+2yz

@2f

@y2
(x; y; z) =

@

@y

�
@f

@y

�
(x; y; z) = 2z cos (z)

�
ex+2yz

�0
y

= 4z2 cos (z) ex+2yz

@2f

@z2
(x; y; z) =

@

@z

�
@f

@z

�
(x; y; z)

= �2y sin (z) ex+2yz + 4y2 cos (z) ex+2yz �
cos (z) ex+2yz � 2y sin (z) ex+2yz

= �4y sin (z) ex+2yz + 4y2 cos (z) ex+2yz � cos (z) ex+2yz
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@2f

@x@y
(x; y; z) =

@

@x

�
@f

@y

�
(x; y; z) = 2z cos (z)

�
ex+2yz

�0
x

= 2z cos (z) ex+2yz (x+ 2yz)0x
= 2z cos (z) ex+2yz

@2f

@y@x
(x; y; z) =

@

@y

�
@f

@x

�
(x; y; z) = 2z cos (z) ex+2yz

@2f

@x@z
(x; y; z) =

@

@x

�
@f

@z

�
(x; y; z)

= 2y cos (z)
�
ex+2yz

�0
x
� sin (z)

�
ex+2yz

�0
x

= 2y cos (z) ex+2yz � sin (z) ex+2yz

@2f

@z@x
(x; y; z) =

@

@z

�
@f

@x

�
(x; y; z)

= 2y cos (z) ex+2yz � sin (z) ex+2yz

@2f

@y@z
(x; y; z) =

@

@y

�
@f

@z

�
(x; y; z)

= 2 cos (z) ex+2yz + 2y cos (z)
�
ex+2yz

�0
y
� sin (z)

�
ex+2yz

�0
y

= 2 cos (z) ex+2yz + 4yz cos (z) ex+2yz � 2z sin (z) ex+2yz

@2f

@z@y
(x; y; z) =

@

@z

�
@f

@y

�
(x; y; z)

= 2 cos (z) ex+2yz + 4yz cos (z) ex+2yz � 2z sin (z) ex+2yz

Teorema 5.7.3 Fie A � Rn o submulţime deschis¼a, a 2 A şi

f : A! R; (x1; x2; :::; xn)
f7! f (x1; x2; :::; xn) ,

o funcţie de p-ori diferenţiabil¼a în a. Atunci f admite derivate parţiale de
ordinul p în a în raport cu orice sistem de variabile

�
xip ; xip�1 ; :::; xi1

�
şi

@pf

@xi1@xi2 :::@xip
(a) = dpfa

�
ei1;ei2 ; :::; eip

�
unde fe1; e2; :::; eng este baza canonic¼a din Rn.
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Demonstra̧tie. Demonstr¼am prin induçtie dup¼a p. Pentru p = 1 rezultatul
este adev¼arat conform teoremei 5.5.4. Presupunem c¼a orice funçtie g de p-
ori difereņtiabil¼a în a admite derivate paŗtiale de ordinul p în raport cu orice
sistem de variabile

�
xip ; xip�1 ; :::; xi1

�
şi

@pg

@xi1@xi2 :::@xip
(a) = dpga

�
ei1;ei2 ; :::; eip

�
şi consider¼am o funçtie f de p + 1 ori difereņtiabil¼a în a şi un sistem de
indici (i1; i2; :::; ip+1) 2 f1; 2; :::; ngp+1. Atunci f este de p-ori difereņtiabil¼a
în orice punct dintr-o vecin¼atate deschis¼a Va � A a lui a. Din ipoteza de
induçtie rezult¼a c¼a pentru orice x 2 Va avem

@pf

@xi2@xi3 :::@xip+1
(x) = dpfx

�
ei2;ei3 ; :::; eip+1

�
(5.5)

Fie h : Va ! R de�nit¼a prin

x
h7! dpfx

�
ei2;ei3 ; :::; eip+1

�
pentru orice x 2 Va. Conform propozi̧tie 5.6.4, h este difereņtiabil¼a în a
(deoarece dpf este difereņtiabil¼a în a) şi pentru orice x 2 Rn

dha (x) = d (dpf)a (x)
�
ei2;ei3 ; :::; eip+1

�
=
(5:1)

dp+1fa
�
x; ei2;ei3 ; :::; eip+1

�
În particular,

dha (ei1) = d
p+1fa

�
ei1 ; ei2;ei3 ; :::; eip+1

�
.

şi deoarece @h
@xi1

(a) = dha (ei1) (conform teoremei 5.5.4), rezult¼a

@h

@xi1
(a) = dp+1fa

�
ei1 ; ei2;ei3 ; :::; eip+1

�
. (5.6)

Pe de alt¼a parte din (5:5) pentru orice x 2 Va

h (x) =
@pf

@xi2@xi3 :::@xip+1
(x)
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şi deci

@h

@xi1
(a) =

@

@xi1

�
@pf

@xi2@xi3 :::@xip+1

�
(a)

=
@p+1f

@xi1@xi3 :::@xip+1
(a) .

În conseciņt¼a, ţinând cont şi de (5:6), rezult¼a

@p+1f

@xi1@xi3 :::@xip+1
(a) = dpfa

�
ei1;ei2 ; :::; eip+1

�
.

Teorema 5.7.4 (Formula de calcul a difereņtialei de ordin p) Fie A
o submulţime deschis¼a a lui Rn, a 2 A şi

f : A! R; (x1; x2; :::; xn)
f7! f (x1; x2; :::; xn) ,

o funcţie de p-ori diferenţiabil¼a în a. Atunci f admite derivate parţiale de
ordinul p în a şi pentru orice (x1; x2; :::; xp) 2 Rn � Rn � ::: � Rn (xi =
(xi1; x

i
2; :::; x

i
n) 2 Rn pentru orice i 2 f1; 2; :::; pg) avem

dpfa
�
x1; x2; :::; xp

�
=

P
(i1;i2;:::;ip)2Ip

@pf

@xi1@xi2 :::@xip
(a)x1i1x

2
i2
:::xpip

unde Ip = f1; 2; :::; ngp.
Demonstra̧tie. Fie fe1; e2; :::; eng este baza canonic¼a din Rn. Conform
teoremei anterioare f admite derivate paŗtiale de ordinul p în a în raport
cu orice sistem de variabile

�
xip ; xip�1 ; :::; xi1

�
şi

@pf

@xi1@xi2 :::@xip
(a) = dpfa

�
ei1;ei2 ; :::; eip

�
.

Pe de alt¼a parte pentru orice (x1; x2; :::; xp) 2 Rn � Rn � :::� Rn avem

dpfa
�
x1; x2; :::; xp

�
= dpfa

�
nP

i1=1

x1i1ei1 ;
nP

i2=1

x2i2ei2 ; :::;
nP

i1=1

xpipeip

�
=

nP
i1=1

nP
i2=1

:::
nP

i1=1

x1i1x
2
i2
:::xpipd

pfa
�
ei1;ei2 ; :::; eip

�
=

P
(i1;i2;:::;ip)2Ip

x1i1x
2
i2
:::xpip

@pf

@xi1@xi2 :::@xip
(a)
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Observa̧tia 5.7.5 Fie A o submulţime deschis¼a a lui Rn şi a 2 A. Dac¼a
o funcţie f : A ! R admite derivate parţiale de ordin p (p > 1) în orice
punct dintr-o vecin¼atate Va a lui a şi dac¼a toate derivatele parţiale de ordin
p

x 7! @pf

@xi1@xi2 :::@xip
(x)

sunt continue în a, atunci şi derivatele parţiale de ordin p�1 sunt continue
în a.

Teorema 5.7.6 (Criteriu de difereņtiabilitate de ordin p ) Fie A �
Rn o submulţime deschis¼a şi a 2 A. Dac¼a funcţia f : A! R,

(x1; x2; :::; xn)
f7! f (x1; x2; :::; xn)

are proprietatea c¼a admite derivate parţiale de ordin p în orice punct dintr-o
vecin¼atate Va a punctului a şi dac¼a derivatele parţiale de ordin p

x 7! @pf

@xi1@xi2 :::@xip
(x)

sunt continue în a pentru orice (i1; i2; :::; ip) 2 f1; 2; :::; ngp, atunci funcţia
f este de p-ori diferenţiabil¼a în a.

Demonstra̧tie. Demonstr¼am prin induçtie dup¼a p. Pentru p = 1 rezultatul
este adev¼arat conform teoremei 5.5.5. Presupunem c¼a orice funçtie g care
admite derivate paŗtiale de ordin p în orice punct dintr-o vecin¼atate Va
continue în a, este de p-ori difereņtiabil¼a în a. Consider¼am o funçtie f care
admite derivate paŗtiale de ordin p+1 în orice punct dintr-o vecin¼atate Va a
lui a, continue în a. Atunci f admite în particular derivate paŗtiale de ordin
p, continue în a. Conform ipotezei de induçtie, f este de p-ori difereņtiabil¼a
în a. Fie (i1; i2; :::; ip) 2 f1; 2; :::; ngp şi funçtia h : Va ! R de�nit¼a prin

x
h7! @pf

@xi1@xi2 :::@xip
(x)
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pentru orice x 2 Va. Funçtia h admite derivate paŗtiale de ordinul 1:

@h

@xj
=

@

@xj

�
@pf

@xi1@xi2 :::@xip

�
=

@p+1f

@xj@xi1@xi2 :::@xip

continue în a pentru orice j. Conform teoremei 5.5.5 funçtia h este difereņtiabil¼a
în a. Ca urmare, dac¼a not¼am cu pi1;i2;:::;ip funçtia pi1;i2;:::;ip : (Rn)

p ! R
de�nit¼a prin

pi1;i2;:::;ip
�
y1; y2; :::; yp

�
= y1i1y

2
i2
:::ypip

pentru orice (y1; y2; :::; yp) 2 (Rn)p (yi = (yi1; y
i
2; :::; y

i
n) 2 Rn pentru orice

i 2 f1; 2; :::; pg), atunci funçtia

x 7! h (x) pi1;i2;:::;ip [: Ua ! Lp (Rn;R)]

este difereņtiabil¼a în a. În conseciņt¼a,

x 7! dpfx =
P

(i1;i2;:::;ip)2Ip

@pf

@xi1@xi2 :::@xip
(x) pi1;i2;:::;ip

este difereņtiabil¼a în a. Aşadar f este de p+ 1 ori difereņtiabil¼a în a.

De�ni̧tia 5.7.7 Fie A � Rn o submulţime deschis¼a. Funcţia f : A ! R
se numeşte de clas¼a C0 pe A (şi se scrie f 2 C0 (A)) def, f este continu¼a
pe A. Funcţia f : A! R se numeşte de clas¼a Cp (p � 1) pe A (şi se scrie
f 2 Cp (A)) def, f admite derivate parţiale de ordin p în orice punct a 2 A
şi toate derivatele parţiale de ordin p

x 7! @pf

@xi1@xi2 :::@xip
(x)

sunt continue pe A
Se noteaz¼a cu

C1 (A) =
1T
k=0

Ck (A) .

Funcţiile din C1 (A) se numesc funcţii inde�nit derivabile pe A.
Funcţia g = (g1; g2; ::::; gm) : A ! Rm se numeşte de clas¼a Cp pe A

(p � 0) (şi se scrie g 2 Cp (A))
def, toate componentele ei gi : A ! R,

1 � i � m, sunt de clas¼a Cp pe A.
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Dac¼a A � Rn o muļtime deschis¼a şi funçtia f : A ! R este de clas¼a
C1 pe A, atunci f este difereņtiabil¼a pe A şi, ţinând cont c¼a pentru orice
a; b 2 A şi x = (x1; x2; :::; xn) 2 Rn avem

jdfa (x)� dfb (x)j �
nP
i=1

���� @f@xi (a)� @f

@xi
(b)

���� jxij
� max

1�i�n

���� @f@xi (a)� @f

@xi
(b)

���� kxk1 ,
rezult¼a c¼a df : A! L (Rn;R) este continu¼a. Reciproc dac¼a f : A! R este
difereņtiabil¼a şi df : A! L (Rn;R) este continu¼a, atunci f este de clas¼a C1
pe A (deoarece @f

@xi
(a) = dfa (ei)) . Astfel putem de�ni funçtiile de clas¼a Cp

într-un context mai general.

De�ni̧tia 5.7.8 Fie E şi F dou¼a spaţii normate peste acelaşi corp K (K =
R sau K = C) şi A � E o mulţime deschis¼a. Funcţia f : A! F se numeşte

de clas¼a C0 pe A (şi se scrie f 2 C0 (A)) def, f este continu¼a pe A. Funcţia
f : A ! F se numeşte de clas¼a Cp (p � 1) pe A (şi se scrie f 2 Cp (A))
def, f este de p-ori diferenţiabil¼a pe A şi

dpf : A! Lp (E;F )

este continu¼a.

Teorema 5.7.9 (Criteriul lui Schwarz de comutativitate) Fie A � Rn
o submulţime deschis¼a şi a 2 A. Dac¼a funcţia f : A! R,

(x1; x2; :::; xn)
f7! f (x1; x2; :::; xn)

are proprietatea c¼a admite derivate parţiale de ordin p în orice punct dintr-o
vecin¼atate Va a punctului a şi dac¼a derivatele parţiale de ordin p

x 7! @pf

@xi1@xi2 :::@xip
(x)

sunt continue în a pentru orice (i1; i2; :::; ip) 2 f1; 2; :::; ngp, atunci pentru
orice permutare

� : f1; 2; :::; pg ! f1; 2; :::; pg

22



Analiz¼a Matematic¼a - curs 9

avem
@pf

@xi1@xi2 :::@xip
(a) =

@pf

@xi�(1)@xi�(2) :::@xi�(p)
(a) .

Demonstra̧tie. Conform teoremei 5.7.6, funçtia f este de p-ori difereņtiabil¼a
în a. Aplicând criteriul lui Young de comutativitate rezult¼a c¼a dpfa este
o aplica̧tie p-liniar¼a simetric¼a. Ca urmare, dac¼a fe1; e2; :::; eng este baza
canonic¼a a lui Rn, atunci pentru orice (i1; i2; :::; ip) 2 f1; 2; :::; ngp şi orice
permutare

� : f1; 2; :::; pg ! f1; 2; :::; pg

avem

@pf

@xi1@xi2 :::@xip
(a) = dpfa

�
ei1;ei2 ; :::; eip

�
= dpfa

�
ei�(1);ei�(2) ; :::; ei�(p)

�
=

@pf

@xi�(1)@xi�(2) :::@xi�(p)
(a) .

În particular, în cazul p = 2, criteriul lui Schwarz de comutativitate
implic¼a

@2f

@xi@xj
(a) =

@2f

@xj@xi
(a) ,

pentru orice funçtie f care are derivate paŗtiale de ordinul 2 continue în a.
Cu alte cuvinte pentru o astfel de funçtie nu conteaz¼a ordinea de derivare.

De�ni̧tia 5.7.10 Fie n > 1 un num¼ar natural. Se numeşte multi-indice
n-dimesional un sistem ordonat (tuplu) a = (�1; �2; :::; �n) 2 Nn. Pentru
orice multi-indice a = (�1; �2; :::; �n) se numeşte ordinul lui �, şi noteaz¼a
cu j�j suma

j�j = �1 + �2 + :::+ �n:

Dac¼a A � Rn este o muļtime deschis¼a şi f : A! R,

(x1; x2; :::; xn)
f7! f (x1; x2; :::; xn)
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este o funçtie de clas¼a Cp pe A atunci pentru orice a = (�1; �2; :::; �n) 2 Nn
se noteaz¼a cu

D�f =
@j�jf

@x�11 @x
�2
2 :::@x

�n
n

: A! R

funçtia ob̧tinut¼a derivând (paŗtial) succesiv pe f de �n ori în raport cu xn,
de �n�1 ori în raport cu xn�1, ..., de �1 ori în raport cu x1, unde dac¼a �k = 0
nu se efectueaz¼a nici o derivare.
Folosind aceast¼a nota̧tie pentru orice x = (x1; x2; :::; xn) 2 Rn avem

dpfa (x; x; :::; x) =
P

(i1;i2;:::;ip)2Ip

@pf

@xi1@xi2 :::@xip
(a)xi1xi2 :::xip

=
P
j�j=p

p!

�1!�2!:::�n!

@j�jf

@x�11 @x
�2
2 :::@x

�n
n

(a)x�11 x
�2
2 :::x

�n
n

(suma se face dup¼a to̧ti multi-indicii � = (�1; �2; :::; �n) cu j�j = p). Dac¼a
identi�c¼am aplica̧tia p-liniar¼a continu¼a simetric¼a dpfa cu polinomul omogen
asociat

x 7! dpfa (x; x; :::; x) ,

şi dac¼a not¼am dxi : Rn ! R proieçtia pe componenta i, atunci

dpfa =
P
j�j=p

p!

�1!�2!:::�n!

@j�jf

@x�11 @x
�2
2 :::@x

�n
n

(a) dx�11 dx
�2
2 :::dx

�n
n .

În cazul p = 2 ob̧tinem

d2fa =
nP
i=1

@2f

@x2i
(a) dx2i + 2

P
1�i<j�n

@2f

@xi@xj
(a) dxidxj

În particular, în cazul n = 2, scriind (x; y) în loc de (x1; x2) ob̧tinem

d2fa =
@2f

@x2
(a) dx2 + 2

@2f

@x@y
(a) dxdy +

@2f

@y2
(a) dy2,

iar în cazul n = 3, scriind (x; y; z) în loc de (x1; x2; x3) ob̧tinem

d2fa =
@2f

@x2
(a) dx2 +

@2f

@y2
(a) dy2 +

@2f

@z2
(a) dz2+

2
@2f

@x@y
(a) dxdy + 2

@2f

@x@z
(a) dxdz + 2

@2f

@y@z
(a) dydz.
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Exemple 5.7.11 S¼a se calculeze diferenţialele de ordinul 1 şi 2 ale urm¼atoarelor
funcţii în punctul a:

1. f : R2 n f(x; y) : y � 0g ! R, f (x; y) = ex ln (y) pentru orice (x; y),
a = (0; e).

R:Avem @f
@x
(x; y) = ex ln (y) şi @f

@y
(x; y) = ex 1

y
. Derivatele parţiale @f

@x

şi @f
@y
�ind funcţii continue, f este diferenţiabil¼a şi

dfa =
@f

@x
(a) dx+

@f

@y
(a) dy.

Deoarece
@f

@x
(0; e) = ex ln (y)j(x;y)=(0;e) = 1

@f

@y
(0; e) = ex

1

y

����
(x;y)=(0;e)

=
1

e

avem df(0;e) = dx+
1
e
dy.

@2f

@x2
(x; y) =

@

@x

�
@f

@x

�
(x; y) = ex ln (y)

@2f

@y2
(x; y) =

@

@y

�
@f

@y

�
(x; y) = �ex 1

y2

@2f

@x@y
(x; y) =

@

@x

�
@f

@y

�
(x; y) = ex

1

y
.

@2f
@x2
,@

2f
@y2
, @

2f
@x@y

= @2f
@y@x

�ind funcţii continue, f este de 2 ori diferenţiabil¼a
şi

d2fa =
@2f

@x2
(a) dx2 + 2

@2f

@x@y
(a) dxdy +

@2f

@y2
(a) dy2.

Deoarece

@2f

@x2
(0; e) = ex ln (y)j(x;y)=(0;e) = 1

@2f

@y2
(0; e) = �ex 1

y2

����
(x;y)=(0;e)

= � 1
e2

@2f

@x@xy
(0; e) = ex

1

y

����
(x;y)=(0;e)

=
1

e
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avem d2f(0;e) = dx
2 + 2

e
dxdy � 1

e2
dy2.

2. f : R3 ! R, f (x; y; z) = x3y2 cos (z) pentru orice (x; y; z) 2 R3,
a =

�
1;�2; �

3

�
.

R: Avem @f
@x
(x; y; z) = 3x2y2 cos (z), @f

@y
(x; y; z) = 2x3y cos (z) şi

@f
@z
(x; y; z) = �x3y2 sin (z). Derivatele parţiale @f

@x
,@f
@y
şi @f

@z
�ind funcţii

continue, f este diferenţiabil¼a şi

dfa =
@f

@x
(a) dx+

@f

@y
(a) dy +

@f

@z
(a) dz

Deoarece

@f

@x

�
1;�2; �

3

�
= 3x2y2 cos (z)

��
(x;y;z)=(1;�2;�3 )

= 6

@f

@y

�
1;�2; �

3

�
= 2x3y cos (z)

��
(x;y;z)=(1;�2;�3 )

= �2

@f

@z

�
1;�2; �

3

�
= �x3y2 sin (z)

��
(x;y;z)=(1;�2;�3 )

= �2
p
3

avem df(1;�2;�3 )
= 6dx� 2dy � 2

p
3dz.

@2f

@x2
(x; y; z) =

@

@x

�
@f

@x

�
(x; y; z) = 6xy2 cos (z)

@2f

@y2
(x; y; z) =

@

@y

�
@f

@y

�
(x; y; z) = 2x3 cos (z)

@2f

@z2
(x; y; z) =

@

@z

�
@f

@z

�
(x; y; z) = �x3y2 cos (z)

@2f

@x@y
(x; y; z) =

@

@x

�
@f

@y

�
(x; y; z) = 6x2y cos (z)

@2f

@x@z
(x; y; z) =

@

@x

�
@f

@z

�
(x; y; z) = �3x2y2 sin (z)

@2f

@y@z
(x; y; z) =

@

@y

�
@f

@z

�
(x; y; z) = �2x3y sin (z)
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@2f
@x2
,@

2f
@y2
,@

2f
@y2
, @

2f
@x@y

= @2f
@y@x

, @
2f

@x@z
= @2f

@z@x
, @2f
@y@z

= @2f
@z@y

�ind funcţii continue,
f este de 2 ori diferenţiabil¼a şi

d2fa =
@2f

@x2
(a) dx2 +

@2f

@y2
(a) dy2 +

@2f

@z2
(a) dz2 +

2
@2f

@x@y
(a) dxdy + 2

@2f

@x@z
(a) dxdz + 2

@2f

@y@z
(a) dydz.

Fiindc¼a

@2f

@x2

�
1;�2; �

3

�
= 6xy2 cos (z)

��
(x;y;z)=(1;�2;�3 )

= 12

@2f

@y2

�
1;�2; �

3

�
= 2x3 cos (z)

��
(x;y;z)=(1;�2;�3 )

= �1

@2f

@z2

�
1;�2; �

3

�
= �x3y2 cos (z)

��
(x;y;z)=(1;�2;�3 )

= 2

@2f

@x@y

�
1;�2; �

3

�
= 6x2y cos (z)

��
(x;y;z)=(1;�2;�3 )

= �6

@2f

@x@z

�
1;�2; �

3

�
= �3x2y2 sin (z)

��
(x;y;z)=(1;�2;�3 )

= �6
p
3

@2f

@y@z

�
1;�2; �

3

�
= �2x3y sin (z)

��
(x;y;z)=(1;�2;�3 )

= 2
p
3

avem d2f(1;�2;�3 )
= 12dx2�dy2+2dy2�12dxdy�12

p
3dxdz+4

p
3dydz.
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