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Capitolul 5

Calcul difereņtial (continuare
din cursul 9)

5.8 Extreme libere

Reamintim (din cursul 6) de�ni̧tia punctelor de extrem:

De�ni̧tia 5.8.1 Fie f : A ! B � R o funcţie şi a 2 A. Punctul a se
numeşte:

� punct de minim (global) pentru f
def, f (a) � f (x) pentru orice x 2 A;

� punct de maxim (global) pentru f
def, f (a) � f (x) pentru orice x 2 A;

� punct de extrem (global) pentru f
def, a este punct de minim (global) sau

de maxim (global).

Dac¼a în plus, A este o submulţime a unui spaţiu topologic, punctul a se
numeşte

� punct de minim local pentru f
def, exist¼a o vecin¼atate V a lui a astfel

încât f (a) � f (x) pentru orice x 2 A \ V ;

� punct de maxim local pentru f
def, exist¼a o vecin¼atate V a lui a astfel

încât f (a) � f (x) pentru orice x 2 A \ V ;
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� punct de extrem local pentru f
def, a este punct de minim local sau de

maxim local.

De�ni̧tia 5.8.2 Fie E un spaţiu normat real. Aplicaţia 2p-liniar¼a simetric¼a
f : E � E � :::� E ! R se numeşte :

� pozitiv¼a (sau pozitiv semide�nit¼a) şi se scrie f � 0 def, pentru orice x 2 E

f (x; x; :::; x) � 0.

� negativ¼a (sau negativ semide�nit¼a) şi se scrie f � 0 def, �f este pozitiv¼a
, pentru orice x 2 E

f (x; x; :::; x) � 0.

� strict pozitiv¼a (sau pozitiv de�nit¼a) şi se scrie f > 0 def, exist¼a � > 0 astfel
încât pentru orice x 2 E

f (x; x; :::; x) � � kxk2p .

� strict negativ¼a (sau negativ de�nit¼a) şi se scrie f < 0
def, �f este strict

pozitiv¼a , exist¼a � > 0 astfel încât pentru orice x 2 E

f (x; x; :::; x) � �� kxk2p .

� nede�nit¼a def, exist¼a x; y 2 E, x 6= 0; y 6= 0 astfel încât

f (x; x; :::; x) > 0 şi f (y; y; :::; y) < 0.

Dac¼a E = R, atunci

f (x; x; :::; x) = x2pf (1; 1; :::; 1)

şi ca urmare în acest caz f � 0 (respectiv, f � 0, f > 0, f <
0) , f (1; 1; :::; 1) � 0 (respectiv, f (1; 1; :::; 1) � 0, f (1; 1; :::; 1) > 0,
f (1; 1; :::; 1) < 0).
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Dac¼a E este spa̧tiu liniar �nit dimensional atunci o aplica̧tie 2p-liniar¼a
simetric¼a f : E�E� :::�E ! R este pozitiv de�nit¼a,pentru orice x 2 E,
x 6= 0

f (x; x; :::; x) > 0.

Într-adev¼ar, în cazul �nit dimensional orice aplica̧tie multiliniar¼a este continu¼a.Fie

S (0; 1) = fx 2 E : kxk = 1g

Muļtimea S (0; 1) �ind o submuļtime închis¼a şi m¼arginit¼a a spa̧tiului normat
�nit dimensional E, este compact¼a. Funçtia f �ind continu¼a, rezult¼a c¼a
f jS(0;1) î̧si atinge extremele pe muļtimea compact¼a S (0; 1). Aşadar exist¼a
u 2 S (0; 1) astfel încât pentru orice v 2 S (0; 1) avem

f (u; u; :::; u) � f (v; v; :::; v) .

Not¼am � = f (u; u; :::; u) şi observ¼am c¼a dac¼a x 2 E, x 6= 0, atunci 1
kxkx 2

S (0; 1) şi în conseciņt¼a

� � f

�
1

kxkx;
1

kxkx:::;
1

kxkx
�

� � 1

kxk2p
f (x; x:::; x)

� kxk2p � f (x; x; :::; x) .

În cazul p = 1, aplica̧tia 2p-liniar¼a (biliniar¼a) f � 0, respectiv, f � 0,
f > 0, f < 0, nede�nit¼a, forma p¼atratic¼a (polinomul omogen de grad 2)
asociat¼a Q : E ! R, Q (x) = f (x; x) este pozitiv semide�nit¼a (Q (x) � 0
pentru orice x 2 E), respectivQ este negativ semide�nit¼a (Q (x) � 0 pentru
orice x 2 E), Q este pozitiv de�nit¼a (Q (x) > 0 pentru orice x 2 E nf0g), Q
este negativ de�nit¼a (Q (x) < 0 pentru orice x 2 E n f0g), Q este nede�nit¼a
(exist¼a x; y 2 E n f0g astfel încât Q (x) > 0 şi Q (y) < 0 ).
Dac¼a se �xeaz¼a o baz¼a fe1; e2; :::; eng pe spa̧tiul �nit dimensional E,

atunci oric¼arei aplica̧tii 2p-liniar¼a (biliniar¼a) f : E � E ! R i se poate
asocia o matrice Af = (aij)1�i;j�n :

aij = f (ei; ej) , 1 � i; j � n.
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Pentru orice x =
nP
i=1

xiei, y =
nP
i=1

yiei 2 E avem

f (x; y) = f

 
nP
i=1

xiei;
nP
j=1

yjej

!
=

nP
i=1

nP
j=1

xiyjf (ei; ej)

=
nP
i=1

nP
j=1

xiyjaij

sau sub form¼a matriceal¼a

f (x; y) =
�
x1 x2 ::: xn

�0BB@
a11 a12 ::: a1n
a21 a22 ::: a2n
::: ::: ::: :::
an1 an2 ::: ann

1CCA
0BB@
y1
y2
:::
yn

1CCA
Reciproc oric¼arei matrice A = (aij)1�i;j�n i se poate asocia o aplica̧tie
biliniar¼a fA : E � E ! R de�nit¼a prin

fA (x; y) =
nP
i=1

nP
j=1

xiyjaij

pentru orice x =
nP
i=1

xiei, y =
nP
i=1

yiei 2 E. Aplica̧tiile

f 7! Af [: L2 (E;R)!Mn;n (R)] şi A 7! fA [:Mn;n (R)! L2 (E;R)]

sunt inverse una celeilalte. Aşadar exist¼a o corespondeņt¼a bijectiv¼a între
L2 (E;R) şi Mn;n (R) (unde n este dimensiunea lui E). Aplica̧tia biliniar¼a
f : E � E ! R este simetric¼a dac¼a şi numai dac¼a matricea asociat¼a Af =
(aij)1�i;j�n este simetric¼a, adic¼a

aij = aji pentru orice 1 � i; j � n.

O matrice simetric¼a A = (aij)1�i;j�n 2Mn;n (R) se numeşte :

� pozitiv semide�nit¼a def, pentru orice x = (x1; x2; :::; xn) 2 Rn

xAxt � 0.
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� negativ semide�nit¼a def, �A este pozitiv semide�nit¼a , pentru orice x =
(x1; x2; :::; xn) 2 Rn

xAxt � 0.

� pozitiv de�nit¼a def, pentru orice x = (x1; x2; :::; xn) 2 Rn n f0g

xAxt > 0.

� negativ de�nit¼a def, �A este pozitiv de�nit¼a, pentru orice x = (x1; x2; :::; xn) 2
Rn n f0g

xAxt < 0.

� nede�nit¼a def, exist¼a x; y 2 Rn n f0g astfel încât

xAxt > 0 şi xAxt < 0

Aplica̧tia biliniar¼a simetric¼a f � 0 (respectiv, f � 0, f > 0, f < 0,
nede�nit¼a) , matricea asociat¼a Af = (aij)1�i;j�n este pozitiv semide�nit¼a
(respectiv Af este negativ semide�nit¼a , Af este pozitiv de�nit¼a, Af este
negativ de�nit¼a, Af este nede�nit¼a).

Teorema 5.8.3 (Criteriul lui Sylvester) Fie A = (aij)1�i;j�n 2Mn:n (R)
o matrice simetric¼a cu proprietatea c¼a minorii principali

�k =

��������
a11 a12 ::: a1k
a21 a22 ::: a2k
::: ::: ::: :::
ak1 ak2 ::: akk

�������� , k 2 f1; 2; :::; ng
sunt nenuli.

1. Dac¼a �1 > 0, �2 > 0, :::, �n > 0, atunci A este pozitiv de�nit¼a.

2. Dac¼a �1 < 0, �2 > 0, �3 < 0, :::, (�1)n�n > 0, atunci A este
negativ de�nit¼a.

3. Dac¼a toţi minorii principali sunt nenuli şi nu respect¼a nici condiţia
de la punctul 1, nici pe cea de la 2, atunci A este nede�nit¼a.
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O alt¼a caracterizare a faptului c¼a o matrice este pozitiv/negativ de�nit¼a
poate � dat¼a în termeni de valori proprii (se numeşte valoare proprie a
matricei A 2 Mn:n (R) o r¼ad¼acin¼a a ecua̧tiei det (�In � A) = 0). Pentru
orice matrice simetric¼a A 2 Mn:n (R), toate cele n r¼ad¼acini ale ecua̧tiei
det (�In � A) = 0 (adic¼a valorile proprii ale lui A) sunt reale.

Teorema 5.8.4 Fie A = (aij)1�i;j�n 2 Mn:n (R) o matrice simetric¼a şi �e
�1, �2, :::, �n valorile proprii ale lui A.

1. Dac¼a �1 � 0, �2 � 0, :::, �n � 0, atunci A este pozitiv semide�nit¼a.

2. Dac¼a �1 > 0, �2 > 0, :::, �n > 0, atunci A este pozitiv de�nit¼a.

3. Dac¼a �1 � 0, �2 � 0, :::, �n � 0, atunci A este negativ semide�nit¼a.

4. Dac¼a �1 < 0, �2 < 0, :::, �n > 0, atunci A este negativ de�nit¼a.

5. Dac¼a exist¼a i; j 2 f1; 2; ::; ng astfel încât �i > 0 şi �j < 0, atunci A
este nede�nit¼a.

Observa̧tia 5.8.5 Fie n un num¼ar natural par şi A = (aij)1�i;j�n 2Mn:n (R)
o matrice simetric¼a. Dac¼a det (A) < 0, atunci A este nede�nit¼a. Într-
adev¼ar, dac¼a �1, �2, :::, �n sunt valorile proprii ale lui A, adic¼a r¼ad¼acinile
ecuaţiei det (�In � A) = 0 echivalent¼a cu

�n � (a11 + a22 + :::+ ann)�n�1 + :::+ (�1)n det (A) = 0,

atunci �1�2 :::�n = det (A) < 0. Ca urmare �1, �2, :::, �n sunt toate nenule
şi nu pot avea toate acelaşi semn. Deci A este nede�nit¼a.

Teorema 5.8.6 (Condi̧tii necesare de minim) Fie E un spaţiu normat
real, A � E o muţime deschis¼a, a 2 A şi f : A ! R o funcţie de p-ori
diferenţiabil¼a în a (p � 1) astfel încât

dfa = 0, d2fa = 0, :::, dp�1fa = 0 şi dpfa 6= 0.

Dac¼a a este punct de minim local pentru f , atunci

1. p par
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2. dpfa � 0 (aplicaţia p-liniar¼a simetric¼a dpfa este pozitiv semide�nit¼a).

Demonstra̧tie. Deoarece a este punct de minim local pentru f , exist¼a o
vecin¼atate V � A a lui a astfel încât pentru orice x 2 V s¼a avem

f (a) � f (x) .

Aplicând formula Taylor funçtiei f în punctul a, rezult¼a c¼a exist¼a o funçtie
Rn (f; a) : A! R astfel încât pentru orice x 2 A

f (x) = Tp (f; a) (x) +Rp (f; a) (x) ;

şi

lim
x!a

1

kx� akpRp (f; a; x) = 0,

unde

Tp (f; a) (x) = f (a) +
1

1!
dfa (x� a) + :::+

1

p!
dpfa (x� a; x� a; :::; x� a)

= f (a) +
1

p!
dpfa (x� a; x� a; :::; x� a) .

Presupunem prin absurd c¼a p este impar. Fie v0 2 E, astfel încât

dpfa (v0; v0; :::; v0) 6= 0.

Deoarece dpfa (�v0;�v0; :::;�v0) = (�1)p dpfa (v0; v0; :::; v0), rezult¼a c¼a, eventual
înlocuind v0 cu �v0, putem presupune dpfa (v0; v0; :::; v0) > 0. Deoarece

lim
x!a

1

kx� akpRp (f; a; x) = 0

exist¼a o vecin¼atate U0 a lui a astfel încât U0 � V şi pentru orice x 2 U0,
x 6= a s¼a avem

1

kx� akp jRp (f; a; x)j <
1

2p! kv0k
dpfa (v0; v0; :::; v0) (5.1)

Fie r0 > 0 astfel încât pentru orice t 2 (�r0; r0) s¼a avem

a+ tv0 2 U0 � V � A.
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Înlocuind în formula Taylor x cu a+ tv0 cu t 2 (�r0; 0), ob̧tinem

f (a+ tv0)� f (a)

=
1

p!
tpdpfa (v0; v0; :::; v0) +Rp (f; a) (a+ tv0)

<
(5:1)

1

p!
tpdpfa (v0; v0; :::; v0) + ktv0kp

1

2p! kv0k
dpfa (v0; v0; :::; v0)

=
tp

2p!
dpfa (v0; v0; :::; v0)

�
2 +

�
jtj
t

�p�
.

=
tp

2p!
dpfa (v0; v0; :::; v0)

< 0,

ceea ce contrazice f (a+ tv0) � f (a). În conseciņt¼a, p este par.
Presupunem prin absurd c¼a exist¼a v 2 E astfel încât

dpfa (v; v; :::; v) < 0.

Deoarece

lim
x!a

1

kx� akpRp (f; a; x) = 0

exist¼a o vecin¼atate U1 a lui a astfel încât U1 � V şi pentru orice x 2 U1,
x 6= a s¼a avem

1

kx� akp jRp (f; a; x)j < �
1

2p! kvkd
pfa (v; v; :::; v) (5.2)

Fie r > 0 astfel încât pentru orice t 2 (�r; r) s¼a avem

a+ tv 2 U1 � V � A.
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Înlocuind în formula Taylor x cu a+ tv cu t 2 (�r; r) n f0g, ob̧tinem

f (a+ tv)� f (a) =
1

p!
tpdpfa (v; v; :::; v) +Rp (f; a) (a+ tv)

<
(5:2)

1

p!
tpdpfa (v; v; :::; v)� ktvkp

1

2p! kvkd
pfa (v; v; :::; v)

=
tp

2p!
dpfa (v0; v0; :::; v0)

�
2 +

�
jtj
t

�p�
.

=
3tp

2p!
dpfa (v; v; :::; v)

< 0,

ceea ce contrazice f (a+ tv) � f (a). Ca urmare dpfa (v; v; :::; v) � 0 pentru
orice v 2 E.

Observa̧tia 5.8.7 Dac¼a dfa = 0, d2fa = 0, :::, dp�1fa = 0 şi exist¼a v 2 E
astfel încât dpfa (v; v; :::; v) < 0, atunci a nu este punct de minim local
pentru f .

Teorema 5.8.8 (Condi̧tii necesare de maxim) Fie E un spaţiu normat
real, A � E o muţime deschis¼a, a 2 A şi f : A ! R o funcţie de p-ori
diferenţiabil¼a în a (p � 1) astfel încât

dfa = 0, d2fa = 0, :::, dp�1fa = 0 şi dpfa 6= 0.

Dac¼a a este punct de maxim local pentru f , atunci

1. p par

2. dpfa � 0 (aplicaţia p-liniar¼a simetric¼a dpfa este negativ semide�nit¼a).

Demonstra̧tie. Se aplic¼a teorema 5.8.6 funçtiei �f .

Observa̧tia 5.8.9 Dac¼a dfa = 0, d2fa = 0, :::, dp�1fa = 0 şi exist¼a v 2 E
astfel încât dpfa (v; v; :::; v) > 0, atunci a nu este punct de maxim local
pentru f . Dac¼a în plus, exist¼a u 2 E astfel încât dpfa (u; u; :::; u) < 0 (dpf
este nede�nit¼a), atunci a nu este punct de extrem local pentru f .
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Teorema 5.8.10 (Condi̧tii su�ciente de extrem) Fie E un spaţiu normat
real, A � E o muţime deschis¼a, a 2 A şi f : A ! R o funcţie de p-ori
diferenţiabil¼a în a, p > 1 par astfel încât

dfa = 0, d2fa = 0, :::, dp�1fa = 0 şi dpfa 6= 0.

1. Dac¼a dpfa > 0 (aplicaţia p-liniar¼a simetric¼a dpfa este pozitiv de�nit¼a),
atunci a este punct de minim local pentru f .

2. Dac¼a dpfa < 0 (aplicaţia p-liniar¼a simetric¼a dpfa este negativ de�nit¼a),
atunci a este punct de maxim local pentru f .

Demonstra̧tie. Aplicând formula Taylor funçtiei f în punctul a, rezult¼a
c¼a exist¼a o funçtie Rn (f; a) : A! R astfel încât pentru orice x 2 A

f (x) = Tp (f; a) (x) +Rp (f; a) (x) ;

şi

lim
x!a

1

kx� akpRp (f; a) (x) = 0,

unde

Tp (f; a) (x) = f (a) +
1

1!
dfa (x� a) + :::+

1

p!
dpfa (x� a; x� a; :::; x� a)

= f (a) +
1

p!
dpfa (x� a; x� a; :::; x� a) .

1: Dac¼a dpfa > 0, rezult¼a c¼a exist¼a � > 0 astfel încât

dpfa (x� a; x� a; :::; x� a) � � kx� akp (5.3)

Deoarece

lim
x!a

1

kx� akpRp (f; a) (x) = 0

exist¼a o vecin¼atate V a lui a astfel încât V � A şi pentru orice x 2 V , x 6= a
s¼a avem

1

kx� akp jRp (f; a) (x)j <
�

2p!
. (5.4)
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Ca urmare pentru orice x 2 V , x 6= a avem

f (x)� f (a) =
1

p!
dpfa (x� a; x� a; :::; x� a) +Rp (f; a) (x)

�
(5:3)

�

p!
kx� akp +Rp (f; a) (x)

>
(5:4)

�

p!
kx� akp � �

2p!
kx� akp

=
�

2p!
kx� akp

> 0.

În conseciņt¼a, a este punct de minim local pentru f .
2: Dac¼a dpfa < 0, se aplic¼a ra̧tionamentul de la 1 funçtiei �f .

De�ni̧tia 5.8.11 Fie E un spaţiu normat real, A � E o muţime deschis¼a
şi f : A ! R o funcţie. Un punct a 2 A în care f este diferenţiabil¼a se

numeşte punct critic sau punct staţionar
def, dfa = 0.

Corolarul 5.8.12 (Teorema lui Fermat) Fie E un spaţiu normat real,
A � E o muţime deschis¼a, a 2 A şi f : A! R o funcţie diferenţiabil¼a în a.
Dac¼a a este punct de extrem local pentru f , atunci a este punct staţionar.

Demonstra̧tie. Este o conseciņt¼a direct¼a a teoremelor 5.8.6 şi 5.8.8:

Corolarul 5.8.13 Fie A � Rn o muţime deschis¼a, a 2 A şi f : A! R

(x1; x2; :::; xn)
f7! f (x1; x2; :::; xn)

o funcţie diferenţiabil¼a în a. Dac¼a a este punct de extrem local pentru f ,
atunci a este punct staţionar sau echivalent soluţie a sistemului8>>><>>>:

@f
@x1
(x1; x2; :::; xn) = 0

@f
@x2
(x1; x2; :::; xn) = 0

:::::::::::::::::::::::
@f
@xn

(x1; x2; :::; xn) = 0
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Demonstra̧tie. Conform teoremelor 5.8.6 şi 5.8.8, dfa = 0 şi cum

dfa =
nP
k=1

@f

@xk
(a) dxk

rezult¼a @f
@xk
(a) = 0 pentru orice k 2 f1; 2; :::; ng.

De�ni̧tia 5.8.14 Fie A � Rn o muţime deschis¼a, a 2 A şi f : A! R

(x1; x2; :::; xn)
f7! f (x1; x2; :::; xn)

o funcţie de dou¼a ori diferenţiabil¼a în a. Se numeşte hessiana funcţiei f în
punctul a şi se noteaz¼a cu Hf (a) matricea

Hf (a) =

0BBBB@
@2f
@x21
(a) @2f

@x1@x2
(a) ::: @2f

@x1@xn
(a)

@2f
@x2@x1

(a) @2f
@x22
(a) ::: @2f

@x2@xn
(a)

::: ::: ::: :::
@2f

@xn@x1
(a) @2f

@xn@x2
(a) ::: @nf

@x2n
(a)

1CCCCA
Este uşor de observat c¼a hessiana Hf (a) este matricea asociat¼a lui d2fa

în baza canonic¼a fe1; e2; :::; eng de pe Rn:

Hf (a)ij =
@2f

@xi@xj
(a) = d2fa (ei; ej) .

Corolarul 5.8.15 Fie A � Rn o muţime deschis¼a, a 2 A şi f : A! R

(x1; x2; :::; xn)
f7! f (x1; x2; :::; xn)

o funcţie de dou¼a ori diferenţiabil¼a în a. Presupunem c¼a a este punct
staţionar pentru f .

1. Dac¼a hessiana Hf (a) este pozitiv de�nit¼a, atunci a este punct de
minim local.

2. Dac¼a hessiana Hf (a) este negativ de�nit¼a, atunci a este punct de
maxim local.
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3. Dac¼a hessianaHf (a) este nede�nit¼a, atunci a nu este punct de extrem
local.

Demonstra̧tie. 1: şi 2. sunt conseciņte ale teoremei şi 5.8.10:
3: este conseciņt¼a a teoremelor 5.8.6 şi 5.8.8.

Corolarul 5.8.16 Fie A � R2 o muţime deschis¼a, a 2 A şi f : A! R

(x; y)
f7! f (x; y)

o funcţie de dou¼a ori diferenţiabil¼a în a. Presupunem c¼a a este punct
staţionar pentru f (adic¼a @f

@x
(a) = 0 şi @f

@y
(a) = 0) şi not¼am

� = det (Hf (a)) =

����� @2f
@x2
(a) @2f

@x@y
(a)

@2f
@y@x

(a) @2f
@y2
(a)

�����
=

@2f

@x2
(a)

@2f

@y2
(a)�

�
@2f

@x@y
(a)

�2
1. Dac¼a @2f

@x2
(a) > 0 şi � > 0, atunci a este punct de minim local.

2. Dac¼a @2f
@x2
(a) < 0 şi � > 0, atunci a este punct de maxim local.

3. � < 0, atunci a nu este punct de extrem local.

Demonstra̧tie. 1: şi 2. sunt conseciņte ale teoremei 5.8.10 şi a caracteriz¼arii
faptului c¼a Hf (a) este pozitiv/negativ de�nit¼a conform teoremei 5.8.3.
3. Se ţine cont de teoremele 5.8.6 şi 5.8.8 şi observa̧tia 5.8.5.

Exemplul 5.8.17 Detemin¼am punctele de extrem local ale funcţiei f : R2n
f(0; 0)g ! R, f (x; y) = xy ln (4x2 + y2).
Pasul 1: Determin¼am punctele staţionare (critice) ale funcţiei f , adic¼a

soluţiile sistemului � @f
@x
(x; y) = 0

@f
@y
(x; y) = 0

15
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Pentru aceasta calcul¼am derivatele parţiale de ordinul I:

@f

@x
(x; y) = y ln

�
4x2 + y2

�
+ xy

8x

4x2 + y2

= y ln
�
4x2 + y2

�
+

8x2y

4x2 + y2

@f

@y
(x; y) = x ln

�
4x2 + y2

�
+ xy

2y

4x2 + y2

= x ln
�
4x2 + y2

�
+

2xy2

4x2 + y2� @f
@x
(x; y) = 0

@f
@y
(x; y) = 0

,
(
y ln (4x2 + y2) + 8x2y

4x2+y2
= 0

x ln (4x2 + y2) + 2xy2

4x2+y2
= 0

Dac¼a y = 0, atunci x 6= 0 şi înlocuid în a doua ecuaţie obţinem ln (4x2) = 0,
de unde rezult¼a 4x2 = 1 şi deci x 2

�
�1
2
; 1
2

	
. Deci obţinem punctele

staţionare a1 =
�
�1
2
; 0
�
şi a2 =

�
1
2
; 0
�
.

Dac¼a x = 0, atunci y 6= 0 şi înlocuid în prima ecuaţie obţinem ln (y2) =
0, de unde rezult¼a y2 = 1 şi deci y 2 f�1; 1g. Deci obţinem înc¼a dou¼a
punctele staţionare a3 = (0;�1) şi a4 = (0; 1).
Dac¼a x 6= 0 şi y 6= 0, sistemul este echivalent cu(

ln (4x2 + y2) + 8x2

4x2+y2
= 0

ln (4x2 + y2) + 2y2

4x2+y2
= 0

,
(
ln (4x2 + y2) = � 8x2

4x2+y2

ln (4x2 + y2) = � 2y2

4x2+y2

de unde rezult¼a 8x2 = 2y2, 4x2 = y2 şi înlocuind în prima ecuaţie obţinem

ln
�
4x2 + 4x2

�
= � 8x2

4x2 + 4x2

ln
�
8x2
�
= �1

8x2 = e�1

x = � 1

2
p
2e

Deci obţinem înc¼a patru puncte staţionare a5 =
�
� 1
2
p
2e
;� 1p

2e

�
, a6 =�

� 1
2
p
2e
; 1p

2e

�
, a7 =

�
1

2
p
2e
;� 1p

2e

�
şi a8 =

�
1

2
p
2e
; 1p

2e

�
.
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Pasul 2: În �ecare punct staţionar a calcul¼am hessiana

Hf (a) =

 
@2f
@x2
(a) @2f

@x@y
(a)

@2f
@y@x

(a) @2f
@y2
(a)

!

Pentru aceasta calcul¼am derivatele parţiale de ordinul 2:

@2f

@x2
(x; y) =

@

@x

�
@f

@x

�
= y

8x

4x2 + y2
+ 8y

2x (4x2 + y2)� x28x
(4x2 + y2)2

=
8xy

4x2 + y2
+

16xy3

(4x2 + y2)2

=
8xy (4x2 + y2 + 2y2)

(4x2 + y2)2

=
8xy (4x2 + 3y2)

(4x2 + y2)2

@2f

@y2
(x; y) =

@

@y

�
@f

@y

�
= x

2y

4x2 + y2
+ 2x

2y (4x2 + y2)� y22y
(4x2 + y2)2

=
2xy

4x2 + y2
+ 4xy

4x2

(4x2 + y2)2

= 2xy
4x2 + y2 + 8x2

(4x2 + y2)2

= 2xy
12x2 + y2

(4x2 + y2)2

17
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@2f

@x@y
(x; y) =

@

@x

�
@f

@y

�
= ln

�
4x2 + y2

�
+ x

8x

4x2 + y2
+ 2y2

4x2 + y2 � x8x
(4x2 + y2)2

= ln
�
4x2 + y2

�
+

8x2

4x2 + y2
+ 2y2

y2 � 4x2

(4x2 + y2)2

= ln
�
4x2 + y2

�
+ 2

16x4 + y4

(4x2 + y2)2

Deci

Hf (x; y) =

0@ 8xy(4x2+3y2)
(4x2+y2)2

ln (4x2 + y2) + 2 16x4+y4

(4x2+y2)2

ln (4x2 + y2) + 2 16x4+y4

(4x2+y2)2
2xy 12x2+y2

(4x2+y2)2

1A
Pasul 3: Studiul hessianei Hf în �ecare punct staţionar:

Hf (a1) = Hf

�
�1
2
; 0

�
=

�
0 2
2 0

�

Avem �2 =

���� 0 2
2 0

���� = �4 < 0. Deci a1 nu este punct de extrem local.

Analog deoarece

Hf

�
1

2
; 0

�
= Hf (0;�1) = Hf (0; 1) =

�
0 2
2 0

�
punctele a2 =

�
1
2
; 0
�
, a3 = (0;�1), a4 = (0; 1) nu sunt puncte de extrem

local.

Hf (a5) = Hf

�
� 1

2
p
2e
;� 1p

2e

�
=

�
4 0
0 4

�
Avem �1 = 4 > 0, �2 =

���� 4 0
0 4

���� = 16 > 0. Deci Hf (a5) este pozitiv

de�nit¼a şi ca urmare a5 =
�
� 1
2
p
2e
;� 1p

2e

�
este punct de minim local. Analog

deoarece

Hf (a8) = Hf

�
1

2
p
2e
;
1p
2e

�
=

�
4 0
0 4

�
18
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punctul a8 =
�

1
2
p
2e
; 1p

2e

�
este punct de minim local.

Hf (a6) = Hf

�
� 1

2
p
2e
;
1p
2e

�
=

�
�4 0
0 �4

�

Avem �1 = �4 < 0, �2 =

���� �4 0
0 �4

���� = 16 > 0. Deci Hf (a6) este negativ
de�nit¼a şi ca urmare a6 =

�
� 1
2
p
2e
; 1p

2e

�
este punct de maxim local. Analog

deoarece

Hf (a7) = Hf

�
1

2
p
2e
;� 1p

2e

�
=

�
�4 0
0 �4

�
punctul a7 =

�
1

2
p
2e
;� 1p

2e

�
este punct de maxim local.

Exemplul 5.8.18 Detemin¼am punctele de extrem local ale funcţiei

f :
�
(x; y; z) 2 R3 : x > 0; y > 0; z > 0

	
! R

de�nit¼a prin

f (x; y; z) =
1

x
+
x

y
� y
z
� z

16

pentru orice (x; y; z) 2 f(x; y; z) 2 R3 : x > 0; y > 0; z < 0g.
Pasul 1: Determin¼am punctele staţionare (critice) ale funcţiei f , adic¼a

soluţiile sistemului 8<:
@f
@x
(x; y; z) = 0

@f
@y
(x; y; z) = 0

@f
@z
(x; y; z) = 0

Pentru aceasta calcul¼am derivatele parţiale de ordinul 1:

@f

@x
(x; y; z) = � 1

x2
+
1

y
@f

@y
(x; y; z) = � x

y2
� 1
z

@f

@z
(x; y; z) =

y

z2
� 1

16
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@f
@x
(x; y; z) = 0

@f
@y
(x; y; z) = 0

@f
@z
(x; y; z) = 0

,

8<:
� 1
x2
+ 1

y
= 0

� x
y2
� 1

z
= 0

y
z2
� 1

16
= 0

Din prima ecuaţie rezult¼a y = x2, şi înlocuind în a doua ecuaţie obţinem

� 1
x3
� 1
z
= 0

z = �x3.

Înlocuind y = x2 şi z = �x3 în a treia ecuaţie rezult¼a

x2

x6
� 1

16
= 0

x = 2 (x > 0)

Deci y = 4 şi z = �8. Aşadar funcţia f are un singur punct staţionar:
a = (2; 4;�8).
Pasul 2: În �ecare punct staţionar a calcul¼am hessiana

Hf (a) =

0B@
@2f
@x2
(a) @2f

@x@y
(a) @2f

@x@z
(a)

@2f
@y@x

(a) @2f
@y2
(a) @2f

@y@z
(a)

@2f
@z@x

(a) @2f
@z@y

(a) @2f
@z2
(a)

1CA
Pentru aceasta calcul¼am derivatele parţiale de ordinul 2:

@2f

@x2
(x; y) =

@

@x

�
@f

@x

�
=
@

@x

�
� 1
x2
+
1

y

�
=

2

x3

@2f

@y2
(x; y) =

@

@y

�
@f

@y

�
=
@

@y

�
� x
y2
� 1
z

�
=

2x

y3

@2f

@z2
(x; y) =

@

@z

�
@f

@z

�
=
@

@z

�
y

z2
� 1

16

�
= �2y

z3

20
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@2f

@x@y
(x; y) =

@

@x

�
@f

@y

�
=
@

@x

�
� x
y2
� 1
z

�
= � 1

y2

@2f

@x@z
(x; y) =

@

@x

�
@f

@z

�
=
@

@x

�
y

z2
� 1

16

�
= 0

@2f

@y@z
(x; y) =

@

@y

�
@f

@z

�
=
@

@y

�
y

z2
� 1

16

�
=

1

z2

Deci

Hf (x; y; z) =

0@ 2
x3

� 1
y2

0

� 1
y2

2x
y3

1
z2

0 1
z2

�2y
z3

1A
şi ca urmare

Hf (a) = Hf (2; 4;�8) =

0@ 1
4

� 1
16

0
� 1
16

1
16

1
64

0 1
64

1
64

1A
Pasul 3: Studiul hessianei Hf în punctul staţionar a: Minorii principali
ai matricei Hf (a) sunt �1 =

1
4
> 0,

�2 =

���� 1
4

� 1
16

� 1
16

1
16

���� = 1

16

�
1

4
� 1

16

�
=

3

162
> 0

şi

�3 =

������
1
4

� 1
16

0
� 1
16

1
16

1
64

0 1
64

1
64

������ =
L2 L2�L3

������
1
4

� 1
16

0
� 1
16

3
64

0
0 1

64
1
64

������
=

1

64
(�1)3+3

���� 1
4

� 1
16

� 1
16

3
64

���� = 1

64

1

(16)2
(3� 1) > 0

Deoarece �1 > 0, �2 > 0 şi �3 > 0, Hf (a) este pozitiv de�nit¼a. În
consecinţ¼a a = (2; 4;�8) este punct de minim local.
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5.9 Extreme condi̧tionate

De�ni̧tia 5.9.1 Fie A o submulţime deschis¼a a lui Rn, f : A! R o funcţie
de clas¼a C1 pe A şi m un num¼ar întreg pozitiv, m � n. Fie

'1; '2; :::; 'm : A! R

m funcţii de clas¼a C1 pe A şi �e

B = fx 2 A : '1(x) = 0; '2(x) = 0; :::; 'm(x) = 0g .

Un punct a 2 B se numeşte punct de extrem (respectiv, minim, maxim)

local condiţionat al funcţiei f
def, a este punct de extrem (respectiv, minim,

maxim) local al funcţiei f jB. Funcţiile '1; '2; :::; 'm se numesc leg¼aturi.

Pentru a determina extremele unei funçtii f : A! R de clas¼a C2 pe A
cu leg¼aturile

'1; '2; :::; 'm : A! R

pentru care rangul matricei
�
@'i
@xj
(x)
�
1�i�m
1�j�n

este m pentru orice x 2 A se

parcurg urm¼atorii paşi:

Pasul 1: Se determin¼a � = (�1; �2; :::; �m) 2 Rm şi punctele sta̧tionare ale
funçtiei F : A! R, de�nit¼a prin

F (x) = f (x) + �1'1 (x) + �2'1 (x) + :::+ �m'm (x)

pentru orice x 2 A, adic¼a se rezolv¼a sistemul8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

@f
@x1
(x1; x2; :::; xn) +

nP
i=1

�i
@'i
@x1
(x1; x2; :::; xn) = 0

@f
@x2
(x1; x2; :::; xn) +

nP
i=1

�i
@'i
@x2
(x1; x2; :::; xn) = 0

::::::::::::::::::::::::::::::::::::::::

@f
@xn

(x1; x2; :::; xn) +
nP
i=1

�i
@'i
@xn

(x1; x2; :::; xn) = 0

'1 (x1; x2; :::; xn) = 0
'2 (x1; x2; :::; xn) = 0

::::::::::::::::::::::::::::::::::::::::::
'm (x1; x2; :::; xn) = 0
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cu necunoscutele x1; x2; :::; xn; �1; �2; :::; �m. Numerele reale �1; �2; :::; �m
se numesc multiplicatori Lagrange, iar funçtia

(x; �) 7! f (x) + �1'1 (x) + �1'1 (x) + :::+ �m'm (x)

funçtia Lagrange.

Pasul 2: Se calculeaz¼a difereņtiala de ordinul 2 a lui F în a

d2Fa =
nP
i=1

@2F

@x2i
(a) dx2i + 2

P
1�i<j�n

@2F

@xi@xj
(a) dxidxj

Pasul 3: Se difereņtiaz¼a rela̧tiile 'i (x) = 0 în a şi se ob̧tine sistemul

nP
j=1

@'i
@xj

(a) dxj = 0 1 � i � n.

privit formal ca un sistem liniar în necunoscutele dx1, dx2, :::, dxn.
Deoarece rangul matricei

�
@'i
@xj
(a)
�
1�i�m
1�j�n

este m, m necunoscute sunt

pricipale şi n � m sunt secundare. Eventual renumerotând putem
presupune c¼a dx1, dx2, :::, dxn�m sunt necunoscute secundare, iar
dxn�m+1, dxn�m+2, :::, dxn principale. Ca urmare dxn�m+1, dxn�m+2,
:::, dxn pot �exprimate în funçtie de dx1, dx2, :::, dxn�m. Înlocuindu-
le în d2Fa se ob̧tine

d2Fa =
P

1�i;j�n�m
aijdxidxj

Pasul 4: Se studiaz¼a matricea A = (aij)1�i;j�n�m ob̧tinut¼a la pasul 3.

1. Dac¼a A este pozitiv de�nit¼a, atunci a este punct de minim local
condi̧tionat.

2. Dac¼a A este negativ de�nit¼a, atunci a este punct de manim local
condi̧tionat.

3. Dac¼a A este nede�nit¼a, atunci a nu este punct de extrem local
condi̧tionat.
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Exemplul 5.9.2 S¼a se determine punctele de extrem local condiţionat ale
funcţiei f : f(x; y; z) 2 R3 : xy < 0 şi xz > 0g ! R, f (x; y; z) = xyz pentru
orice (x; y; z) 2 R3, xy < 0, cu leg¼aturile x2 + y2 + z2 = 1 şi x+ y + z = 0.
R: Fie F : f(x; y; z) 2 R3 : xy < 0 şi xz > 0g ! R, de�nit¼a prin

F (x) = xyz + �1
�
x2 + y2 + z2 � 1

�
+ �2 (x+ y + z)

Pasul 1: Determin¼am punctele staţionare (critice) ale funcţiei F ,ce satisfac
leg¼aturile adic¼a soluţiile din f(x; y; z) 2 R3 : xy < 0 şi xz > 0g ale sistemului8>>>><>>>>:

@F
@x
(x; y; z) = 0

@F
@y
(x; y; z) = 0

@F
@z
(x; y; z) = 0

x2 + y2 + z2 � 1 = 0
x+ y + z = 0

Pentru aceasta calcul¼am derivatele parţiale de ordinul 1:

@F

@x
(x; y; z) = yz + 2�1x+ �2

@F

@y
(x; y; z) = xz + 2�1y + �2

@F

@z
(x; y; z) = xy + 2�1z + �28>>>><>>>>:

@F
@x
(x; y; z) = 0

@F
@y
(x; y; z) = 0

@F
@z
(x; y; z) = 0

x2 + y2 + z2 � 1 = 0
x+ y + z = 0

,

8>>>><>>>>:
yz + 2�1x+ �2 = 0
xz + 2�1y + �2 = 0
xy + 2�1z + �2 = 0
x2 + y2 + z2 � 1 = 0
x+ y + z = 0

Avem xy + xz + yz =
(x+y+z)2�(x2+y2+z2)

2
= �1

2
. În plus, adunând primele

trei ecuaţii şi ţinând cont c¼a x + y + z = 0, obţinem �2 =
1
6
. Înmulţinând

prima ecuaţie cu x, a doua cu y, a treia cu z şi adunându-le, obţinem
3xyz + 2�1 = 0. Pe de alt¼a parte înmulţinând prima ecuaţie cu yz, a doua
cu xz, a treia cu xy, adunându-le şi ţinând cont c¼a (xy)2+ (xz)2+ (yz)2 =
(xy + xz + yz)2 � 2xyz (x+ y + z) = 1

4
obţinem 1

4
+ 6�1xzy � 1

2
�2 = 0. Ca
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urmare 4�21 =
1
6
, de unde obţinem �1 2

n
�
p
6
12
;
p
6
12

o
şi corespunz¼atorxyz 2np

6
18
;�
p
6
18

o
. Aşadar x,y,z sunt r¼ad¼acinile ecuaţiei în t:

t3 � (x+ y + z) t2 + (xy + xz + yz) t� xyz = 0

Dac¼a �1 = �
p
6
12
ecuaţia devine t3 � 1

2
t �

p
6
18
= 0 , 18t3 � 9t �

p
6 = 0 ,�

t+
p
6
6

� �
18t2 � 3

p
6t�

p
6
�
= 0. Deci are r¼ad¼acinile t1 = �

p
6
6
, t2 =

p
6
3

şi t3 = �
p
6
6
. Deoarece xy < 0 şi xz > 0, obţinem punctul staţionar a1 =�

�
p
6
6
;
p
6
3
;�
p
6
6

�
.

Dac¼a �1 =
p
6
12
ecuaţia în t devine t3� 1

2
t+

p
6
18
= 0 , 18t3� 9t+

p
6 = 0

,
�
t�

p
6
6

� �
18t2 + 3

p
6t� 6

�
= 0. Deci are r¼ad¼acinile t1 =

p
6
6
, t2 = �

p
6
3

şi t3 =
p
6
6
. Deoarece xy < 0 şi xz > 0, obţinem punctul staţionar a2 =�p

6
6
;�
p
6
3
;
p
6
6

�
.

Pasul 2: În �ecare punct staţionar a calcul¼am diferenţiala de ordinul 2
a lui F în a:Pentru aceasta calcul¼am derivatele parţiale de ordinul 2:

@2f

@x2
(x; y) =

@

@x

�
@f

@x

�
=
@

@x
(yz + 2�1x+ �2) = 2�1

@2f

@y2
(x; y) =

@

@y

�
@f

@y

�
=
@

@y
(xz + 2�1y + �2) = 2�1

@2f

@z2
(x; y) =

@

@z

�
@f

@z

�
=
@

@z
(xy + 2�1z + �2) = 2�1

@2f

@x@y
(x; y) =

@

@x

�
@f

@y

�
=
@

@x
(xz + 2�1y + �2) = z

@2f

@x@z
(x; y) =

@

@x

�
@f

@z

�
=
@

@x
(xy + 2�1z + �2) = y

@2f

@y@z
(x; y) =

@

@y

�
@f

@z

�
=
@

@y
(xy + 2�1z + �2) = x

Deci

dFa = 2�1dx
2 + 2�1dz

2 + 2�1dz
2 + 2zdxdy + 2ydxdz + 2xdydz.

25



M¼ad¼alina Roxana Buneci

Pasul 3: Se diferenţiaz¼a leg¼aturile în �ecare punct staţionar a = (x; y; z) şi
se obţine sistemul

2xdx+ 2ydy + 2zdz = 0

dx+ dy + dz = 0

Deoarece pentru orice punct staţionar x 6= y şi x = z obţinem dx =
� zdz�ydz

x�y = y�z
x�ydz = �dz şi dy = �

xdz�zdz
x�y = z�x

x�ydz = 0 care înlocuite în
dFa conduc la

dFa = (2�1 + 2�1 + 2y) dz
2 = (4�1 � 2y) dz2

Pasul 4: Studiul A = (4�1 � 2y) pentru �ecare punct staţionar a =
(x; y; z). Pentru �1 = �

p
6
12
avem un singur punct staţionar a1 =

�
�
p
6
6
;
p
6
3
;�
p
6
6

�
,

iar pentru acesta A = �
p
6
3
� 2

p
6
3
< 0 şi ca urmare a1 =

�
�
p
6
6
;
p
6
3
;�
p
6
6

�
este punct de maxim local condiţionat al lui f: Pentru �1 =

p
6
12
avem de

asemenea un singur punct staţionar a2 =
�p

6
6
;�
p
6
3
;
p
6
6

�
, iar în cest caz

A =
p
6
3
+ 2

p
6
3
> 0 şi ca urmare a2 =

�p
6
6
;�
p
6
3
;
p
6
6

�
este punct de minim

local condiţionat al lui f:

Exemplul 5.9.3 S¼a se determine imaginea funcţiei f : D ! R, de�nit¼a
prin

f (x; y) = x2 + y2 � 2x� 4y, (x; y) 2 D,
unde D = f(x; y) : x2 + y2 � 1g.
R: Mulţimea D �ind conex¼a şi f �ind continu¼a, f (D) este conex¼a. Cum

f (D) � R şi f (D) conex¼a, rezult¼a f (D) este interval. Evident capetele
intervalului f (D) sunt inf

x2D
f (x) şi sup

x2D
f (x). Deorece D este o submulţime

închis¼a şi m¼arginit¼a a lui R2, D este compact¼a şi ca urmare funcţia continu¼a
f îşi atinge extremele pe D. Aşadar

f (D) =

�
inf
x2D

f (x) , sup
x2D

f (x)

�
=

�
min
x2D

f (x) ,max
x2D

f (x)

�
.

Determin¼am mai întâi punctele de extrem local ale funcţiei f pe interiorul
mulţimii D şi apoi pe frontiera lui D şi vom compora valorile extreme ale
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funcţiei. Interiorul mulţimii D este mulţimea:

D1 =
�
(x; y) : x2 + y2 < 1

	
.

Determin¼am punctele staţionare (critice) ale funcţiei f pe D1, adic¼a soluţiile
sistemului � @f

@x
(x; y) = 0

@f
@y
(x; y) = 0

Pentru aceasta calcul¼am derivatele parţiale de ordinul 1:

@f

@x
(x; y) =

@

@x

�
x2 + y2 � 2x� 4y

�
= 2x� 2

@f

@y
(x; y) =

@

@x

�
x2 + y2 � 2x� 4y

�
= 2y � 4

� @f
@x
(x; y) = 0

@f
@y
(x; y) = 0

,
�
2x� 2 = 0
2y � 4 = 0 ,

�
x = 1
y = 2

Deoarece x2 + y2 = 12 + 22 = 5 � 1, funcţia f nu are puncte staţionare pe
D1 şi în consecinţ¼a nici puncte de extrem local.
Determin¼am punctele de extrem local ale funcţiei f pe frontiera mulţimii

D, adic¼a pe mulţimea:

D1 =
�
(x; y) : x2 + y2 = 1

	
.

Cu alte cuvinte avem de rezolvat o problem¼a de extreme conţionate. Not¼am
' (x; y) = x2 + y2 � 1 şi de�nim funcţia F : R2 ! R

F (x; y) = f (x; y) + �' (x; y)

= x2 + y2 � 2x� 4y + �
�
x2 + y2 � 1

�
, (x; y) 2 R2

Pasul 1: Determin¼am � 2 R şi punctele staţionare ale funcţiei F : A! R,
adic¼a rezolv¼am sistemul 8<:

@F
@x
(x; y) = 0

@F
@y
(x; y) = 0

' (x; y) = 0
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Pentru aceasta calcul¼am derivatele parţiale de ordinul 1:

@F

@x
(x; y) =

@

@x

�
x2 + y2 � 2x� 4y + �

�
x2 + y2 � 1

��
= 2x� 2 + 2�x

@F

@y
(x; y) =

@

@x

�
x2 + y2 � 2x� 4y + �

�
x2 + y2 � 1

��
= 2y � 4 + 2�y

8<:
@F
@x
(x; y) = 0

@F
@y
(x; y) = 0

' (x; y) = 0

,

8<:
2x� 2 + 2�x = 0
2y � 4 + 2�y = 0
x2 + y2 � 1 = 0

,

8<:
x = 1

�+1

y = 2
�+1

x2 + y2 � 1 = 0

Înlocuind x şi y în ultima ecuaţie obţinem

1 + 4� (�+ 1)2 = 0

�2 + 2�� 4 = 0

�1;2 = �1�
p
5

Pentru �1 = �1 �
p
5 obţinem x1 = �

p
5
5
, y1 = �2

p
5
5
şi punctul staţionar

a1 =
�
�
p
5
5
;�2

p
5
5

�
, iar pentru �2 = �1 +

p
5 obţinem x2 =

p
5
5
, y2 = 2

p
5
5

şi punctul staţionar a2 =
�p

5
5
; 2
p
5
5

�
,

Pasul 2: În �ecare punct staţionar a calcul¼am d2Fa

d2Fa =
@2F

@x2
(a) dx2 + 2

@2F

@x@y
(a) dxdy +

@2F

@y2
(a) dy2

Pentru aceasta calcul¼am derivatele parţiale de ordinul 2:

@2F

@x2
(x; y) =

@

@x

�
@F

@x

�
=
@

@x
(2x� 2 + 2�x) = 2 + 2�

@2F

@y2
(x; y) =

@

@y

�
@F

@y

�
=
@

@y
(2y � 4 + 2�y) = 2 + 2�y

@2F

@x@y
(x; y) =

@

@x

�
@F

@y

�
=
@

@x
(2y � 4 + 2�y) = 0

Deci
d2F(x;y) = (2 + 2�) dx

2 + (2 + 2�) dy2
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Pasul 3: Diferenţiem leg¼atura x2 + y2 � 1 = 0 şi obţinem 2xdx + 2ydy = 0
de unde

dy = �x
y
dx

înlocuind în d2F(x;y) obţinem

d2F(x;y) = (2 + 2�)

�
1 +

x2

y2

�
dx2

Pasul 4: Pentru �1 = �1 �
p
5 avem (2 + 2�)

�
1 + x2

y2

�
< 0, deci a1 =�

�
p
5
5
;�2

p
5
5

�
este punct de maxim local condiţionat. Pentru �2 = �1+

p
5

avem (2 + 2�)
�
1 + x2

y2

�
> 0, deci a2 =

�p
5
5
; 2
p
5
5

�
este punct de minim local

condiţionat. Aşadar

min
x2D

f (x) = f (a2) = f

 p
5

5
;
2
p
5

5

!
=
1

5
+
4

5
� 2

p
5

5
� 8

p
5

5
= 1� 2

p
5

max
x2D

f (x) = f (a1) = f

 
�
p
5

5
;�2

p
5

5

!
=
1

5
+
4

5
+
2
p
5

5
+
8
p
5

5
= 1 + 2

p
5

f (D) =

�
min
x2D

f (x) ,max
x2D

f (x)

�
=
h
1� 2

p
5; 1 + 2

p
5
i
.

Pentru stabilirea condi̧tiilor necesare şi su�ciente de extrem condi̧tionat,
pe care le-am folosit în exemplele anterioare pentru determinarea punctelor
de extrem local condi̧tionat, este necesar¼a teorema funçtiilor pe care o
prezent¼am în seçtiunea urm¼atoare.

5.10 Funçtii implicite

Teorema 5.10.1 (Teorema funçtiei inverse) Dac¼a A � Rn este o mulţime
dechis¼a şi f = (f1; f2; :::; fn) : A ! Rn o funcţie de clas¼a C1 pe A cu
proprietatea c¼a jacobianul

det (Jf (a)) =

���������
@f1
@x1
(a) @f1

@x2
(a) ::: @f1

@xn
(a)

@f2
@x1
(a) @f2

@x2
(a) ::: @f2

@xn
(a)

::: ::: ::: :::
@fn
@xn

(a) @fn
@x2
(a) ::: @fn

@xn
(a)

��������� 6= 0
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pentru orice a 2 A, atunci f este difeomor�sm local, i.e pentru �ecare punct
a 2 A exist¼a o vecin¼atate dechis¼a Ua � A a lui a astfel încât s¼a �e îndeplinite
urm¼atorele condiţii:

1. Va = f (Ua) este deschis¼a;

2. f jUa : Ua ! Va, f jUa (x) = f (x) pentru orice x 2 Ua, este bijectiv¼a;

3. (f jUa)
�1 : Va ! Ua este de clas¼a C1.

5.10.1 Teorema funçtiilor implicite

Consider¼am "ecua̧tia implicit¼a" F (x; y) = 0 2 Rn, x 2 Rm, y 2 Rn.
Dorim s¼a rezolv¼am aceast¼a ecua̧tie, m¼ac¼ar local, ob̧tinând explicit variabila
y funçtie de x (mai precis, ob̧tinând local y = ' (x)).

Teorema 5.10.2 (Cazul unei ecuaţii şi al unei funcţii implicite de
o variabil¼a) Fie A � R2 o mulţime deschis¼a, (a; b) 2 A şi f : A ! R o
funcţie diferenţiabil¼a pe A care îndeplineşte urm¼atorele condiţii

i) f (a; b) = 0

ii) @f
@x
şi @f

@y
sunt continue în (a; b)

iii) @f
@y
(a; b) 6= 0

Atunci exist¼a r; s > 0 şi o funcţie h : (a� r; a+ r)! (b� s; b+ s) astfel
încât

1. (a� r; a+ r)� (b� s; b+ s) � A;

2. f (x; h (x)) = 0 pentru orice x 2 (a� r; a+ r);

3. h este derivabil¼a pe (a� r; a+ r) şi h0 este continu¼a în a

4. Pentru orice (x; y) 2 (a� r; a+ r)� (b� s; b+ s) cu proprietatea c¼a
f (x; y) = 0 avem y = h (x).
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Deoarece @f
@y
(a; b) 6= 0 şi @f

@y
continu¼a, exist¼a o vecin¼atate V � A a

punctului (a; b) astfel încât @f
@y
(x; y) 6= 0 pentru orice (x; y) 2 V . Exist¼a

r0 > 0, r0 < r astfel încât pentru orice x 2 (a� r0; a+ r0), (x; h (x)) 2 V .
Derivând

f (x; h (x)) = 0

într-un punct x 2 (a� r0; a+ r0) ob̧tinem

@f

@x
(x; h (x)) +

@f

@y
(x; h (x))h0 (x) = 0

h0 (x) = �
@f
@x
(x; h (x))

@f
@y
(x; h (x))

Exemplul 5.10.3 S¼a se calculeze h0 (1) şi h00 (x) pentru funcţia h (y =
h (x)) de�nit¼a implicit de ecuaţia�

x2 + y2
�2 � 4 �x2 + y2�� 5 = 0

h (1) = 2.

R: Fie f : R2 ! R funcţia de�nit¼a prin

f (x; y) =
�
x2 + y2

�2 � 4 �x2 + y2�� 5
pentru orice (x; y) 2 R2. Avem f (1; 2) = 0, f este inde�nit derivabil¼a şi

@f

@y
(x; y) = 4

�
x2 + y2

�
y � 8y

= 4
�
x2 + y2 � 2

�
y

şi deci @f
@y
(1; 2) = 24 6= 0. Conform teoremei funcţiilor implicite exist¼a

r; s > 0 şi o funcţie h : (a� r; a+ r)! (b� s; b+ s) local unic¼a astfel încât

f (x; h (x)) = 0:

Derivând obţinem

@f

@x
(x; h (x)) +

@f

@y
(x; h (x))h0 (x) = 0
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şi deoarece

@f

@x
(x; y) = 4

�
x2 + y2

�
x� 8x

= 4
�
x2 + y2 � 2

�
x

obţinem

h0 (x) = �
@f
@x
(x; h (x))

@f
@y
(x; h (x))

= �
4
�
x2 + h (x)2 � 2

�
x

4
�
x2 + h (x)2 � 2

�
h (x)

= � x

h (x)

h0 (1) = � 1

h (1)
= �1

2

Derivând
h0 (x) = � x

h (x)

obţinem

h00 (x) = �h (x)� xh
0 (x)

h (x)2

h00 (1) = �h (1)� xh
0 (1)

h (1)2
= �5

2
.

Teorema 5.10.4 (Cazul unei ecuaţii şi al unei funcţii implicite de
mai multe variabile) Fie A � Rn+1 o mulţime deschis¼a, a 2 Rn, b 2 R
astfel încât (a; b) 2 A şi f : A ! R o funcţie diferenţiabil¼a pe A care
îndeplineşte urm¼atorele condiţii

i) f (a; b) = 0

ii) @f
@x1
, @f
@x2
, :::, @f

@xn
, şi @f

@y
(y este notaţia pentru cea de n+1 variabil¼a) sunt

continue în (a; b)

iii) @f
@y
(a; b) 6= 0

Atunci exist¼a r; s > 0 şi o funcţie h : B (a; r)! (b� s; b+ s) astfel încât

1. B (a; r)� (b� s; b+ s) � A;
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2. f (x; h (x)) = 0 pentru orice x 2 B (a; r);

3. h este diferenţiabil¼a pe B (a; r) şi dh este continu¼a în a

4. Pentru orice (x; y) 2 B (a; r)�(b� s; b+ s) cu proprietatea c¼a f (x; y) =
0 avem y = h (x).

Deoarece @f
@y
(a; b) 6= 0 şi @f

@y
continu¼a, exist¼a o vecin¼atate V � A a

punctului (a; b) astfel încât @f
@y
(x; y) 6= 0 pentru orice (x; y) 2 V . În plus,

exist¼a r0 > 0, r0 < r astfel încât pentru orice x 2 B (a; r0), (x; h (x)) 2 V .
Derivând paŗtial relativ la xi (1 � i � n)

f (x; h (x)) = 0

într-un punct x 2 B (a; r0) ob̧tinem

@f

@xi
(x; h (x)) +

@f

@y
(x; h (x))

@h

@xi
(x) = 0

@h

@xi
(x) = �

@f
@xi
(x; h (x))

@f
@y
(x; h (x))

Exemplul 5.10.5 S¼a se calculeze @h@x
�
1;� 3

p
2
�
şi @h

@xi

�
1;� 3

p
2
�
pentru funcţia

h (z = h (x; y)) de�nit¼a implicit de ecuaţia

2x3 + y3 + 2z3 � 4xyz = 0

h
�
1;� 3

p
2
�
= 0.

R: Fie f : R2 ! R funcţia de�nit¼a prin

f (x; y; z) = 2x3 + y3 + 2z3 � 4xyz

pentru orice (x; y; z) 2 R3. Avem f
�
1;� 3

p
2; 0
�
= 0, f este inde�nit

derivabil¼a şi
@f

@z
(x; y; z) = 6z2 � 4xy
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şi deci @f
@z

�
1;� 3

p
2; 0
�
= 4 3

p
2 6= 0. Conform teoremei funcţiilor implicite

exist¼a r; s > 0 şi o funcţie h : B (a; r) ! (b� s; b+ s) local unic¼a astfel
încât

f (x; y; h (x; y)) = 0:

Derivând parţial în raport cu x obţinem

@f

@x
(x; y; h (x; y)) +

@f

@z
(x; y; h (x; y))

@h

@x
(x; y) = 0

şi deoarece
@f

@x
(x; y; z) = 6x2 � 4yz

obţinem

@h

@x
(x; y) = �

@f
@x
(x; y; h (x; y))

@f
@z
(x; y; h (x; y))

= �6x
2 � 4yh (x; y)

6h (x; y)2 � 4xy
@h

@x

�
1;� 3

p
2
�
= � 6

4 3
p
2
= �3

3
p
4

4

Derivând parţial în raport cu y în f (x; y; h (x; y)) = 0 obţinem

@f

@y
(x; y; h (x; y)) +

@f

@z
(x; y; h (x; y))

@h

@y
(x; y) = 0

şi deoarece
@f

@y
(x; y; z) = 3y2 � 4zx

obţinem

@h

@y
(x; y) = �

@f
@y
(x; y; h (x; y))

@f
@z
(x; y; h (x; y))

= �6y
2 � 4h (x; y)x

6h (x; y)2 � 4xy
@h

@y

�
1;� 3

p
2
�
= �6

3
p
4

4 3
p
2
= �3

3
p
2

2

Teorema 5.10.6 (Cazul unui sistem cu n ecuaţii şi n funcţii implicite)
Fie A � Rm+n o mulţime deschis¼a, a 2 Rm, b 2 Rn astfel încât (a; b) 2 A şi
f = (f1; f2; :::; fn) : A ! Rn o funcţie diferenţiabil¼a pe A care îndeplineşte
urm¼atorele condiţii
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i) f (a; b) = 0

ii) @f
@x1
, @f
@x2
, :::, @f

@xm
, @f
@y1
, @f
@y2
, :::, @f

@yn
, (yi este notaţia pentru cea de m + i

variabil¼a) sunt continue în (a; b)

iii) D(f1;f2;::::;fn)
D(y1;y2;::::;yn)

(a; b) 6= 0

Atunci exist¼a r; s > 0 şi o funcţie h = (h1; h2; :::; hn) : B (a; r)! B (b; s)
astfel încât

1. B (a; r)�B (b; s) � A;

2. f (x; h (x)) = 0 pentru orice x 2 B (a; r);

3. h este diferenţiabil¼a pe B (a; r) şi dh este continu¼a în a

4. Pentru orice (x; y) 2 B (a; r)�B (b; s) cu proprietatea c¼a f (x; y) = 0
avem y = h (x).

Deoarece D(f1;f2;::::;fn)
D(y1;y2;::::;yn)

(a; b) 6= 0 şi , @f
@y1
, @f
@y2
, :::, @f

@yn
continue în (a; b),

exist¼a o vecin¼atate V � A a punctului (a; b) astfel încât D(f1;f2;::::;fn)D(y1;y2;::::;yn)
(x; y) 6=

0 pentru orice (x; y) 2 V . În plus, exist¼a r0 > 0, r0 < r astfel încât pentru
orice x 2 B (a; r0), (x; h (x)) 2 V . Derivând paŗtial relativ la xi (1 � i � m)
în

fj (x; h (x)) = 0, 1 � j � n
într-un punct x 2 B (a; r0) ob̧tinem

@fj
@xi

(x; h (x)) +
nP
k=1

@fj
@yk

(x; h (x))
@hk
@xi

(x) = 0

nP
k=1

@fj
@yk

(x; h (x))
@hk
@xi

(x) = �@fj
@xi

(x; h (x)) , 1 � j � n,

adic¼a un sistem liniar cu n ecua̧tii şi necunoscutele @h1
@xi
(x), @h2

@xi
(x), :::,

@hn
@xi
(x). Sistemul este compatibil determinat şi aplicând regula lui Cramer

rezult¼a:
@hj
@xi

(x) = �
D(f1;f2;::::;fn)

D(y1;y2;::::;yj�1;xi;yj+1;::::;yn )
(x; h (x))

D(f1;f2;::::;fn)
D(y1;y2;::::;yn)

(x; h (x))

pentru orice 1 � j � n şi orice 1 � i � m.
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Exemplul 5.10.7 S¼a se calculeze @u
@x
(0; 1), @u

@y
(0; 1), @v

@x
(0; 1) şi @v

@y
(0; 1)

pentru funcţiile (z = u (x; y) ; t = v (x; y)) de�nite implicit de sistemul

z2 � x� y = 0

zt� y = 0

în vecin¼atatea punctului (0; 1; 1; 1) (u (0; 1) = 1, v (0; 1) = 1). Fie f =
(f1; f2) : R4 ! R2 funcţia de�nit¼a prin

f1 (x; y; z; t) = z2 � x� y
f2 (x; y; z; t) = zt� y

pentru orice (x; y; z; t) 2 R4. Avem f (0; 1; 1; 1) = (0; 0), f1,f2 sunt inde�nit
derivabile,

D (f1; f2)

D (z; t)
(x; y; z; t) =

���� @f1
@z
(x; y; z; t) @f1

@t
(x; y; z; t)

@f2
@z
(x; y; z; t) @f2

@t
(x; y; z; t)

����
=

���� 2z 0
t z

���� = 2z2
şi deci D(f1;f2)

D(z;t)
(0; 1; 1; 1) = 2 6= 0. Conform teoremei funcţiilor implicite

exist¼a r; s > 0 şi o funcţie h = (u; v) : B ((0; 1) ; r) ! B ((1; 1) ; s) local
unic¼a astfel încât

f (x; y; h (x; y)) = 0:

Avem

@u

@x
(x; y) =

D (f1; f2)

D (x; t)
(x; y; u (x; y) ; v (x; y))

=

���� @f1
@x
(x; y; u (x; y) ; v (x; y)) @f1

@t
(x; y; u (x; y) ; v (x; y))

@f2
@x
(x; y; u (x; y) ; v (x; y)) @f2

@t
(x; y; u (x; y) ; v (x; y))

����
=

���� �1 0
0 u (x; y)

���� = �u (x; y)
@u

@x
(0; 1) = �1
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@u

@y
(x; y) =

D (f1; f2)

D (y; t)
(x; y; u (x; y) ; v (x; y))

=

����� @f1
@y
(x; y; u (x; y) ; v (x; y)) @f1

@t
(x; y; u (x; y) ; v (x; y))

@f2
@y
(x; y; u (x; y) ; v (x; y)) @f2

@t
(x; y; u (x; y) ; v (x; y))

�����
=

���� �1 0
�1 u (x; y)

���� = �u (x; y)
@u

@y
(0; 1) = �1

@v

@x
(x; y) =

D (f1; f2)

D (z; x)
(x; y; u (x; y) ; v (x; y))

=

���� @f1
@z
(x; y; u (x; y) ; v (x; y)) @f1

@x
(x; y; u (x; y) ; v (x; y))

@f2
@z
(x; y; u (x; y) ; v (x; y)) @f2

@x
(x; y; u (x; y) ; v (x; y))

����
=

���� 2u (x; y) �1
v (x; y) 0

���� = v (x; y)
@v

@x
(0; 1) = 1

@v

@y
(x; y) =

D (f1; f2)

D (z; y)
(x; y; u (x; y) ; v (x; y))

=

����� @f1
@z
(x; y; u (x; y) ; v (x; y)) @f1

@y
(x; y; u (x; y) ; v (x; y))

@f2
@z
(x; y; u (x; y) ; v (x; y)) @f2

@y
(x; y; u (x; y) ; v (x; y))

�����
=

���� 2u (x; y) �1
v (x; y) �1

���� = �2u (x; y) + v (x; y)
@v

@y
(0; 1) = �2 + 1 = �1.

De�ni̧tia 5.10.8 Fie A � Rn o mulţime deschis¼a şi f1, f2, :::, fm : A !
R m funcţii de clas¼a C1. Funcţiile f1, f2, :::, fm se numesc funcţional

dependente pe A
def, exist¼a j 2 f1; 2; :::;mg şi o funcţie � : Rm�1 ! R de

clas¼a C1 astfel încât

fj (x) = � (f1 (x) ; f2 (x) ; :::; fj�1 (x) ; fj+1 (x) ; :::; fm (x))

pentru orice x 2 A.
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De�ni̧tia 5.10.9 Fie A � Rn o mulţime deschis¼a, a 2 A şi f1, f2, :::,
fm : A ! R m funcţii de clas¼a C1. Funcţiile f1, f2, :::, fm se numesc

funcţional dependente în a
def, exist¼a o vecin¼atate deschis¼a V � A a lui a

astfel încât f1, f2, :::, fm sunt funcţional dependente pe V . Funcţiile f1,

f2, :::, fm se numesc funcţional independente în a
def, nu sunt funcţional

dependente în a.

Funcţiile f1, f2, :::, fm se numesc funcţional independente pe A
def, f1,

f2, :::, fm se numesc funcţional independente în orice punct din A.

Dac¼a f1, f2, :::, fm sunt funçtional dependente în a, atunci matricea
jacobian¼a

Jf (a) =

0BBB@
@f1
@x1
(a) @f1

@x2
(a) ::: @f1

@xn
(a)

@f2
@x1
(a) @f2

@x2
(a) ::: @f2

@xn
(a)

::: ::: ::: :::
@fm
@xn

(a) @fm
@x2

(a) ::: @fm
@xn

(a)

1CCCA
f = (f1; f2; :::; fm)

are rangul strict mai mic decât m. Într-adev¼ar, deorece f1, f2, :::, fm sunt
funçtional dependente în a, exist¼a o vecin¼atate deschis¼a V � A a lui a exist¼a
j 2 f1; 2; :::;mg şi o funçtie � : Rm�1 ! R de clas¼a C1 astfel încât

fj (x) = � (f1 (x) ; f2 (x) ; :::; fj�1 (x) ; fj+1 (x) ; :::; fm (x))

pentru orice x 2 V . Derivând paŗtial la xk ob̧tinem

@fj
@xk

(a) =
j�1P
p=1

@�

@yk
((f1 (a) ; f2 (a) ; :::; fj�1 (a) ; fj+1 (a) ; :::; fm (a)))

@fp
@xk

(a)+

m�1P
p=j

@�

@yk
((f1 (a) ; f2 (a) ; :::; fj�1 (a) ; fj+1 (a) ; :::; fm (a)))

@fp+1
@xk

(a)

Deci linia j a matricei Jf (a) este o combina̧tie liniar¼a a celorlate linii.

Teorema 5.10.10 Fie A � Rn o mulţime deschis¼a şi f1, f2, :::, fm : A!
R m funcţii de clas¼a C1. Dac¼a rangul matricei0BBB@

@f1
@x1
(a) @f1

@x2
(a) ::: @f1

@xn
(a)

@f2
@x1
(a) @f2

@x2
(a) ::: @f2

@xn
(a)

::: ::: ::: :::
@fm
@xn

(a) @fm
@x2

(a) ::: @fm
@xn

(a)

1CCCA
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estem în �ecare punct a 2 A, atunci f1, f2, :::, fm sunt funcţional independente
pe A.

Teorema 5.10.11 Fie A � Rn o mulţime deschis¼a, a 2 A şi f1, f2, :::,
fm : A! R m funcţii de clas¼a C1. Dac¼a rangul matricei0BBB@

@f1
@x1
(a) @f1

@x2
(a) ::: @f1

@xn
(a)

@f2
@x1
(a) @f2

@x2
(a) ::: @f2

@xn
(a)

::: ::: ::: :::
@fm
@xn

(a) @fm
@x2

(a) ::: @fm
@xn

(a)

1CCCA
este r < m, atunci exist¼a o vecin¼atate deschis¼a V � A a lui a astfel încât
r dintre cele m funcţii sunt independente pe V , celelalte �ind depende de
acestea pe V .

Eventual renumerotând putem presupune în teorema anterioar¼a c¼a f1,
f2, :::, fr sunt independente pe V . Teorema mai a�rm¼a c¼a exist¼a funçtiile
�1, �2, :::, �m�r : Rr ! R de clas¼a C1 astfel încât

fr+j (x) = �j (f1 (x) ; f2 (x) ; :::; fr (x))

pentru orice x 2 V şi pentru orice j 2 f1; :::;m� rg.

Exemplul 5.10.12 Fie funcţiile f; g; h : R3 ! R de�nite prin

f (x; y; z) = x+ 2y + z

g (x; y; z) = x� 2y + z
h (x; y; z) = 8 (xy + zy) .

Matricea jacobian¼a este0B@
@f
@x
(x; y; z) @f

@y
(x; y; z) @f

@z
(x; y; z)

@g
@x
(x; y; z) @g

@y
(x; y; z) @g

@z
(x; y; z)

@h
@x
(x; y; z) @h

@y
(x; y; z) @h

@z
(x; y; z)

1CA
0@ 1 2 1

1 �2 1
8y 8 (x+ z) 8y

1A
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Deoarece ������
1 2 1
1 �2 1
8y 8 (x+ z) 8y

������ =
C1=C3

0

şi ���� 1 2
1 �2

���� = �4 6= 0
rezult¼a c¼a rangul matricei jacobiene este 2 < 3 în orice punct (x; y; z) din
R3. Deci f ,g,h sunt funcţional dependente. Funcţiile f şi g sunt funcţional
independente pe R3 şi h este funcţional dependent¼a de f şi g. De fapt se
poate veri�ca uşor c¼a pentru orice punct (x; y; z) din R3

h (x; y; z) = f (x; y; z)2 � g (x; y; z)2

= �(f (x; y; z) ; g (x; y; z)) ,

unde � : R2 ! R, � (u; v) = u2 � v2, (u; v) 2 R2.
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