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Capitolul 5

Calcul diferential (continuare
din cursul 9)

5.8 Extreme libere
Reamintim (din cursul 6) definitia punctelor de extrem:

Definitia 5.8.1 Fie f : A — B C R o functie gt a € A. Punctul a se
numeste:

- punct de minim (global) pentru f E= f(a) < f(x) pentru orice v € A;
- punct de mazxim (global) pentru f g f(a) > f(x) pentru orice x € A;

- punct de extrem (global) pentru f Y o este punct de minim (global) sau
de mazim (global).

Daca in plus, A este o submultime a unui spatiu topologic, punctul a se
numeste

- punct de minim local pentru f Y eqisti o vecindtate V. a lui a astfel
incat f (a) < f(x) pentru orice x € ANV,

- punct de maxim local pentru f Y evisti o vecindtate V. a lui a astfel
incat f (a) > f(x) pentru orice x € ANV;
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d .
- punct de extrem local pentru f L a este punct de minim local sau de
maxim local.

Definitia 5.8.2 Fie E un spatiu normat real. Aplicatia 2p-liniara simetrica
fiEXEX..xFE—R senumeste :

- pozitiva (sau pozitiv semidefinita) i se scrie f >0 ég pentru orice x € E

f(z,z,...,x) > 0.

- negativa (sau negativ semidefinita) si se scrie f <0 é{ —f este pozitiva
& pentru orice v € B

- strict pozitiva (sau pozitiv definita) gi se scrie f > 0 E existi o> 0 astfel
incdt pentru orice v € E

F (@, ) 2 o] ™.

- strict negativa (sau negativ definita) si se scrie f < 0 “ —f este strict
pozitiva < exista o > 0 astfel incdt pentru orice x € K

flz,z,..z) < —alz|™.

- nedefinita Y epista x,y € E, v # 0,y # 0 astfel incat
f (':C7 x? ""x) > 0 §Z f(y7 y7 "'7y) < 0'
Daca E = R, atunci

f(z,m, ... 2)=2?f(1,1,..,1)

gi ca urmare in acest caz f > 0 (respectiv, f < 0, f > 0, f <
0) & f(1,1,...,1) > 0 (respectiv, f(1,1,...,1) < 0, f(1,1,..,1) >
f(1,1,...,1) <0).
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Daca E este spatiu liniar finit dimensional atunci o aplicatie 2p-liniara
simetrica f : E X E'x...x E — R este pozitiv definita <pentru orice x € F,

x#0
flz,z, ...,x) > 0.

Intr-adevir, in cazul finit dimensional orice aplicatie multiliniars este continui.Fie
S0,1)={z € E:|z| =1}

Multimea S (0, 1) fiind o submultime inchisa si marginita a spatiului normat
finit dimensional F, este compacta. Functia f fiind continua, rezulta ca
flswo1) isi atinge extremele pe multimea compactd S (0,1). Asadar exista
u € S(0,1) astfel incat pentru orice v € S (0,1) avem

fusu, . u) < f(v,v,..,0).

Notdm o = f (u,u, ...,u) si observim ci dacd x € E, x # 0, atunci ﬁx €
S (0,1) i in consecinta

1 1 1

a < f( x, T... :17)
| el [l

1
Wf (x,:r...,m)

(07

IN

alz|” < f(z@..0).

In cazul p = 1, aplicatia 2p-liniars (biliniard) f > 0, respectiv, f < 0,
f >0, f <0, nedefinitd< forma patraticd (polinomul omogen de grad 2)
asociatd ) : E — R, Q(z) = f (z,z) este pozitiv semidefinita (Q (z) > 0
pentru orice x € E), respectiv () este negativ semidefinita (@ () < 0 pentru
orice x € E), @ este pozitiv definita (@ (z) > 0 pentru orice z € E\ {0}), @
este negativ definitd (Q (z) < 0 pentru orice x € E'\ {0}), @ este nedefinita
(existd x,y € E'\ {0} astfel incat Q (x) >0si Q(y) <0).

Daca se fixeazd o bazd {ej,es,...,e,} pe spatiul finit dimensional F,
atunci oricarei aplicatii 2p-liniara (biliniara) f : E x £ — R i se poate

asocia o matrice Ay = (aij)1<ij<n :
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n n
Pentru orice x = ) x;e;, y = Y y;e; € E avem
i=1 i=1

f(xvy) = f(n mieiaﬁ%yjej>

i=1

I
M
M=

ziy; [ (eis €5)

i=1j=1
n n
= DD Y0y
i=1j=1
sau sub forma matriceala
aix Q@12 ... Qip n
Q21 Q22 ... Q2p Y2
flay)=(z z2 o z,)
Qp1 Ap2 ... QApp Un
Reciproc oricarei matrice A = (a;), <ij<n i se poate asocia o aplicatie

biliniara f4 : £ x E — R definita prin

3

fa (33, y) = Z T;YjQij
1j=1

)

pentru orice © = Y z;e;, y = > y;e; € E. Aplicatiile
i=1 i=1

sunt inverse una celeilalte. Asadar exista o corespondenta bijectiva intre
Ly (E;R) si My, (R) (unde n este dimensiunea lui E). Aplicatia biliniarad
[+ Ex E — R este simetrica daca si numai daca matricea asociata Ay =
(@ij),<; j<, este simetrica, adica

a;; = aj; pentru orice 1 <1,j < n.

O matrice simetricd A = (a;),; ;<,, €Mnn (R) se numeste :

.. . ..o de .
- pozitiv semidefinita <:§ pentru orice z = (z1, X2, ..., T,) € R"

zAzt > 0.
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- negativ semidefinita LA este pozitiv semidefinita < pentru orice x =
(.Tl,.’lfg, 7'1771) e R"
zAzt < 0.

- pozitiv definitad g pentru orice = (x1, Z2, ..., ,,) € R™\ {0}

Azt > 0.

- negativ definita “ Aeste pozitiv definita < pentru orice x = (x1, T3, ..., T,) €
R\ {0}

rAx' < 0.
.o de C o
- nedefiniti € exista z,y € R"\ {0} astfel incat

rAz' > 0sizA2x" <0

Aplicatia biliniara simetricd f > 0 (respectiv, f < 0, f >0, f <0,
nedefinitd) <> matricea asociatd Ay = (a;;),; ;, este pozitiv semidefinita
(respectiv Ay este negativ semidefinitd , A; este pozitiv definita, A; este
negativ definitd, A, este nedefinita).

Teorema 5.8.3 (Criteriul lui Sylvester) Fie A = (a;j),, ;<, € Mnn (R)
o matrice simetrici cu proprietatea ci minorii principali

aipr ai2 ... Qg
Q21 QA2 ... Q9

A, = , ke {1,2,...,71}
Q1 Ao ... Qg

sunt nenuli.

1. Daca Ay >0, Ay >0, ..., A, >0, atunci A este pozitiv definita.

2. Daca Ay < 0, Ay > 0, A3 <0, ..., (=1)"A, > 0, atunci A este
negativ definita.

3. Daca toti minorii principali sunt nenuli si nu respecta nici conditia
de la punctul 1, nici pe cea de la 2, atunci A este nedefinita.
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O altd caracterizare a faptului cd o matrice este pozitiv/negativ definitd
poate fi datd in termeni de valori proprii (se numegte valoare proprie a
matricei A € M, ,, (R) o radacind a ecuatiei det (A, — A) = 0). Pentru
orice matrice simetrica A € M, , (R), toate cele n radacini ale ecuatiei
det (M, — A) = 0 (adica valorile proprii ale lui A) sunt reale.

Teorema 5.8.4 Fie A = (aij),; i, € Mnn (R) 0 matrice simetrica si fie
A, A2y ..y Ay walorile proprii ale lui A.

1. Daca A1 >0, Aa >0, ..., A\, > 0, atunci A este pozitiv semidefinita.

2. Daca A\ >0, Ay >0, ..., A, >0, atuncit A este pozitiv definita.

3. Daca A\ <0, Ay <0, ..., A\, <0, atunci A este negativ semidefinita.

4. Daca \y <0, Ay <0, ..., A\, >0, atunci A este negativ definita.

5. Dacit existd i,j € {1,2,..,n} astfel incit \; > 0 i \; < 0, atunci A

este nedefinita.

Observatia 5.8.5 Fien un numar natural par si A = (aij)lgmgn € M, (R)
o matrice simetrica. Daca det (A) < 0, atunci A este nedefinita. Intr-
adevar, dacd A1, Ao, ..., A\, sunt valorile proprii ale lui A, adica radacinile

ecuatiei det (A, — A) = 0 echivalentd cu
AN — (@11 + Ggo + oo F ) N (1) det (A) = 0,

atunci My ...\, = det (A) < 0. Ca urmare \1, A, ..., A, sunt toate nenule
§1 nu pot avea toate acelagi semn. Deci A este nedefinita.

Teorema 5.8.6 (Conditii necesare de minim) Fie E un spatiu normat
real, A C E o mutime deschisa, a € A gi f : A — R o functie de p-ori
diferentiabila in a (p > 1) astfel incat

df, =0, d*f, =0, .., d" ' f, =0 sid’f, # 0.

Daca a este punct de minim local pentru f, atunci

1. p par
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2. dPf, > 0 (aplicatia p-liniara simetrica dP f, este pozitiv semidefinita).

Demonstratie. Deoarece a este punct de minim local pentru f, exista o
vecinatate V' C A a lui a astfel incat pentru orice x € V' sa avem

fla) < f(2).

Aplicand formula Taylor functiei f in punctul a, rezulta ca exista o functie
R, (f,a) : A — R astfel incat pentru orice x € A

f(x) =T, (f,a) (x) + By (f,a) (),

si
1
lim — =R, (f,a,z) =0,

= ||z —af”

unde
LY@ = 1@+ g @) bt 50w aa -0
1
= f(a)—i-]T!dpfa(m—a,a:—a,...,x—a)‘

Presupunem prin absurd ca p este impar. Fie vy € F, astfel incat

dpfa (UQ, Voy -y Uo) 7£ 0.

Deoarece d? f, (—vg, —vg, ..., —vg) = (—1)" d? f4 (vo, vo, .., vg), Tezultd ci, eventual
inlocuind vy cu —vy, putem presupune d” f, (vg, vo, ..., vg) > 0. Deoarece

1
lim —=R, (f,a,z) =0
Ml —ap e
exista o vecinatate Uy a lui a astfel incat Uy C V' si pentru orice x € U,
T # a sa avem

1 1

—— R, (f,a,7) < ———
Te—ap % @0l < g

dpfa (Uo,Uo,...,U()) (51)

Fie rq > 0 astfel incat pentru orice t € (—7¢, 7o) s avem

a+tvyg e Uy CV C A.
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Inlocuind in formula Taylor = cu a + tvy cu t € (—7g,0), obtinem

f(a+tv) — f(a)
= Ao (10, ) + Ry (£, ) (0 )

1 1
< =tPdPf, (vo, Vg, ..., v0) + ||tvo]|”
i e Lo vor o v0) ol s

— tp dp 2 |t| b
— 2—p' fa (’Uo,Uo,...,Uo) —|— ? .

tp
= 2—p!dpfa (’Uo,Uo,...,Uo)

< 0,

dpfa (Uo, VOy vees ’Uo)

ceea ce contrazice f (a -+ tvg) > f (a). In consecints, p este par.

Presupunem prin absurd ca existd v € E astfel incat
dP fo (v,v,...,v) < 0.

Deoarece

1
lim — R, (f,a,2) =0

= ||z —af”

exista o vecinatate U; a lui a astfel incat U; C V' si pentru orice x € Uy,
x # a sa avem

1 1
— R, (f,a,2)| < ————d’f, (v,v,...,v 5.2

Fie r > 0 astfel incat pentru orice t € (—7,7) sd avem

a+tve U CV CA.

10
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Inlocuind in formula Taylor z cu a +tv cu t € (—r,r) \ {0}, obtinem

1
fla+tv)— f(a) = jt7t”d”fa(v,v,...,v)—i—Rp(f,a)(a—i—tv)
1
<  —=tPd’f, (v,v,...,v) — ||tv]|” v f, (v,v,...,v
S L0 t) — [ P ()
_ P 5 1t1\"
T fa (Vo,v0, ..., v0) | 2 + - :
3t?
= Q—p!dpfa(v,v,...,v)
< 0,

ceea ce contrazice f (a + tv) > f (a). Caurmare d? f, (v, v, ...,v) > 0 pentru
oriceve E. m

Observatia 5.8.7 Daca df, =0, d*f, =0, ..., &> 'f, =0 si exista v € E
astfel incat dP f, (v,v,...,v) < 0, atunci a nu este punct de minim local
pentru f.

Teorema 5.8.8 (Conditii necesare de maxim) Fie E un spatiu normat
real, A C E o mutime deschisa, a € A si f : A — R o functie de p-ori
diferentiabila in a (p > 1) astfel incdt
df, =0, d*f, =0, .., d ' f, =0 si d’f, # 0.
Daca a este punct de maxim local pentru f, atunci
1. p par
2. dPf, <0 (aplicatia p-liniara simetrica d? f, este negativ semidefinita).

Demonstratie. Se aplica teorema 5.8.6 functiei —f. =

Observatia 5.8.9 Daca df, = 0, d*f, =0, ..., d*" 1 f, = 0 i exista v € E
astfel incat dPf, (v,v,...,v) > 0, atunci a nu este punct de mazim local
pentru f. Dacd in plus, exista u € E astfel incat dP f, (u,u,...,u) < 0 (dPf
este nedefinita), atunci a nu este punct de extrem local pentru f.

11



Madalina Roxana Buneci

Teorema 5.8.10 (Conditii suficiente de extrem) Fie E un spatiu normat
real, A C E o mutime deschisa, a € A si f : A — R o functie de p-ori
diferentiabila in a, p > 1 par astfel incdt

dfa = 07 d2fa = O; [EXY) dpilfa =0 ‘52 dpfa 7é 0.

1. Daca dPf, > 0 (aplicatia p-liniara simetrica dP f, este pozitiv definita),
atunci a este punct de minim local pentru f.

2. Daca dPf, < 0 (aplicatia p-liniara simetrica dP f, este negativ definita),
atunci a este punct de maxim local pentru f.

Demonstratie. Aplicand formula Taylor functiei f in punctul a, rezulta
cd exista o functie R, (f,a) : A — R astfel incat pentru orice x € A

f (@) :Tp(f,a)(x)—l—Rp(f,a)(x),

lim — R (f.a) (z) =0,

o—a|lz — a7

T,(£,0) (@) = F(0)+ a0 =0) & vt 5 fo (0= 0.0 = 0, =)
1
= f(a)—i-ﬁdpfa(x—a,x—a,...,x—a).

1. Daca dP f, > 0, rezulta ca exista o > 0 astfel incat
&Pl (x—a,x—a,..,x—a)>al|x—al’ (5.3)

Deoarece ]
lim —— R, (f,a)(x) =0

va [lz — a7

exista o vecinatate V' a lui a astfel incat V' C A si pentru orice x € V', x # a

sa avem
1 a

To—ap (S @) <57

lo—al 54

12
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Ca urmare pentru orice x € V', x # a avem

fx) = f(a)

I%dpfa(gj—a71’—a,...,l’—a)+Rp(f7a) (x)

(0%
> e —al”+ R, (f,a)(x)
(5.3) P:

(0% (6%
> —_ o p__ = _ p
2y el =55 le —al
_ o p
= 2—p!|\37—GH
> 0

In consecint4, a este punct de minim local pentru f.
2. Daca dP f, < 0, se aplica rationamentul de la 1 functiei —f. m

Definitia 5.8.11 Fie E un spatiu normat real, A C E o mutime deschisa
gi f: A— R o functie. Un punct a € A in care [ este diferentiabila se

numeste punct critic sau punct stationar Cg df, = 0.

Corolarul 5.8.12 (Teorema lui Fermat) Fie E un spatiu normat real,
A C E o mutime deschisa, a € A gi f : A — R o functie diferentiabila in a.
Daca a este punct de extrem local pentru f, atunci a este punct stationar.

Demonstratie. Este o consecinta directa a teoremelor 5.8.6 si 5.8.8. m

Corolarul 5.8.13 Fie A C R"™ o mutime deschisa, a € A gi f : A — R

(1, T2y vy Tp) EN fxy, g, ...y xy)

o functie diferentiabila in a. Daca a este punct de extrem local pentru f,
atunci a este punct stationar sau echivalent solutie a sistemului

of
e (Il,l’g, .

73371) =0
g—m({[‘hl'g,.. Tp) =0
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Demonstratie. Conform teoremelor 5.8.6 si 5.8.8, df, = 0 si cum

a=3

a)dzx
=1 0z, (a) d

rezulta aa_mi (a) = 0 pentru orice k € {1,2,....,n}. =

Definitia 5.8.14 Fie A C R" o mutime deschisa, a € A g1 f: A — R

(T1, %9, ..., Tp) EN fxy, 2o, .. xy)

o functie de doua ori diferentiabila in a. Se numeste hessiana functiei f in
punctul a i se noteaza cu H f (a) matricea

f > f > f
@ (a) 8:)312an (a) 690128171 (CL)
o4 f o°f o°f
Hf(a)= | aom (@ 53(@) = 5 (@)
82... 82... 8n...
8:(:ngx1 (Cl) 8%8];2 (CL) Wg (a)

Este usor de observat ci hessiana H f (a) este matricea asociata lui d?f,
in baza canonica {ey, es, ..., e, } de pe R™
_ 9
N 8x,8x]

Hf (a)ij (a) = d*fa (i, ¢)) .

Corolarul 5.8.15 Fie A C R" o mutime deschisa, a € A g1 f: A — R

f
(Il,fEQ, axn) = f (.ﬁUl,l’Q, "'7xn)

o functie de doud ori diferentiabila in a. Presupunem ca a este punct
stationar pentru f.

1. Daca hessiana Hf (a) este pozitiv definitda, atunci a este punct de
minim local.

2. Daca hessiana Hf (a) este negativ definita, atunci a este punct de
mazim local.
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3. Daca hessiana H f (a) este nedefinita, atunci a nu este punct de extrem
local.

Demonstratie. 1. si 2. sunt consecinte ale teoremei si 5.8.10.
3. este consecinta a teoremelor 5.8.6 si 5.8.8. ®

Corolarul 5.8.16 Fie A C R? o mutime deschisa, a € A si f: A — R

(2,9) > f (2,9)

o functie de doua ori diferentiabila in a. Presupunem ca a este punct
stationar pentru [ (adica % (a) =0 gi g—i (a) =0) g1t notam

L) ZL(a)
A = det(H = % Oy
et (Hf (a)) aayaj; (a) % (a)

Of O % f 2
- HOE - (5 @)
1. Daca % (a) >0 gt A >0, atunci a este punct de minim local.

2. Daca % (a) <0 gt A >0, atunci a este punct de maxim local.

3. A <0, atunct a nu este punct de extrem local.

Demonstratie. 1.si2. sunt consecinte ale teoremei 5.8.10 gi a caracterizarii
faptului ca H f (a) este pozitiv/negativ definitd conform teoremei 5.8.3.
3. Se tine cont de teoremele 5.8.6 si 5.8.8 si observatia 5.8.5. m

Exemplul 5.8.17 Deteminam punctele de extrem local ale functiei f : R*\
{(0,0)} = R, f(2,y) = zyln (42 + y?).

Pasul 1: Determinam punctele stationare (critice) ale functiei f, adica
solutiile sistemului
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Pentru aceasta calculam derivatele partiale de ordinul I:

%(%y) — yln(4x2+y2)+a¢y%f—iy2
= yln(4x2+y2)+%8f—?y2

g_i (r,y) = ol (42® +9°) + ‘Uy4:c22—igﬁ’
— xln(4x2+y2)+4x2gx—_iy_2y2

{ g_i (z,y) =0 { yIn (42% + y?) + 4§§i22 =0
N

i (z,y) =0 zln (42? +3%) + ﬁﬂyz =0
Dacay =0, atunci x # 0 gi inlocuid in a doua ecuatie obtinem In (42?) = 0,
de unde rezultda 4x*> = 1 si deci x € { > 2} Deci obtinem punctele

stationare a; = (—%, 0) §t Qg = (;, 0)

Daca x =0, atunciy # 0 si inlocuid in prima ecuatie oblinem In (y?) =
0, de unde rezulta y?> = 1 gi deciy € {—1,1}. Deci oblinem inca doud
punctele stationare az = (0,—1) gi ay = (0,1).

Daca x # 0 siy # 0, sistemul este echivalent cu

{ In (422 + y2) + 4;21@! -0 { In (422 + y2) f;;y

In (422 + y?) + 4;,;22?11/ =0 In (422 + y?) 4x22+y

de unde rezultd 8z = 2y?, 42% = y? si inlocuind in prima ecuatie obtinem

82
(4m + 4x ) iR
In(82%) = -1
8z2 = et
= 4 1
2v/2e
Deci obtinem inca patru puncte stationare as = <_2\}%’_¢12?>’ ag =

1 1 _ 1 1 . _ 1 1
<—2 2¢T> a7 = (Wrw—f) §i as = <2 W)

16

N
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Pasul 2: In fiecare punct stationar a calculam hessiana

2f 0%f
iy <a>=( 7 () o <“>)

dyoT (a) 392 (a)

Pentru aceasta calculam derivatele partiale de ordinul 2:

92 f N

8x 2z (42® + y?) — 228z
= y 2 2 + y 2
422 +y (422 + y?)
Sxy 16zy3

422 + 42 T (422 + 32)*
8zy (422 + y? + 29?)
(422 + y?)”
8y (4x? + 3y?)
(422 + y?)*
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o2 f 9 (of
oaoy Y = %<a_y)

= In (4x2 +y2) +x

8T odz? + y* — 28z
472 + 12 MR (422 4 12)
82 0,2 y? — 4a?
4 2 2 + Y 2 212
22 4y (4x% 4 y?)
162* + y*
(422 4 12)?

= In (49&2 + y2) +
= In (4x2 + y2) +2

Decs

8xy (4:p2 +3y2 )

Hf (z,y) = (42 +4%)"

2 2 A6zt +y? 122°4y°
In (42* 4+ y*) + 2(4x2+y2)2 2xy i)

2 2 16z*+y*
In(4z° +y )—1—2(4 T

Pasul 3: Studiul hessianei H f in fiecare punct stationar:

wror-a(0)- (1)

' = —4 < 0. Deci a; nu este punct de extrem local.

Avem Ay = 9 0

Analog deoarece

Hf (%o) =Hf(0,-1)=Hf(0,1) = <g 3)

punctele a; = (3,0), a3 = (0,—1), as = (0,1) nu sunt puncte de extrem

2
local.
4 0
=H ) =
(amm) (0 4)
4
0

Avem Ay = 4 > 0, AQZ‘

‘ = 16 > 0. Deci Hf (a5) este pozitiv

definita i ca urmare as = <— NGTL _\/_273> este punct de minim local. Analog

Hf(@s)sz(%@jJ%) :(g 2)
18

deoarece
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punctul ag = <ﬁ, ﬁ) este punct de minim local.

1 1 —4 0
Hf(ag) = Hf ([ ———,— | =
=11 (g7 7) = (0 )
-4 0 . .
Avem Ay = —4 <0, Ay = 0 —4 =16 > 0. Deci H f (ag) este negativ

definita i ca urmare ag = ( 2\}%’ \/12?) este punct de mazxim local. Analog

R T e e T

punctul a; = <ﬁ, —ﬁ) este punct de mazxim local.

deoarece

Exemplul 5.8.18 Deteminam punctele de extrem local ale functiei
f:{(a:,y,z) ER3:x>0,y>O,z>0}—>R

definita prin

pentru orice (z,y,2) € {(z,y,2) €eR3: 2 >0,y > 0,2 < 0}.
Pasul 1: Determinam punctele stationare (critice) ale functiei f, adica
solutuile sistemulus

%(m,y,z) =0
8—5(934/,2) =0

%(m,y,z)zo

Pentru aceasta calculam derivatele partiale de ordinul 1:

%(m,y,z) = —$+§
af x 1
8_y(x’y’z> = —?—;
af Y 1
a(%yaz) - 2 16

19
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—(my,)—0<:> —%—%—0
Din prima ecuatie Tezulta y = a2, si mlocumd a doua ecualie obtinem
LS
oz
z = —a’.
Inlocuind y = 2% §i z = —x® in a treia ecuatie rezultda
2
T 1
T =
x5 16
x = 2 (x>0)
Deciy = 4 gi z = —8. Asadar functia f are un singur punct stationar:

= (2,4,-8).
Pasul 2: In fiecare punct stationar a calculdm hessiana

O IO 20
Hf @)= | 2@ 2 2L
OO 10

Pentru aceasta calculam derivatele partiale de ordinul 2:
0 f o (0f 0 1 1
en = 5 (5) = (=)

3

ﬁ( ) = O (ofy_9 [ = 1
a2 YT By (521) SOy (_zﬂ - Z)

20
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0*f o (of\N 9 ([ = 1
By 7Y _Eﬁ<&)‘7ﬁ<_ﬁ_2>

Y
OF gy = D (0\_0 (v _ L
0202 0V T 9z \9:) T or \22 7 16
=0
(x,y) = A e = — _2__
ydz Iy \ 0z dy \ # 16
1
o2
Decs , 1
2 —z 0
Hf(wy2)= | —% 2 %
R
§i ca urmare
Loh o
Hf(a)=Hf(2,4,-8) = | —% 1_16 %
0 & &

Pasul 3: Studiul hessianei H f in punctul stationar a: Minorit principali
ai matricei H f (a) sunt Ay = 5 >0,

1 1
ol )
§0
i 0 i~ O
N I P B
. 64 61 . . . 64 64
— 6_4( 1) _4% 6%16 = 64 (167 B3-1)>0

Deoarece A1 > 0, Ay > 0 i Az > 0, Hf (a) este pozitiv definita. In
consecinta a = (2,4, —8) este punct de minim local.

21
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5.9 Extreme conditionate

Definitia 5.9.1 Fie A o submultime deschisa a lui R™, f : A — R o functie
de clasa C* pe A si m un numar intreg pozitiv, m < n. Fie

(70179027 790m : A - ]R
m functii de clasa C* pe A si fie

B={ze€A:p(z)=0,05(x) =0,...,0,(x) =0}.
Un punct a € B se numeste punct de extrem (respectiv, minim, maxim)

local conditionat al functiei f Y o este punct de extrem (respectiv, minim,
maxim) local al functiei f|g. Functiile vy, g, ..., p,, S€ numesc legaturi.

Pentru a determina extremele unei functii f : A — R de clasi C? pe A

cu legaturile
P17, P2y - P A—-R
pentru care rangul matricei (gf; (a:)) L<i<m ©Ste m pentru orice x € A se
1<j<n

parcurg urmatorii pasi:

Pasul 1: Se determind A\ = (Ay, Ag, ..., Ay) € R™ si punctele stationare ale
functiei F': A — R, definita prin

F(x) = f (@) + My () + Aoy (2) + o+ Aoy, (2)

pentru orice x € A, adica se rezolva sistemul

( n .
36_;1 ('I17$27 -'-7xn) + 1:2:1)\13_5; (331,.1'2, 73:11) =0
n
88_1{02 <x17x27 7xn> + Zzzl)\lg_‘i; (13171‘2, ,xn) = 0

0w
8836_]; (T1, 5oy Tn) + Ai% (r1,29, ..., xp,) =0
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cu necunoscutele xq, xs, ..., Ty, A1, Ag, ..., A\p,. Numerele reale Ay, Ao, ...

se numesc multiplicatori Lagrange, iar functia
(@, A) = f (2) + Aoy () + Moy (2) + -+ Ay, ()
functia Lagrange.

Pasul 2: Se calculeaza diferentiala de ordinul 2 a lui F in a

n 2F 2F
d2Fa:zg—2(a)dx§+2 3 0
i=1 0%y

1<i<j<n aﬂﬁz‘aﬂfj

(a) dz;dx;

Pasul 3: Se diferentiaza relatiile ¢, (z) = 0 in a si se obtine sistemul

n Jyp;

(a)dz; =0 1<i<n.

Q

T

Jj=1 J

privit formal ca un sistem liniar in necunoscutele dxq, dxzs, ..., dx,.

o . 0.
Deoarece rangul matricei a%- (a) . este m, m necunoscute sunt
T 1<i<m

15j<n

pricipale si n — m sunt secundare. Eventual renumerotand putem
presupune ca dxi, drs, ..., dr,_, sunt necunoscute secundare, iar
dTp_mi1, ATp_myo, ..., dx, principale. Ca urmare dz, .11, dT, 1o,
..., dx,, pot fi exprimate in functie de dx1, dxs, ..., dx,,_,,. Inlocuindu-

le in d?F, se obtine

d2Fa = Z Cbijdl’z’dl’j

1<i,5<n—m

Pasul 4: Se studiazd matricea A = (a;),; ;<,_,, obtinutd la pasul 3.

1. Daca A este pozitiv definita, atunci a este punct de minim local

conditionat.

2. Daca A este negativ definita, atunci a este punct de manim local

conditionat.

3. Daca A este nedefinita, atunci a nu este punct de extrem local

conditionat.
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Exemplul 5.9.2 Sa se determine punctele de extrem local conditionat ale

functiei f: {(z,y,2) €eR3 12y <0 i zz > 0} = R, f(x,y,2) = xyz pentru

orice (1,y,z) € R?, 1y < 0, cu legaturile x> + y* + 22 =1 six +y+ 2 = 0.
R: Fie F: {(z,y,2) e R®: 2y < 0 i vz > 0} — R, definita prin

Fz)=zyz4+ M (2® 4+ +22 - 1)+ X (z+y+2)

Pasul 1: Determinam punctele stationare (critice) ale functiei F,ce satisfac
legaturile adica solutiile din {(x,y,z) € R® : 2y < 0 si vz > 0} ale sistemului

(z,y,2) =
(

Ty, 2) =

I%gl%%l%

5 (x,y,2) = 0
P4yt +22-1=0
r+y+z2=0

Pentru aceasta calculam derivatele partiale de ordinul 1:

OF

P (x,y,2) = yz+2Mx+ X\

OF

i (x,y,2) = xz+2My+ Ao

OF

5 (z,y,2) = xy+2Mz+ A
g—i(x, z) = Yz + 22+ Xy =0
88 (z,y, 2 )—0 xz4+2My+ A =0
%Z (x,y,2) =0 & Y+ 22+ X =0

22+t +22-1=0 24y +22-1=0

r+y+z=0 r+y+z2=0

x 22— (22442422 A
Avem xy + xz + yz = (ety i) g HP+2?) = —%. In plus, adundnd primele

trei ecuatii st tindnd cont ca x + y + z = 0, obtinem Ay = %. Inmultinand
prima ecuatie cu x, a doua cu Yy, a treia cu z § adundndu-le, obtinem
3xyz + 2X1 = 0. Pe de alta parte inmultindnd prima ecuatie cu yz, a doua
cu xz, a treia cu xy, adundndu-le gi tindnd cont ci (zy)” + (x2)° + (y2)° =
(zy + 22 +yz)’ —2wyz (x+y +2) = 1 obtinem 5 + 6 zzy — 3X = 0. Ca
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urmare 4)\3 = %, de unde obtinem A\, € {—@ i} §i corespunzatorxyz €

127 12
V6 _ G T I
{ﬁ, —¥s (- Asadar x,y,z sunt radacinile ecuatier in t:

t—(r+y+2)tP+(xy+rz+y2)t—ayz=0

Daca Ny = —@ ecuatia devine t* — 3t — ‘[ =0 183 -9t —/6=0 <
< ) (18152 — 36t — \/_) = 0. Deci are radacinile t; = ‘/ to ‘/?6
gt t3 = —i Deoarece xy < 0 st xz > 0, obtinem punctul stationar a; =

(.4

Daca Ay = ecuazjza int devine t3 — 1t+@ 0o 1839+ /6 =0

< i) (18t2 +3v6t — 6) = 0. Deci are radacinile t; = 9, t, = —¥0
§1 t3 = ‘/?6. Deoarece vy < 0 i xz > 0, oblinem punctul stationar as =
(f G f)

Y 397 6

Pasul 2: In fiecare punct stationar a calculam diferentiala de ordinul 2
a lut F' in a.Pentru aceasta calculam derivatele partiale de ordinul 2:

0? 0 0
8_:UJ; (r,y) = 8:1: (8£) E (yz +2Mx + Xo) =2\

2 f af\ 9

0? o (0 0

82 f o (f\ O

8:c8y( . Y) %(@) —%($Z+2)\1y+)\2)—2
92 f o (f\ O

92 f o (of\ @

Decs

dF, = 2)\dx® + 2\ d2* + 2\ d2* + 2zdxdy + 2ydxdz + 2xdydz.
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Pasul 3: Se diferentiaza legaturile in fiecare punct stationar a = (z,y,2) i
se obtine sistemul

2xdr 4+ 2ydy + 2zdz = 0
dr +dy+dz = 0

Deoarece pentru orice punct stationar x # y i x = z obtinem dx
—xdeyde v =y g dy = —&%=2dz — 2=2g, — () care inlocuite
r—y =y T—yY T—yY
dF, conduc la

)
3

dF, = (2\1 + 2\, + 2y) d2* = (4)\; — 2y) d2?

Pasul 4: Studiul A
(z,y,2). Pentru X, = —

= (4\1 — 2y) pentru fiecare punct stationar a
V6 V6 V6 _ﬁ)
6°3° 6 )

o avem un singur punct stationar a; = <—

iar pentru acesta A = —*/?6 — 2*/?6 < 0 st ca urmare a; = (_%g, */?6, —?)
este punct de maxim local conditionat al lui f. Pentru A\, = 1—26 avem de
asemenea un singur punct stationar as = (%6, —\/Té, %), war in cest caz

A= \/?é + 2*/?6 > 0 si ca urmare ay = (‘/Tg, —*/?é, %) este punct de minim

local conditionat al lui f.

Exemplul 5.9.3 Sa se determine imaginea functiei f : D — R, definita
prIin

flry) =2 +y* - 20 -4y, (v,y) €D,
unde D = {(z,y) : 2* + y* < 1}.

R: Multimea D fiind coneza si f fiind continua, f (D) este conexa. Cum
f(D) C R gi f(D) coneza, rezulta f (D) este interval. Evident capetele
intervalului f (D) sunt ing) f(x) si sug f (). Deorece D este o submultime

& €

inchisd §i marginita a lui R?, D este compactd si ca urmare functia continud
f isi atinge extremele pe D. Asadar

FD) = |1t () sup ()] = i () om0

zeD zeD

Determinam masi intdi punctele de extrem local ale functiei f pe interiorul
multimii D gi apoi pe frontiera lui D i vom compora valorile extreme ale
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functiei. Interiorul multimii D este multimea:
Dy ={(z,y): 2> +y* <1} .
Determinam punctele stationare (critice) ale functiei f pe D, adica solutiile

sistemulus
{ %(%y) =0

Pentru aceasta calculam derivatele partiale de ordinul 1:

of 0

%(x,y) = %(.r2+y2—23:—4y):2x—2

0

a—i(w,y) = %(a:2+y2—2x—4y):2y—4
ﬂ(:16,3/)20 20 —2=0 r=1

{g—g(:ﬁ,y):O <:>{2y—4:0 <Z>{y=2

Deoarece x? +vy? = 124+ 22 =5 > 1, functia f nu are puncte stationare pe
Dy si in consecinta nici puncte de extrem local.

Determinam punctele de extrem local ale functiei f pe frontiera multimai
D, adica pe multimea:

Dlz{(a:,y)::c2+y2:1}.

Cu alte cuvinte avem de rezolvat o problema de extreme contionate. Notam
o (z,y) = 22 +y* — 1 gi definim functia F : R> — R

F(z,y) = f(zy)+ e (2,y)
x2+y2—2x—4y+)\($2+y2—1), (z,y) € R?

Pasul 1: Determinam \ € R gi punctele stationare ale functiei F : A — R,
adica rezolvam sistemul

8 (z,9) =0
%—i(x,y)z()
@ (r,y) =0
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Pentru aceasta calculam derivatele partiale de ordinul 1:

OF D)
8_($7y) = 8_($2+?/2—2$—4y+>\(932+y2—1)):2x—2+2)\x
X T
oF o ) ) )
8_y(:v,y) = %(x +y —21’—4y—|—)\(x +y —1))=2y—4+2)\y
g—g(x,y)zo 2% — 24 2z = 0 xzé
Gy =0 «{ 2y—442y=0 < Y=o
¢ (z,y) =0 ?+yP—1=0 22 +y2—1=0

Inlocuind x siy in ultima ecuatie obtinem

1+4—(A+1)7% = 0
M4+22—-4 = 0
A2 = —1++5
Pentru \y = —1 — /5 obtinem ©1 = —‘/?5, Y1 = —%5 st punctul stationar
a; = (_\/g —M), iar pentru Ay = —1 + /5 obtinem x5 = ?5, Yo = %5

5 5
V5 %)

§1 punctul stationar ay = < =, =Y

Pasul 2: In fiecare punct stationar a calculam d*F,

O*F 0*F O*F
d’F, = o (a) dz* + 2 920y (a) dzdy + e (a) dy?

Pentru aceasta calculam derivatele partiale de ordinul 2:

OF o [(OF )

O*F 0 (OF 0

or - (=)= @y—4+22)=2+2
2 (z,9) 8y<8y> ay(y +2X\y) =2+ 2y
0*F 0 (0F 0

8x8y(x’y) = %<a—y>—%(2y—4+2ky)—0

Deci
P Foy) = (24 2)) d2® + (24 20) dy°
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Pasul 3: Diferentiem legatura 2 4+ y?> — 1 = 0 si obtinem 2xdx + 2ydy = 0
de unde

dy = B
Y

tnlocuind in d*F\,,) obtinem
22
Yy

Pasul 4: Pentru \y = —1 — /5 avem (2+2)) (1 + §—§> < 0, deci a; =

<—‘/?5, —%) este punct de mazim local conditionat. Pentru Ay = —1 + /5

avem (2 + 2\) (1 + ;—3) > 0, deciay = (\/?5’ %) este punct de minim local
conditionat. Asadar

minf (z) = f(az) =

zeD

zeD 57 5 5 3 )

maxf (z) = f(al):f(—é —2\/5> zl—l—é—i-%—i-%g:l%—%/g

f(D) = lmlnf(x),gleag(f(x)] = [1—2\/5,1-1—2\/3 .

zeD

Pentru stabilirea conditiilor necesare si suficiente de extrem conditionat,
pe care le-am folosit in exemplele anterioare pentru determinarea punctelor
de extrem local conditionat, este necesara teorema functiilor pe care o
prezentam in sectiunea urmatoare.

5.10 Functii implicite

Teorema 5.10.1 (Teorema functiei inverse) Daca A C R™ este o multime
dechisa si f = (f1, fa,- [n) : A — R™ o functie de clasa C' pe A cu
proprietatea ca jacobianul

P F@ . @
det (Jf (a)) = o (@) 522 (a) .. 52 (a) 0
oa) 2(a) .. g2 (a)
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pentru orice a € A, atunci f este difeomorfism local, i.e pentru fiecare punct
a € A exista o vecinatate dechisa U, C A a lui a astfel incdt sa fie indeplinite
urmatorele conditii:

1. V, = f(U,) este deschisa;
2. flo, : Uy — Vi, flu, (x) = f(x) pentru orice x € U,, este bijectiva,

3. (flu) ™" : Vo — U, este de clasi C".

5.10.1 Teorema functiilor implicite

Consideram "ecuatia implicitd" F' (z,y) = 0 € R*, = € R™, y € R™.
Dorim sa rezolvam aceasta ecuatie, macar local, obtindnd explicit variabila
y functie de = (mai precis, obtinand local y = ¢ (x)).

Teorema 5.10.2 (Cazul unei ecuatii si al unei functii implicite de
o variabild) Fie A C R? o multime deschisa, (a,b) € A si f: A—TR o
functie diferentiabila pe A care indeplineste urmatorele conditii

i) f(a,b)=0
ii) % §i % sunt continue in (a,b)

iii) 5L (a,0) #£0

Atunci existar,s > 0 gi o functieh : (a —r,a+r) — (b—s,b+ s) astfel
incat

1. (a—rya+r)x (b—s,b+s) CA;
2. f(x,h(x)) =0 pentru oricex € (a —r,a+71);
3. h este derivabila pe (a —r,a+ 1) gi h' este continua in a

4. Pentru orice (x,y) € (a —r,a+71) X (b—s,b+ s) cu proprietatea ca
f(z,y) =0 avem y = h(z).
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Deoarece % (a,b) # 0 si % continud, existd o vecindtate V' C A a
Y Y
punctului (a,b) astfel incat g—i (z,y) # 0 pentru orice (z,y) € V. Existd

ro > 0, ro < r astfel incat pentru orice € (a — ro,a + rg), (z,h(x)) € V.
Derivand

f (@, h(z))=0
intr-un punct = € (a — rg,a + 79) obtinem
g—i (x,h(x))+ g—‘; (x,h(x)) B (x) =0
9 (z,h(x))
’ _ _ Oz )
M= @)

Exemplul 5.10.3 Sa se calculeze h' (1) si b (x) pentru functia h (y =
h(x)) definita implicit de ecuatia

(x2+y2)2—4(x2+y2)—5 =
h(l) = 2.

R: Fie f : R? = R functia definita prin
f(z,y) = (x2—|—y2)2 —4(z*+y*) =5
pentru orice (z,y) € R?. Avem f(1,2) =0, f este indefinit derivabila si
(z,y) = 4(2*+y°)y — 8y
= 4(3:2+y2—2)y

Ay

st deci % (1,2) = 24 # 0. Conform teoremei functiilor implicite exista
y
r,s >0 gi o functieh : (a —r,a+1) — (b—s,b+ s) local unica astfel incdt

[z h(x))=0.
Deriwvdand obtinem

of of |
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§t deoarece

O ) = syt
= 4(2*+y*-2)z
obtinem
W) = _a@h@) A th@ -2 o
H@h@)  4@+h@’-2)h@) @)
/ _ 1 — 1
A T
Derivind
") =5
obtinem
" _ h(1)—2h' (1) 5
O it

Teorema 5.10.4 (Cazul unei ecuatii si al unei functii implicite de
mai multe variabile) Fie A C R"™ o multime deschisa, a € R", b € R
astfel incat (a,b) € A gi f : A — R o functie diferentiabila pe A care
indeplineste urmatorele conditii

i) f(a,b)=0
ii) 88_9{1’59_;;’ ...,(%{L, §1 g—i (y este notatia pentru cea de n+ 1 variabila) sunt

continue in (a,b)
iii) & (a,0) #£0
Atunci ezistar,s > 0 gi o functie h : B (a,r) — (b— s,b+ s) astfel incat
1. B(a,r) x (b—s,b+s) C A;
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2. f(xz,h(x)) =0 pentru orice x € B (a,r);
3. h este diferentiabila pe B (a,r) si dh este continud in a

4. Pentru orice (z,y) € B (a,r)x(b— s,b+ s) cu proprietatea ca f (z,y) =
0 avem y = h(z).
Deoarece ? (a,b) # 0 si ? continud, existd o vecindtate V' C A a
Y Yy R
punctului (a, b) astfel incat g—g (x,y) # 0 pentru orice (x,y) € V. In plus,
exista 1o > 0, 1o < r astfel incat pentru orice x € B (a, 1), (x,h(x)) € V.
Derivand partial relativ la z; (1 <i < n)

[, h(z)) =0

intr-un punct = € B (a,ry) obtinem

of

af oh

(z, h(z)) 3y (z, h(z))

Exemplul 5.10.5 Sa se calculeze g—; (1, —\3/5) 5t % (1, —\3/5) pentru functia
h (z=h(x,y)) definita implicit de ecuatia

20 + 2 + 228 —dayz = 0
h (1, —\3/5) — 0.
R: Fie f : R? — R functia definita prin
f(z,y,2) =22° +9° + 22 — dayz

pentru orice (r,y,z) € R3.  Avem f(l,—\3/§, 0) = 0, [ este indefinit
derivabila st
of

& (may72) = 62% — dzy
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st dect % (1, —/2, 0) = 4y/2 # 0. Conform teoremei functiilor implicite
exista v, s > 0 gi o functie h : B(a,r) — (b—s,b+ s) local unica astfel
incat

f (xayv h (iE,y)) =0.

Deriwvand partial in raport cu x obtinem

0 0 Oh
L (g @) + 5L b ) S () =0

§t deoarece

af

9z (z,y,2) = 62 — 4yz
obtinem
Oh () = CFE @y h(ey) 622 4yh(xy)
2 o (wy h(z,y)  6h(w,y)’ —day

oh (1,_\3@) _ 6 _3\‘"’/1

ox a4
Derivand partial in raport cu y in f (x,y,h(x,y)) = 0 obtinem
of

0 0
a_y(xayah(xay)) + a_ﬁ (Jf,y,h(l‘,y))a—Z(fL‘,y> =0

st deoarece

0
a_i (l’,y,Z) = 3y2 —dzx
obtinem
ay ’ g_i(x7yuh(xvy)) 6h (xay)2 —4$y

3 3
@ (1’_\3@> _ _6\/1 :_3\/§
dy 4v2 2
Teorema 5.10.6 (Cazul unui sistem cu n ecuatit si n functii implicite)
Fie A C R™™ o multime deschisd, a € R™, b € R™ astfel incdt (a,b) € A gi
f="_(f,f2,, [n) s A— R" o functie diferentiabila pe A care indeplineste
urmatorele conditii
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i) f(a,b)=0
N ) af @ 9
ii) 81{2,652 ..,ﬁ,a—yﬁ, 8—;; 76y , (y; este notatia pentru cea de m + i

variabila) sunt continue in (a,b)

iii) Dfo") (a,b) #0

y17y27 7yn)
Atunci existar,s > 0 gi o functie h = (hq, ha, ..., hy,) : B (a,r) — B (b, s)
astfel incat

1. B(a,7) x B(b,s) C A;
2. f(x,h(x)) =0 pentru orice x € B (a,r);
3. h este diferentiabila pe B (a,r) si dh este continud in a

4. Pentru orice (x,y) € B (a,r) x B (b,s) cu proprietatea ca f (z,y) =0

avem y = h (z).
D(f1,f2,-1fn) . df  Of of . A
Deoarece m(a, b) # 0 si oo Bug dy, continue in (a,b),

existd o vecindtate V' C A a punctului (a, b) astfel incat % (x,y) #

0 pentru orice (z,y) € V. In plus, existd ry > 0, 7y < r astfel incat pentru
orice x € B (a,ry), (x,h(x)) € V. Derivand partial relativ la z; (1 <i < m)
in

intr-un punct « € B (a,r9) obtinem

of; of; Ohy,

B, (&1 (@) + E 5y (@R @) G (@) =0
Oy == 1<j<
2 g @h(@) Fo @) = -5 @ h(@), 1<j<n,
adica un sistem liniar cu n ecuatii si necunoscutele 8—21 (a:), % (:L‘), ey

%}; (x). Sistemul este compatibil determinat i aplicand regula lui Cramer

rezulta:

D(f1,f2,---,fn)
oh; () = — D(Y1,Y2 Ui — 1T Y41, gm) (z,h(x))
i B D(f1,f2,:-5fn)
o Do (@, (2)

pentru orice 1 < j < n siorice 1 <7 < m.
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Exemplul 5.10.7 Sa se calculeze §(0,1), §4(0,1), §2(0,1) si §2(0,1)
pentru functiile (z = u(x,y),t = v (x,y)) definite implicit de sistemul

P—r—y = 0
2t—y = 0

in vecinatatea punctului (0,1,1,1) (u(0,1) =1, v(0,1) =1). Fie f =
(f1, f2) : R* = R? functia definita prin

f1<x7y7z7t> = 22_‘T—y
f2($7yazat) = Zt_y

pentru orice (x,y, z,t) € R, Avem f(0,1,1,1) = (0,0), f1,f> sunt indefinit
derivabile,

D(flaf2) %(x,y,z,t) %(x>y7zat)
— 5 (2., 2, 1) 5h Fy
D(Z>t) E(%%Z?t) W(*x;y?Zat)
. 2z 0 . 2
= ’ P ‘ =2z

i deci % (0,1,1,1) = 2 # 0. Conform teoremei functiilor implicite

existd r,s > 0 gi o functie h = (u,v) : B((0,1),7) — B((1,1),s) local
unica astfel incdt

f (‘Tay7 h(%y)) =0.

Avem

%(z,y) = %(%%u(m?y)ﬂv(may))
| B @yu(zy) v (zy) SRz yu(zy),v(z,y)
B ’%(%y,uwy),v(%y)) %(Ly,u(ﬂs,y),v(%y))

-1 0

- ’ 0 wu(z,y) ':—u(x,y)

ou

8_1:(0’1) = —1

36



Analiza Matematica - curs 10

ou D(f1>f2)

a—y(%y) = m(w,y,u(w,y),v(x,y))
| B @yulay)ey) G @y y),v(zy)
& (2, y,ulz,y) v (e,y) 2 (x,y,u(,y),v(z,y)
- ‘ -1 u(:c,y) '_ ( 7y)
ou
a—y(o,n - -1
dv D (f1, f2)
) ($7y) = m(x,y,U(x,y),v(x,y))
L (yu(ay) v (@) R (g u(zy) ()
= Ry o) E@yulny)o@y)
| 2u(zy) -1
= v(z,y) 0 ‘v(:t:,y)
ov
%(0,1) =1
v N D (fi1, f2)
a—y(%y) = m(x,y,u(x,y),v(x,y))
| B ayuley),e(ey) %—;<x,y,u<x,y>,v<x,y>>
G2 (w,y,ul@,y) o (2,y) G2 (2 yu(z,y),v(@y)
2u (z,y) —1
— v(:z:,yy) 3 ‘:—2u(m,y)+v(9&,y)
ov
8_y(0’1) = —2+41=-1.

Definitia 5.10.8 Fie A C R" o multime deschisa si f1, fo, ..., frn : A —
R m functii de clasa C'. Functiile fi, fo, ..., fm Se numesc functional

dependente pe A 24 evista j € {1,2,...,m} si o functie ® : R™ ! — R de
clasa C* astfel incat

fi(w) = @ (fr (), f2 () oo fi-2 (2) fi42 (2) ooy fin (7))

pentru orice x € A.
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Definitia 5.10.9 Fie A C R" o multime deschisa, a € A si f1, f2, ...,
fm : A — R m functii de clasa C*. Functiile fi, fa, ..., fm Se numesc
functional dependente in a Y exist o vecindtate deschisd V CAaluia
astfel incat fi, fo, ..., fim sunt functional dependente pe V. Functiile fi,
fo, ..., fm se numesc functional independente in a Y sunt functional
dependente in a.

Functuile fy, fo, ..., fm se numesc functional independente pe A p2d f1,
fa, -, fm se numesc functional independente in orice punct din A.

Daca fi, f2, ..., fin sunt functional dependente in a, atunci matricea
jacobiana
0 0 0
B @ . W
Jf(a) = o (@) g2(a) ... 52(a)
_ - S
G (@) G (o) o G (a)
f = (flaf?a"'?fm)
are rangul strict mai mic decat m. Intr-adevar, deorece fi, fa, ..., fm sunt

functional dependente in a, exista o vecinatate deschisa V' C A a lui a exista
j€{1,2,...,m} si o functie ® : R™1 — R de clasd C! astfel incat
fj (.%') =o (fl (Z’) ) f2 (l‘) PRERE] fj—l (l‘) ) fj—i—l (I) PEEER] fm (I))

pentru orice x € V. Derivand partial la z; obtinem

of; oo ofp
9, (W = p; oy (1@ (@), fia (@), fi41(@) sy fn (@) o (@) +

T:;; g_gi ((fi(a), f2(a), ... fimr(a), firr(a), .., fm (a))) aé?f—:lz): )

Deci linia j a matricei Jf (a) este o combinatie liniara a celorlate linii.

Teorema 5.10.10 Fie A C R™ o multime deschisa si f1, fo, ooy fn 1 A —
R m functii de clasa C'. Daca rangul matricei

9 9 )

s .
e (a) s (a) .. . (a)
b b S
aan (a) 8%2 (a) ... 8{;_71 (a)
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este m in fiecare puncta € A, atunci f1, fo, ..., fm sunt functional independente
pe A.

Teorema 5.10.11 Fie A C R™ o multime deschisa, a € A si f1, fa, ...,
fm: A— R m functii de clasa C'. Daca rangul matricei

d 9 )
) B . 2
Bia) B .. L
b b S
aan (a) 8%2 (a) ... 8{;_71 (a)

este r < m, atunci existd o vecinatate deschisa V- C A a lui a astfel incat
r dintre cele m functii sunt independente pe V', celelalte fiind depende de
acestea pe V.

Eventual renumerotand putem presupune in teorema anterioara ca f,
f2, ..., fr sunt independente pe V. Teorema mai afirma ca exista functiile
Oy, Dy, ..., P,y : R” — R de clasi C! astfel incat

f’r‘+j (l‘) = (I)] (fl (:L‘) ) f2 (I) ) "'7f7" (Jf))
pentru orice x € V gi pentru orice j € {1,...,m —r}.
Exemplul 5.10.12 Fie functiile f,q,h : R® — R definite prin

fr,y,2) = 2+2y+2
g(z,y,2) T—2y+2
h(z,y,z) = 8(zy+zy).

Matricea jacobiana este

%—jgﬁ (2., 2) %—g (2,9, 2) %—; (2,9, 2)
g (0:y:2) gy (w,9,2) 5 (2.y,2)
o (2,9, 2) a—y(%yaz) o (2,9, 2)
1 2 1
1 -2 1
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Deoarece
1 2 1
1 —2 =
8y 8(z+2z) 8y |7
§t
1 2
‘ 1 =2 ' =—4#0

rezultd ca rangul matricei jacobiene este 2 < 3 in orice punct (x,y, z) din
R3. Deci f,g,h sunt functional dependente. Functiile f si g sunt functional
independente pe R3 gi h este functional dependenta de f si g. De fapt se
poate verifica usor ca pentru orice punct (x,y,z) din R3

h(x,y,z) = f(x7y7z)2_g(xvyvz)2
®(f(z,y,2),9(2,y,2)),

unde @ : R* - R, ® (u,v) = u? —v?, (u,v) € R%
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