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Abstract

If (X,P) is a sequentially complete locally convex space, then a quo-
tient bounded operator is regular (in the sense of Waelbroeck) if and only
if it is a bounded element (in the sense of Allan) of algebra QP(X). Using
germs of analytic functions from a open set of C to the locally convex
algebra QP(X), the classic functional calculus for the bounded operators
on a Banach space is naturally generalized for bounded elements of the
algebra QP(X).
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1 Introduction

In this paper we define a functional calculus for bounded operators on sequen-
tially complete spaces which is inspired by Waelbroeck’s functional calculus
presented in [20]. It is well-known that if X is a Banach space and L(X) is
Banach algebra of bounded operators on X, then the formula

f(T ) = 1
2πi

∫
Γ

f (z) (zI − T )−1
dz,

(where f is an analytic function on some neighborhood of σ(T ), Γ is a closed
rectifiable Jordan curve whose interior domain D is such that σ(T ) ⊂ D, and f
is analytic on D and continuous on D ∪ Γ) defines a homomorphism f → f(T )
from the set of all analytic functions on some neighborhood of σ(T ) into L(X),
with very useful properties. If we want to generalize this theory for sequen-
tially complete locally convex spaces we need new notions which are related to
this spaces. Through this paper all the locally convex spaces will be assumed
sequentially complete Hausdorff space, over the complex field C, and all the
operators will be linear.

∗This paper was written during the visit of the author to the Departamento de Análisis
Matemático, from Facultad de Ciencias Matematicas, Universidad Complutense de Madrid
(Spain), and was supported by the MEdC-ANCS CEEX grant ET65/2005 contract no.
2987/11.10.2005 and the M.Ed.C. grant C.N.B.S.S. contract no. 5800/09.10.2006.
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The collection of all families of seminorms P which generate the topology of
a locally convex space X (in the sense that the topology of X is the coarsest
with respect to which all seminorms of P are continuous) will be denoted by
C(X). The set of all directed families P ∈ C(X) is denoted by C0(X). On a
family of seminorms on a linear space X we define the relation ,, ≤” by

p ≤ q ⇔ p (x) ≤ q (x), (∀) x ∈ X.

A family of seminorms is preordered by the relation ” ≺”, where

p ≺ q ⇔ there exists some r > 0 such that p (x) ≤ rq (x), for all x ∈ X.

If p ≺ q and q ≺ p, we write p ≈ q. Two families P1 and P2 of seminorms
on a linear space are called Q-equivalent ( denoted P1 ≈ P2) if:

1. for each p1 ∈ P1 there exists p2 ∈ P2 such that p1 ≈ p2;

2. for each p2 ∈ P2 there exists p1 ∈ P1 such that p2 ≈ p1.

Two Q-equivalent and separating families of seminorms on a linear space
generate the same locally convex topology.

An operator T ∈ L(X) is:

1. a quotient bounded operator with respect to P ∈ C(X) if for every semi-
norm p ∈ P there exists cp > 0 such that

p (Tx) ≤ cpp (x) , (∀) x ∈ X.

2. an universally bounded with respect to P ∈ C(X) if there exists c0 > 0
such that

p(Tx) ≤ c0p (x) , (∀) x ∈ X, (∀) p ∈ P.

Example 1.1 1. Let X be the vectorial space of the complex function and
F be the set of the finite parts from C. We consider on X the topology
generated by the family of the seminorms P = {pF | F ∈ F}, where

pF (f) = max{ | f (x) | | x ∈ F}, (∀) F ∈ F , (∀) f ∈ X.

Then, the operator T : X → X given by

(Tf) (x) = xf (x) , (∀) x ∈ C.

is a quotient bounded operator with respect to P.

2. Every locally bounded operator on a locally convex space X (i.e. an oper-
ator which maps some zero neighborhood into a bounded set) is quotient
bounded with respect to some family of seminorms P ∈ C(X).
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The class of the quotient bounded operators (universally bounded operators)
with respect to P ∈ C(X) is denoted by QP(X) (respectively BP(X)). It is
obvious that BP(X) ⊂ QP(X). For every p ∈ P the application p̂ : QP(X) → R
defined by

p̂(T ) = inf{ r > 0 | p(Tx) ≤ rp (x) , (∀)x ∈ X},

is a submultiplicative seminorm on QP(X), satisfying the relation p̂(I) = 1, and
has the following properties

1. p̂(T )= sup
p(x)=1

p (Tx) = sup
p(x)≤1

p (Tx), (∀) p ∈ P;

2. p (Tx) ≤ p̂ (T ) p (x), (∀) x ∈ X.

For a calibration P ∈ C(X), we denote by P̂ the family {p̂ | p ∈ P}.
(QP(X), P̂) is a sequentially complete locally multiplicatively convex algebra
for all P ∈ C(X), and BP(X) is a unitary normed algebra with respect to the
norm ‖•‖P defined by

‖T‖P = sup{p̂(T ) | p ∈ P}, (∀) T ∈ BP(X).

and
‖T‖P = inf{M > 0 | p (Tx) ≤ Mp (x) , (∀) x ∈ X, (∀) p ∈ P}.

If T ∈ QP(X) we said that α ∈ C is in the resolvent set ρ(QP , T ) if there
exists (αI − T )−1 ∈ QP(X). The spectral set σ(QP , T ) will be the complement
of ρ(QP , T ).

An operator T ∈ QP(X) is a bounded element of the algebra QP(X) if it is
a bounded element in the sense of G.R. Allan [1], i.e some scalar multiple of it
generates a bounded semigroup. The class of the bounded elements of QP(X)
is denoted by (QP(X))0. An operator T ∈ QP(X) is bounded in the algebra
QP(X) if and only if there is P ′ ∈ C(X) such that P ≈ P ′ and T ∈ BP′(X)
[9]. If rP(T ) is the P-spectral radius of the operator T , i.e. it is the radius of
boundness of the operator T in QP(X) given by

rP(T ) = inf{α > 0 | α−1T generates a bounded semigroup in QP(X)},

then in [1] and [18] was proved that the following relation hold

rP(T ) = sup{ lim sup
n→∞

(p̂ (Tn))1/n | p ∈ P} =

= sup{ lim
n→∞

(p̂ (Tn))1/n | p ∈ P} = sup{ inf
n≥1

(p̂ (Tn))1/n | p ∈ P} (1)

rP(T ) < +∞ if and only if T ∈ (QP(X))0; (2)

rP(T ) = inf
{

λ > 0 | lim
n→∞

Tn

λn
= 0

}
; (3)
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If (X,P) is a locally convex space and T ∈ (QP(X))0, then the Neumann

series
∞∑

n=0

T n

λn+1 converges to R (λ, T )(in QP(X)), for every |λ| > rP(T ), and

R (λ, T ) ∈ QP(X) [18]. Moreover,

|σ(QP , T )| = rP(T ). (4)

If T ∈ (QP , (X)) has the spectrum σ(QP , T ) bounded, then T ∈ (QP(X))0
[9]. Hence, T ∈ (QP , (X))0 if and only if the spectrum σ(QP , T ) is bounded.
If (X,P) is a locally convex space and T ∈ (QP(X))0 we denote by r0

P(T ) the
radius of boundness of the operator T in (QP(X))0. We say that r0

P(T ) is the
P-spectral radius of the operator T in the algebra (QP(X))0. From definition
it follows that r0

P(T ) = rP(T ) and r0
P(T ) has all the properties of the spectral

radius rP(T ) presented above. We denote by ρ(Q0
P , T ) the resolvent set of T in

(QP(X))0. The spectral set σ(Q0
P , T ) will be the complement of ρ(Q0

P , T ).

Definition 1.2 Let (X,P) be a locally convex space. The Waelbroeck resolvent
set of an operator T ∈ QP(X), denoted by ρW (QP , T ), is the subset of elements
λ0 ∈ C∞ = C∪{∞}, for which there exists a neighborhood V ∈ V(λ0) such that:

1. the operator λI − T is invertible in QP(X) for all λ ∈ V \{∞}

2. the set { ( λI − T )−1 | λ ∈ V \{∞} } is bounded in QP(X).

The Waelbroeck spectrum of T , denoted by σW (QP , T ), is the complement
of the set ρW (QP , T ) in C∞. It is obvious that σ(QP , T ) ⊂ σW (QP , T ).

Definition 1.3 Let (X,P) be a locally convex space. An operator T ∈ QP(X)
is regular if ∞ /∈ σW (QP , T ), i.e. there exists some t > 0 such that:

1. the operator λI − T is invertible in QP(X), for all | λ |> t;

2. the set {R (λ, T ) || λ |> t} is bounded in QP(X).

2 Bounded operators in QP(X)

Lemma 2.1 Let (X,P) be a locally convex space and T ∈ (QP(X))0 such that

rP(T ) < 1. Then the operator I − T is invertible and (I − T )−1 =
∞∑

n=0
Tn.

Proof. Assume that rP(T ) < t < 1. From relation (3) it follows that

lim sup
n→∞

(p̂ (Tn))1/n
< t, (∀) p ∈ P,

so for each p ∈ P there exists np ∈ N such that

(p̂ (Tn))1/n ≤ sup
n≥np

(p̂ (Tn))1/n
< t, (∀) n ≥ np.
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This relation implies that the series
∞∑

n=0
p̂ (Tn) converges, so

lim
n→∞

p̂ (Tn) = 0, (∀) p ∈ P,

therefore lim
n→∞

Tn = 0. Since the algebra QP(X) is sequentially complete it

results that the series
∞∑

n=0
Tn converges. Moreover,

(I − T )
m∑

n=0

Tn =
m∑

n=0

Tn(I − T ) = I − Tm+1,

so

(I − T )
∞∑

n=0

Tn =
∞∑

n=0

Tn(I − T ) = I,

which implies that I − T is invertible and (I − T )−1 =
∞∑

n=0
Tn.

Lemma 2.2 Let (X,P) be a locally convex space. If T ∈ (QP(X))0 then

1. the mapping λ → R(λ, T ) is holomorphic on ρW (QP , T );

2. dn

dλn R(λ, T ) = (−1)nn!R(λ, T )n+1, for every n ∈ N;

3. lim
|λ|→∞

R(λ, T ) = 0 and lim
|λ|→∞

R(1, λ−1T ) = lim
|λ|→∞

λR(1, T ) = I;

4. σW (QP , T ) 6= ∅.

Proof. 1) If λ0 ∈ ρW (QP , T ) then there exists V ∈ V(λ0) with the properties
(1) and (2) from definition (1.2). For every λ ∈ V \{∞} we have

R(λ, T )−R(λ0, T ) = (λ0 − λ)R(λ, T )R(λ0, T )

and since the set {R(λ, T )| λ ∈ V \{∞}} is bounded in QP(X) results that the
application λ → R(λ, T ) is continuous in λ0, so

lim
λ→λ0

R(λ, T )−R(λ0, T )
λ− λ0

= −R2(λ0, T )

If λ0 = ∞ then, there exists some neighborhood V ∈ V(∞) such that the
application λ → R(λ, T ) is defined and bounded on V \{∞}. Moreover, this
application is holomorphic and bounded on V \{∞}, which implies that it is
holomorphic at ∞.

Therefore, the application λ → R(λ, T ) is holomorphic on ρW (QP , T ).
2) Results from the proof of (1).
3) For each λ ∈ ρW (QP , T ), λ 6= 0, we have

λ−1(I + TR(λ, T ))(λI − T ) = I,
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so
R(λ, T ) = λ−1(I + TR(λ, T )). (5)

If V ∈ V(λ0) satisfies the conditions of the definition 1.2, then the set

{TR(λ, T )| λ ∈ V \{∞}}

is bounded, so from relation (5) it results that lim
|λ|→∞

R(λ, T ) = 0.

From the equality

R(λ, T ) = λ−1R(1, λ−1T ), λ 6= 0,

and relation (5) results that

R(1, λ−1T ) = I + TR(λ, T ),

so
lim

|λ|→∞
R(1, λ−1T ) = lim

|λ|→∞
(I + TR(λ, T )) = I.

4) Assume that σW (QP , T ) = ∅. Then the application λ → R(λ, T ) is
holomorphic on C and converges to 0 at infinity. From Liouville Theorem results
that R(λ, T ) = 0, for all λ ∈ C, hence I = (λI − T )R(λ, T ) = 0, which is not
true.

Proposition 2.3 Let (X,P) be a locally convex space. An operator T ∈ QP(X)
is regular if and only if T ∈ (QP(X))0.

Proof. Assume that T ∈ (QP(X))0. It follows that there is P ′ ∈ C(X) such
that P ≈ P ′ and T ∈ BP′(X). Moreover, QP(X) = QP′(X).

If | λ |> 2 ‖T‖P′ , then the Neumann series
∞∑

n=0

T n

λn+1 converges in BP′(X)

and its sum is R (λ, T ). This means that the operator λI − T is invertible in
QP(X) for all | λ |> 2 ‖T ‖P′ . Moreover, for each ε > 0 there exists an index
nε ∈ N such that ∥∥∥∥∥R (λ, T )−

n∑
k=0

T k

λk+1

∥∥∥∥∥
P′

<ε, (∀) n ≥ nε,

which implies that for each n ≥ nε we have

‖R (λ, T )‖P′ ≤

∥∥∥∥∥R (λ, T )−
nε∑

k=0

T k

λk+1

∥∥∥∥∥
P′

+

∥∥∥∥∥
nε∑

k=0

T k

λk+1

∥∥∥∥∥
P ′

<

<ε+ | λ |−1
nε∑

k=0

∥∥∥∥∥ T k

λk

∥∥∥∥∥
P′

<ε + (2 ‖T‖P′)−1
nε∑

k=0

2−k < ε + (‖T‖P′)−1.

Since ε > 0 was arbitrarily chosen, we have that

‖R (λ, T )‖P′ <(‖T‖P′)−1, (∀) | λ |> 2 ‖T‖P′
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From the definition of the norm ‖ ‖P′ it follows that

p̂′ (R (λ, T ))<(‖T‖P′)−1,

for any p ∈ P ′ and for each | λ |> 2 ‖T‖P′ , which means that the set

{R (λ, T ) | | λ |> 2 ‖T‖P′}

is bounded in QP(X) = QP′(X). Hence T is regular.
Now suppose that T ∈ QP(X) is regular, but it is not bounded in QP(X).

Since σ(QP , T ) ⊂ σW (QP , T ) from (2) it follows that

| σW (QP , T ) |=| σ(QP , T ) |= rP(T ) = ∞,

which contradicts the assumption we have made. Thus, T is a bounded element
of QP(X).

Proposition 2.4 Let (X,P) be a locally convex space. If T ∈ (QP(X))0, then

ρW (QP , T ) = ρ(Q0
P , T ).

Proof. If λ0 ∈ ρ(Q0
P , T ) then from the previous proposition it follows that

R(λ0, T ) is a regular element of the algebra QP(X), so there exists t > 0 for
which the condition (1) and (2) of the definition 1.3 are fulfilled. Those condi-
tions are equivalent with

1’) (λ−λ0)−1I−R(λ0, T ) is invertible in QP(X) for all |λ−λ0| < t−1, λ 6= λ0;

2’) the set
{R((λ− λ0)−1, R(λ0, T ))| |λ− λ0| < t−1, λ 6= λ0}

is bounded in QP(X).
From the condition (2’) and lemma 2.2 it results that the set

{(λ− λ0)−1R((λ− λ0)−1, R(λ0, T ))| |λ− λ0| < t−1, λ 6= λ0}

is bounded in QP(X). Moreover, each seminorm p̂, p ∈ P, is submultiplicative,
so the set

{(λ− λ0)−1R(λ0, T )R((λ− λ0)−1, R(λ0, T ))| |λ− λ0| < t−1, λ 6= λ0}

is also bounded in QP(X). Since

(λI − T )(λ0 − λ)−1R(λ0, T )R((λ− λ0)−1, R(λ0, T )) =

= ((λ0I − T ) + (λ− λ0)I)(λ0 − λ)−1R(λ0, T )R((λ− λ0)−1, R(λ0, T )) =

= (λ0 − λ)−1R((λ− λ0)−1, R(λ0, T ))−R(λ0, T )R((λ− λ0)−1, R(λ0, T )) =

= ((λ0 − λ)−1I −R(λ0, T ))R((λ− λ0)−1, R(λ0, T )) = I,
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results that

R(λ, T ) = (λ0 − λ)−1R(λ0, T )R((λ− λ0)−1, R(λ0, T )). (6)

Therefore, the conditions
1) λI − T is invertible for all |λ− λ0| < t−1;
2) {R(λ, T )| |λ− λ0| < t−1} is bounded in QP(X),
of definition (1.2) are fulfilled, so λ0 ∈ ρW (QP , T ) and ρ(Q0

P , T ) ⊂ ρW (QP , T ).
Conversely, if λ0 ∈ ρW (QP , T ) there exists K > 0 such that

1”) λI − T is invertible for all |λ− λ0| < K;
2”) {R(λ, T )| |λ− λ0| < K} is bounded in QP(X).

From the equality

(λ0 − λ)R(λ, T )(λ0I − T )((λ0 − λ)−1I −R(λ0, T )) = I

it follows that

R((λ0 − λ)−1, R(λ0, T )) = (λ0 − λ)R(λ, T )(λ0I − T )

Hence property (2”) implies that the set

{(λ− λ0)−1R((λ− λ0)−1, R(λ0, T ))| |λ− λ0|−1 > K−1, λ 6= λ0}

is bounded in QP(X), so R(λ0, T ) is regular in QP(X). From the previous
proposition results that R(λ0, T ) ∈ (QP(X))0 and λ0 ∈ ρ(Q0

P , T ).

Proposition 2.5 Let (X,P) be a locally convex space. If T ∈ (QP(X))0 and
| λ0 |> rP(T ), then λ0 ∈ ρ(Q0

P , T ).

Proof. The series
∞∑

n=0

T n

λn+1 converges to R (λ0, T ) ∈ QP(X), for all | λ |> rP(T ),

hence it results that there exists ε>0 such that

D (λ0, ε) = {λ | |λ− λ0| < ε} ⊂ {µ | |µ| > rP(T )} ,

so the operator λI − T is invertible, for every λ ∈ D (λ0, ε), and (λI − T )−1 ∈
QP(X).

Now we will prove that the set σ(QP , R(λ0, T )) is bounded. If | µ |> ε−1,
then | µ |−1< ε and λ0−µ−1 ∈ D (λ0, ε). From the previous observations results
that (λ0 − µ−1)I − T is invertible and ((λ0 − µ−1)I − T )−1 ∈ QP(X).

Since
µ−1R

(
λ0 − µ−1, T

)
(λ0I − T ) (µI −R (λ0, T )) =

= R
(
λ0 − µ−1, T

)
(λ0I − T )− µ−1R

(
λ0 − µ−1, T

)
=

= R
(
λ0 − µ−1, T

)
(((λ0 − µ−1)I − T ) + µ−1I)− µ−1R

(
λ0 − µ−1, T

)
=

= I + µ−1R
(
λ0 − µ−1, T

)
− µ−1R

(
λ0 − µ−1, T

)
= I.
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it results that

R(µ,R (λ0, T )) = µ−1R
(
λ0 − µ−1, T

)
(λ0I − T )

But
R
(
λ0 − µ−1, T

)
, (λ0I − T ) ∈ QP(X),

so R(µ,R (λ0, T )) ∈ QP(X), for all | µ |> ε−1.
This implies that σ(QP , R(λ0, T )) ⊂ D

(
0, ε−1

)
, so the set σ(QP , R(λ0, T ))

is bounded. Thus R(λ0, T ) ∈ (QP(X))0.

Corollary 2.6 Let X be a locally convex space and P ∈ C(X). If T ∈ (QP(X))0
then

|σ(QP , T )| = |σW (QP , T )| = rP(T )

Proof. It is a direct consequence of propositions 2.4, 2.5 and relation (4).

Definition 2.7 Let (X,P) be a locally convex space. An operator T ∈ QP(X)
is said to be P-quasinilpotent if rP(T ) = 0.

Remark 2.8 1. If T ∈ QP(X) is P-quasinilpotent, then T ∈ (QP(X))0 and
σW (QP , T ) = {0}.

2. T ∈ QP(X) is P-quasinilpotent if and only if σ(QP , T ) = {0}.

3 A functional calculus for bounded operators

A functional calculus for regular operator on quasi-complete locally convex space
is presented by L.Waelbroeck in [20]. In this section using some ideas from I.
Colojoara [4] and L.Waelbroeck [20] we prove that we can construct a functional
calculus for the bounded elements of the algebra QP(X) (which by previous sec-
tion are regular elements of this algebra), when (X,P) (P ∈ C(X)) is a sequen-
tially complete locally convex space. For the theory of holomorphic functions
on locally convex spaces can see [2] or [5].

Let P ∈ C(X) be arbitrary chosen and D ⊂ C a relatively compact open set.
Denote by O(D,QP(X)) the unitary algebra of the functions f : D → QP(X)
which are holomorphic on D and continuous on D.

Lemma 3.1 If p ∈ P, then the mapping | • |p,D: O(D,QP(X)) → R given by

| f |p,D= sup
z∈D

p(f (z)), (∀) f ∈ O(D,QP(X)),

is a submultiplicative seminorm on O(D,QP(X)).
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If we denote by τP,D the topology defined by the family of seminorms
{| · |p,D |p ∈ P} on O(D,QP(X)), then (O(D,QP(X)), τP,D) is a l.m.c.-algebra.

Let K ⊂ C be a compact set, arbitrarlly chosen. We define the set
O(K, QP(X)) = ∪{O(D,QP(X))|D is relatively compact open set and K ⊂ D}

If D1, D2 ⊂ C are relatively compact open sets such that K ⊂ Di, i = 1, 2,
and fi ∈ O(Di, QP(X)), i = 1, 2, we say that f1 v f2 if and only if there exists
an open set D such that K ⊂ D ⊂ D1 ∩ D2 and f1|D = f2|D. Denote by
A(K, QP(X)) the set of the equivalence classes of O(K, QP(X)) respect to this
equivalence relation. It is easy to see that A(K, QP(X)) is a unitary algebra and
the elements of this algebra are usually called germs of holomorphic functions
from K to QP(X).

Remark 3.2 We consider the following notations:

1. f̃ is the germ of the holomorphic function f ∈ O(D,QP(X)).

2. ϕ is the canonical morphism O(K, QP(X)) → A(K, QP(X));

3. ϕD is the restriction of ϕ to O(D,QP(X)).

Remark 3.3 1. Since we can identify C with CI = {λI | λ ∈ C }, the alge-
bras O(K, C) and A(K, C) can be considered subalgebras of O(K, QP(X)),
respectively A(K, QP(X)). Therefore, we write O(K) and A(K) instead
of O(K, C) and A(K, C).

2. If τP,ind = lim
→D

τP,D (inductive limit), then (A(K, QP(X)), τP,ind) is a

l.m.c.-algebra.

We need the following lemma from complex analysis.

Lemma 3.4 For each compact set K ⊂ C and each relatively compact open set
D ⊃ K there exists some open set G such that:

1. K ⊂ G ⊂ G ⊂ D;

2. G has a finite number of conex components (Gi)i=1,n, the closure of which
are pairwise disjoint;

3. the boundary ∂Gi of Gi, i = 1, n, consists of a finite positive number of
closed rectifiable Jordan curves (Γij)j=1,mi

, no two of which intersect;

4. K ∩ Γij = ∅, for each i = 1, n and every j = 1,mi.

Definition 3.5 If the sets K and D are like in the previous lemma, then an
open set G is called Cauchy domain for the pair (K, D) if satisfies the properties
(1)-(4). The boundary

Γ = ∪i=1,n ∪j=1,mi
Γij

of G is called Cauchy boundary for the pair (K, D).
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Theorem 3.6 If P ∈ C0(X) and T ∈ (QP(X))0, then for each relatively
compact open set D ⊃ σW (QP , T ) there exists an application

FT,D : O(D,QP(X)) → QP(X)

with the properties:

1. FT,D is continuous and linear;

2. FT,D (kS) = S, where kS ≡ S;

3. FT,D (idI) = T , where idI(λ) = λI, for every λ ∈ C.

Proof. Let Γ be a Cauchy boundary for the pair (σW (QP , T ), D). Then the
integral

1
2πi

∫
Γ

f (λ) R (λ, T ) dλ, (∀) f ∈ O(D,QP(X)),

exists like Stieltjes integral, since QP(X) is a sequentially complete l.m.c.-
algebra and the applications t  f(ω(t))R(ω(t), T ) are continuous on [0, 1]
for a continuous parametrization ω of Γ.

Moreover, if Γ1 and Γ2 are Cauchy boundaries for the pair (σW (QP , T ), D)
then

1
2πi

∫
Γ1

f (z) R (λ, T ) dλ =
1

2πi

∫
Γ2

f (λ) R (λ, T ) dλ, (∀) f ∈ O(D,QP(X)),

hence the application FT,D : O(K, QP(X)) → QP(X) given by formula

FT,D(f) =
1

2πi

∫
Γ

f (λ)R (λ, T ) dz, (∀) f ∈ O(D,QP(X)),

is well defined. Now we prove that FT,D has the properties (1)-(3).
The linearity is obvious. For every p ∈ P and every f ∈ O(D,QP(X)) we

have

p̂(FT,D(f)) ≤ L(Γ)
2π

sup
λ∈Γ

p̂(R (λ, T ))sup
λ∈Γ

p̂(f(λ)) ≤ L(Γ)
2π

sup
λ∈Γ

p̂(R (λ, T )) | f |p,D,

where L(Γ) is the length of Γ, which implies the continuity of application FT,D.
Let r > rP(T ) and Γr = {z ∈ C| |z| = r}. For each λ ∈ Γr we have

rP(T
λ ) < 1, so from lemma 2.1 results that

R (λ, T ) = λ−1

(
I − T

λ

)−1

= λ−1
∑
n∈N

(
T

λ

)n

=
∑
n∈N

Tn

λn+1

This observation implies that

FT,D (kS) =
1

2πi

∫
Γ

kS (λ) R (λ, T ) dλ =
S

2πi

∑
n∈N

Tn

∫
Γ

dλ

λn+1
= S

11



FT,D (idI) =
1

2πi

∫
Γ

λR (λ, T ) dλ =
1

2πi

∑
n∈N

Tn

∫
Γ

dλ

λn
= T.

Corollary 3.7 If P ∈ C0(X) and T ∈ (QP(X))0, then there exists an applica-
tion FT : A(σW (QP , T ), QP(X)) → QP(X) which satisfies the conditions:

1. FT is continuous and linear;

2. FT

(
k̃S

)
= S, where k̃T is the germ of the function kS ≡ S;

3. FT

(
ĩdI

)
= T , where ĩdI is the germ of the function idI(λ) = λI, for all

λ ∈ C

Proof. If f̃ ∈ A(σW (QP , T )), then we consider

FT (f̃) = FT,D (f) , (∀) f̃ ∈ A(σW (QP , T )),

where f ∈ O(D,QP , T )) is an element of the equivalence class f̃ . It is obvious
that the definition of FT

(
f̃
)

is independent of the function f and FT

(
f̃
)

is linear. Since FT,D = FT ◦ ϕD and FT,D is continuous results that FT is
continuous.

The properties (2) and (3) results directly from the previous theorem.

Corollary 3.8 If P ∈ C0(X) and T ∈ (QP(X))0, then there exists an unique
unitary continuous morphism FT : A(σW (QP , T )) → QP(X) which satisfies the
condition FT

(
ĩd
)

= T , where id is the identity function on C.

Proof. The application FT and FT,D are defined in the same way like the ap-
plications FT and FT,D. It is easily to see that FT and FT,D are linear and

continuous. Moreover, FT is unitary and FT

(
ĩd
)

= T.

Now, we prove that FT is multiplicative. Let f̃ , g̃ ∈ A(σW (QP , T )) and
f ∈ f̃ , respectively g ∈ g̃. We consider that G and G′ are two Cauchy domains
with the property G′ ⊂ G. If Γ and Γ′ are the boundaries of G and G′ then

FT (f̃)FT (g̃) = − 1
(2πi)2

∫
Γ

∫
Γ′

f(λ)g(ω)R(λ, T )R(ω, T )dλdω

Since G′ ⊂ G, results that Γ ∩ Γ′ = Φ, so

ω − λ 6= 0, (∀)λ ∈ Γ, (∀)ω ∈ Γ′.

From the equality

R(λ, T )−R(ω, T ) = (ω − λ)R(λ, T )R(ω, T )

12



it follows

FT

(
f̃
)

FT (g̃) =
1

(2πi)2

∫
Γ

f(λ)R(λ, T )
(∫

Γ′

g(ω)
ω − λ

dω

)
dλ+

+
1

(2πi)2

∫
Γ′

g(ω)R(ω, T )
(∫

Γ

f(λ)
λ− ω

dλ

)
dω =

=
1

2πi

∫
Γ

f(λ)g (λ) R(λ, T )dω = FT

(
f̃ g̃
)

Assume that F : A(σW (QP , T )) → QP(X) is an unitary continuous mor-
phism which satisfies the condition F

(
ĩd
)

= T . We prove that FT = F .

Let f̃ ∈ A(σW (QP , T )), D ⊃ σW (QP , T ) a relatively compact open set,
f ∈ O(D), such that f ∈ f̃ , and G a Cauchy domain for (σW (QP , T ), D) with
the boundary Γ. For every n ∈ N \ {0} and z1, ..., zn ∈ Γ we consider the
function fn : G → C given by the relation

fn (ω) =
1

2πi

n∑
j=1

f (zj) (zj+1 − zj)
zj − ω

, (∀) ω ∈ G. (7)

Then,

lim
n→∞

fn (ω) =
1

2πi

∫
Γ

f(z)
z − ω

dz = f (ω)

and since this convergence is uniformly on each compact set K ⊂ G, results
that limτind

f̃n = f̃ . Using the continuity of F it results that

lim
n→∞

F
(
f̃n

)
= F

(
f̃
)

(8)

Since F is a unitary morphism with the property F
(
ĩd
)

= T , then from
relation (7) results that

F
(
f̃n

)
=

1
2πi

n∑
j=1

f (zj) (zj+1 − zj) R(zj , T )

so
lim

n→∞
F
(
f̃n

)
=

1
2πi

∫
Γ

f (z) R (z, T ) dz, (9)

From relations (8) and (9) results that

F
(
f̃
)

=
1

2πi

∫
Γ

f (z) R (z, T ) dz = FT,D(f) = FT

(
f̃
)

which implies that FT = F .
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Lemma 3.9 If K ⊂ C is a compact set, then each element of the algebra A(K)
is regular.

Proof. Let f̃ ∈ A(K), D ⊃ K a relatively compact open set, f ∈ O(D) (f ∈
f̃) and ω0 /∈ f (K). Then there are two relatively compact open set U and V
such that ω0 ∈ U , f (K) ⊂ V and U ∩ V = Φ. For every ω ∈ U the function
fω : f−1(V ) → C given by relation

fω (λ) =
1

ω − f (λ)
, (∀) λ ∈ f−1(V )

is holomorphic on f−1(V ), so f̃ω ∈ A(K).
Since for every compact set A ⊂ f−1(V ) we have

sup
ω∈U

sup
λ∈A

|fω (λ) | < ∞

it results that the set { f̃ω|ω ∈ U} is bounded in (A(K), τind). Moreover,

(ω1̃− f̃)f̃ω =
∼
1

so ω ∈ σW (f̃). Therefore σW (f̃) ⊂ f (K). Since K is compact the set f (K) is
compact, hence σW (f̃) is compact and f̃ is regular.

Lemma 3.10 If X and Y are unitary locally convex algebra and F : X → Y is
an unitary continuous morphism, then F (Xr) ⊂ Yr, where Xr and Yr are the
algebras of the regular elements of X, respectively Y .

Proof. If x ∈ Xr, then there exists k > 0 such that λe−x is invertible for every
|λ| > k and the set {R (λ, x) ||λ| > k} is bounded in X. Since F is unitary
morphism it follows that

F (R (λ, x)) = R (λ, F (x)), (∀) |λ| > k,

so from continuity of F it results that the set

{F (R (λ, x)) ||λ| > k} = {R (λ, F (x))||λ| > k}

is bounded. Hence, F (x) is regular.

Proposition 3.11 If P ∈ C0(X) and T ∈ (QP(X))0, then

FT (A(σW (QP , T ))) ⊂ (QP(X))0.

Proof. From lemmas 3.9 and 3.10 results that FT (f̃) is a regular element of
algebra QP(X), for every f̃ ∈ A(σW (QP , T )), so by proposition 2.3 we have
that FT (f̃) ∈ (QP(X))0.
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Remark 3.12 If P ∈ C0(X), T ∈ (QP(X))0 and P is a polynomial, then

FT (P̃ ) = P̃ (T ) and FT,D(P ) = P (T ).

for each relatively compact open set D ⊃ σW (QP , T ). Hence, for each T ∈
(QP(X))0 we can use the following notation:

FT (f̃) = f̃(T ) and FT,D(f) = f(T ).

where f̃ ∈ A(K), D ⊃ K open set and f ∈ O(D), such that f ∈ f̃ .

The following theorem represents the analogous of the spectral mapping
theorem for Banach spaces.

Theorem 3.13 If P ∈ C0(X), T ∈ (QP(X) )0 and f is a holomorphic function
on an open set D ⊃ σW (QP , T ), then

σW (QP , f(T )) = f(σW (QP , T )).

Proof. From lemma 3.10 it follows that the operator f̃(T ) is regular element of
the algebra QP(X), so the spectrum σW (QP , f(T )) is compact.

Let ω0 /∈ f(σW (QP , T )). Then there are two relatively compact open set U
and V such that ω0 ∈ U , σW (QP , f(T )) ⊂ V and U ∩ V = ∅. We proved in the
proof of lemma 3.9 that if the functions fω : f−1(V ) → C, ω ∈ U , are given by

fω (λ) =
1

ω − f (λ)
, (∀) λ ∈ f−1(V )

then the set {f̃ω|ω ∈ U} is bounded in (A(σW (QP , f(T ))), τind). The morphism
FT is unitary, so

FT (f̃ω)(ωI − FT (f̃)) = FT (1̃) = I.

Now from the continuity of FT results that the set

{FT (f̃ω) | ω ∈ U } = {R(ω, FT (f̃)) | ω ∈ U } = {R(ω, f̃(T )) | ω ∈ U }

is bounded in QP(X). Therefore, ω0 /∈ σW (QP , f(T )) and

σW (QP , f(T )) ⊂ f(σW (QP , T )).

If ω0 ∈ σW (QP , T ) and gω0 : D → C is defined by

gω0(λ) =
{

f(λ)−f(ω0)
λ−ω0

, for λ 6= ω0,

f ′(ω0), for λ = ω0,

then gω0 ∈ O(D) and

f(ω0)− f(λ) = (ω0 − λ)gω0(λ), (∀) λ ∈ D.

Therefore
f(ω0)I − f(T ) = (ω0I − T )gω0(T ).

and since ω0I − T is not invertible, it results that f(ω0) ∈ σW (QP , f(T )), so
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f(σW (QP , T )) ⊂ σW (QP , f(T )).

Theorem 3.14 Let P ∈ C0(X) and T ∈ (QP(X))0. If f is holomorphic func-
tion on the open set D ⊃ σW (QP , T ) and g ∈ O(Dg), such that Dg ⊃ f(D),
then (g ◦ f) (T ) = g(f(T )).

Proof. Let G be a Cauchy domain for the pair (σW (QP , T ), D) and Γ the
boundary of G. For each ω /∈ f(G), the function fω : G → C,

fω (λ) =
1

ω − f (λ)
, (∀)λ ∈ G,

is holomorphic, hence we can define fω (T ), where

fω (T ) =
1

2πi

∫
Γ

1
ω − f (λ)

R(λ, T )dλ = R(ω, f(T )). (10)

If we chose a Cauchy domain G′ for the pair (σW (QP , f(T )), Dg) with bound-
ary Γ′ such that f(G) ⊂ G′, then f(Γ) ∩ Γ′ = ∅, so we can define the function
given by (10) for all λ ∈ Γ and ω ∈ Γ′. Thus, from relation (10) and Cauchy
formula it results

g(f (T )) =
1

2πi

∫
Γ′

g(ω)R(ω, f(T ))dω =

=
1

2πi

∫
Γ′

g(ω)
(

1
2πi

∫
Γ

1
ω − f (λ)

R(λ, T )dλ

)
dω =

=
1

2πi

∫
Γ

R(λ, T )
(

1
2πi

∫
Γ′

g(ω)
ω − f (λ)

dω

)
dλ =

1
2πi

∫
Γ

g(f(λ))R(λ, T )dλ =

=
1

2πi

∫
Γ

(g ◦ f) (λ)R(λ, T )dλ = (g ◦ f) (T )

Next, we develop the properties of the exponential function of a quotient
bounded operator.

Lemma 3.15 Assume that P ∈ C0(X) and T ∈ (QP(X))0. If f is a holomor-

phic function on the open set D ⊃ σW (QP , T ) and f (λ) =
∞∑

k=0

αkλk on D, then

f (T ) =
∞∑

k=0

αkT k.

Proof. For ε > 0, sufficiently small, the power series
∞∑

k=0

αkλk converges uni-

formly on the boundary Γ of the disc D = { λ | |λ| = |σW (QP , T )|+ ε}.
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From corollary 3.8 it results that

f(T ) =
1

2πi

∫
Γ

f (λ)R (λ, T ) dλ =
1

2πi

∫
Γ

( ∞∑
k=0

αkλk

)
R (λ, T ) dλ =

=
1

2πi

∞∑
k=0

αk

∫
Γ

λkR (λ, T ) dλ

For every |λ| > |σW (QP , T )| we have R (λ, T )=
∞∑

k=0

T k

λk+1 , so from Cauchy

formula it follows

f(T ) = 1
2πi

∞∑
k=0

αk

∫
Γ

λk

( ∞∑
n=0

T n

λn+1

)
dλ =

∞∑
k=0

αkT k.

Corollary 3.16 If P ∈ C0(X) and T ∈ (QP(X))0, then expT =
∞∑

k=0

T k

k! .

Definition 3.17 If P ∈ C0(X) and T ∈ (QP(X))0, then a subset of σW (QP , T )
which is both open and closed in σW (QP , T ) is called a spectral set of T .

Denote by δT the class of spectral sets of T .

Proposition 3.18 If P ∈ C0(X) and T ∈ (QP(X))0, then for each spectral
set H ∈ δT there exists a unique idempotent TH ∈ QP(X) with the following
properties:

1. THS = STH , whenever S ∈ QP(X) and ST = TS;

2. T∅ is the null element of QP(X);

3. TH∩K = THTK , (∀)H,K ∈ δT ;

4. TH∪K = TH + TK , for each H,K ∈ δT with the property H ∩K = ∅.

Proof. First we make the observation that for each set H ∈ δT there exists an
unique germ f̃H ∈ A(σW (QP , T )) with the property (H), where

(H)


for every pair (D,D′) of relatively compact open sets of the complex
plane which satisfies the conditions

H ⊂ D, σW (QP , T ) ⊂ D′ and D ∩D′ = ∅
then there exists fH ∈ f̃H such that fH/D = 1 and fH /D′ = 0.

If Γ is the Cauchy boundary for the pair (H, D) (the closure of H is taken
in the topology of C) then we define

TH = FT (f̃H) =
1

2πi

∫
Γ

R(λ, T )dλ.
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1) If ST = TS, then SR(λ, T ) = R(λ, T )S, so THS = STH .
2) Results from the definition of TH .
3) Let H,K ∈ δT and f̃H , f̃K , f̃H∩K ∈ A(σW (QP , T )) which verifies the prop-
erties (H), (K), respectively (H ∩K).

Assume that the pairs (D,D′) and (G, G′) are like in (H) and (K) properties.
Then there exists f ∈ f̃H , such that f/D = 1 and f/D′ = 0, and g ∈ f̃K , such
that g/G = 1 and g/G′ = 0. It is obvious that fg/D∩G = 1 and fg/D′∩G′ = 0,
so fg ∈ f̃H∩K and

TH∩M = FT (f̃H∩K) = FT,D∩G(fg) = FT,D∩G(f)FT,D∩G(g) =

= FT,D(f)FT,G(g) = F (f̃H)F (f̃K) = THTM .

4) We consider the above notations and with the supplementary conditions
D ∩G = ∅ and D ′ ∩G ′ = ∅ (since H ∩M = ∅). Then

f(λ) + g(λ) =
{

1, if λ ∈ D ∪G,
0, for λ ∈ D ′ ∪G ′,

Therefore, if f̃H∪K ∈ A(σW (QP , T )) has the property (H∪K), then f +g ∈
f̃H∪K , so

TH∪M = FT (f̃H∪K) = FT,D∪G(f + g) = FT,D∪G(f) + FT,D∪G(g) =

= FT,D(f) + FT,G(g) = FT (f̃H) + FT (f̃K) = TH + TM .

Corollary 3.19 If P ∈ C0(X) and T ∈ (QP(X))0, then for every pair of spec-
tral sets spectral set H,K ∈ δT , which have the properties H ∩ K = ∅ and
H ∪K = σW (QP , T ) , we have

TH + TK = I and THTK = O.

Remark 3.20 From proposition 3.11 results that TH ∈ (QP(X))0, for each
H ∈ δT

Lemma 3.21 Assume that P ∈ C0(X) and T ∈ (QP(X))0. If F ⊂ C has the
property dist(σW (QP , T ), F ) > ε0 > 0, then for each p ∈ P there exists cp > 0
such that

p̂(R(λ, T )n) ≤ cp

εn
0

, (∀) λ ∈ F, (∀) n ∈ N

Proof. Let be ε ∈ (0, ε0), be arbitrarily fixed. If D = C\F , then for the pair
(σW (QP , T )), D) there exists a Cauchy domain G such that

|λ− ω| > ε0 − ε, (∀) λ ∈ F, (∀) ω ∈ G.

If Γ is boundary of G, then

p̂(R(λ, T )n) = p̂

(
1

2πi

∫
Γ

R(ω, T )
(ω − λ)n dω

)
≤ L(Γ)

2π
sup
ω∈Γ

p̂(R(ω, T )n)
|ω − λ|n

<

18



<
L(Γ)
2π supω∈Γ p̂(R(ω, T )n)

(ε0 − ε)n
.

Since ε is arbitrary, the lemma is proved if we chose

cp =
L(Γ)
2π

sup
ω∈Γ

p̂(R(ω, T )n).

The next theorem gives an extension for Taylor’s theorem to functions of an
operator.

Theorem 3.22 Let P ∈ C0(X) and T ∈ (QP(X))0. If D is an relatively com-
pact open set which contains the set σW (QP , T ), f ∈ O(D) and S ∈ (Q P(X))0,
such that rP(S) < dist(σW (QP , T ), C\D) and TS = ST , then the following
statements are true:

1. σW (QP , T + S) ⊂ D;

2. f(T + S) =
∑
n≥0

f(n)(T )
n! Sn.

Proof. Let d, d1 > 0 such that

rP(S) < d1 < d < dist (σW (QP , T ), C\D) .

If Γ1 = {λ ∈ C| |λ| = d1}, then for each p ∈ P and every n ∈ N we have

p̂(Sn) = p̂

(
1

2πi

∫
Γ

λnR(λ, S)dλ

)
≤ L(Γ1)

2π
sup
ω∈Γ1

(|λn| p̂(R(λ, S)) ≤

≤ L(Γ1)
2π

sup
ω∈Γ1

p̂(R(λ, S) sup
ω∈Γ1

|λ|n ≤ kpd
n
1 (11)

where kp = L(Γ1)
2π supω∈Γ1

p̂(R(λ, T ).
Moreover, the previous lemma implies that for each p ∈ P there is cp > 0

such that
p̂(R(λ, T )n+1) ≤ cp

dn+1
, (∀)λ ∈ C\D, (∀) n ∈ N (12)

so from relations (11) and (12) it follows that

p̂(R(λ, T )n+1Sn) = p̂(R(λ, T )n+1)p̂(Sn) ≤ kpcp

d1

(
d1

d

)n+1

(13)

for every p ∈ P, n ∈ N and λ ∈ C\D. Since d1
d < 1 the relation (13) proves that

the series
∑∞

n=1 R(λ, T )n+1Sn converge uniformly on C\D.
From the equalities

(λI − T − S)
∞∑

n=1

R(λ, T )n+1Sn =
∞∑

n=1

R(λ, T )n+1Sn(λI − T − S) =
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=
∞∑

n=1

R(λ, T )nSn −
∞∑

n=1

R(λ, T )n+1Sn+1 = I

it follows that λI − T − S is invertible in QP(X), for all λ ∈ C\D, and

R(λ, T + S) =
∞∑

n=1

R(λ, T )n+1Sn. (14)

Therefore the relation (13) implies that the set {R(λ, T + S)|λ ∈ C\D} is
bounded in QP(X), so σW (QP , T + S) ⊂ D.

If Γ is a Cauchy boundary for the pair (σW (QP , T + S), D), then from (14)
and lemma 2.2 it results

f(λ, T + S) =
1

2πi

∫
Γ

f(λ)R(λ, T + S)dλ =

=
∞∑

n=1

(
1

2πi

∫
Γ

f(λ)R(λ, T )n+1dλ

)
Sn =

=
∞∑

n=1

(
1

2πi

(−1)n

n!

∫
Γ

f(λ)
dn

dλn
R(λ, T )dλ

)
Sn =

=
∞∑

n=1

(
1

2πi

1
n!

∫
Γ

f (n)(λ)R(λ, T )dλ

)
Sn =

∞∑
n=1

f (n)(T )
n!

Sn

Corollary 3.23 Let P ∈ C0(X) and T ∈ (QP(X))0. If S ∈ QP(X) is P-
quasinilpotent, such that TS = ST , then

f̃(T + S) =
∑
n≥0

f̃ (n) (T )
n!

Sn, (∀)f̃ ∈ A(σW (QP , T ))

References

[1] Allan G.R., A spectral theory for locally convex algebras, Proc. London
Math. Soc. 15 (1965), 399-421.

[2] Barroso, J. A., Introduction To Holomorphy, North-Holland, Math. Stud.,
106.

[3] Chilana, A., Invariant subspaces for linear operators on locally convex
spaces, J. London. Math. Soc., 2 (1970) , 493-503.

[4] Colojoara, I., Elemente de teorie spectrală, Editura Academiei Republicii
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