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50 YEARS SETS WITH POSITIVE REACH

- A SURVEY -

Christoph Thäle

Abstract. The purpose of this paper is to summarize results on various aspects of sets with

positive reach, which are up to now not available in such a compact form. After recalling briefly the

results before 1959, sets with positive reach and their associated curvature measures are introduced.

We develop an integral and current representation of these curvature measures and show how the

current representation helps to prove integralgeometric formulas, such as the principal kinematic

formula. Also random sets with positive reach and random mosaics (or the more general random

cell-complexes) with general cell shape are considered.

1 Introduction

This paper is a collection of various aspects of sets with positive reach, which were
introduced by Federer in 1959 [4]. Thus, the paper is also a celebration of their
50-th birthday in 2009.
After the developments of integral geometry for convex sets as well as for smooth
manifolds in differential geometry, the situation around 1950 was the following:
There were two tube formulas (Steiner’s formula and Weyl’s formula), which say that
the volume of a sufficiently small r-parallel neighborhood of a convex set or a C2-
smooth submanifoldX in Rd is a polynomial in r of degree d, the coefficients of which
are (up to some constant) geometric invariants of the underlying set. Unfortunately
the the assumptions of both results are quite different, such that each case does
not contain or imply the other one. This problem was solved by Federer in this
famous paper [4], where he introduced sets with positive reach and their associated
curvatures and curvature measures. He was also able tho show a certain tube formula
for this class of sets. A comparison with the former cases from convex and differential
geometry shows that in this special cases the new invariants coincide with the known
ones. Thus, sets with positive reach generalize the notion of convex sets on the one
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124 C. Thäle

hand side and the notion of a smooth submanifold on the other. It was also
Federer, who proved the fundamental integralgeometric relationship for sets with
positive reach, the principal kinematic formula.
With the development of geometric measure theory and especially the calculus of
currents, the idea of the so-called normal cycle of a set with positive reach came into
play in the early 1980th. This idea paved the wary for explicit representations of
Federer’s curvature measures as well as for a simple approach to integral geometry,
because many of these problems could be reduced to an application of the famous
Coarea Formula. Also extensions to other classes of sets are possible by following
this way.
After having developed a solid theory for deterministic sets with positive reach,
several well known models from stochastic geometry were lifted up to the case of
random sets with positive reach. This includes the theory of random processes of
sets with positive reach and their associated union sets. This in particular allows to
treat random cell complexes and random mosaics with general cell shape. The main
integralgeometric relationships were extended to this random setting, which leads
to stochastic versions of the principal kinematic formula and Crofton’s formula.
In this paper we like to sketch these developments from the last 50 years. Of course,
the material is a selection, which relies more or less on the authors taste. We also
do not qualify for completeness. Since proofs are sketched mostly, we try to give de-
tailed references trough the existing literature. We like to point out that there is up
to now a lack of a comprehensive monograph on this very interesting and beautiful
topic. We remark that we will restrict in this paper ourself to the case of curvature
measures defined on Rd, even if there is also a theory dealing with directional cur-
vature measures on Rd × Sd−1.
The paper is organized as follows: Section 2 recalls the situation before 1959. In 2.1
important notions and notations from convex geometry are introduced. Section 3
deals with basic properties of sets with positive reach (Section 3.1) and the most im-
portant tools, associated curvature measures and unit normal cycles (Section 3.2). In
Section 3.3 the notion of the normal cycle and the curvature measures are extended
to the case of locally finite unions of sets with positive reach. Characterization
theorems of these curvature measures using tools from geometric measure theory
are explained in 3.4. The topic of Section 4 is integral geometry. First we prove a
translative integral formula for sets of positive reach (Section 4.1), which leads to
the principal kinematic formula in Section 4.2. Here the power of the concept of the
unit normal cycle is demonstrated in interplay with the Coarea Formula. In Section
4.3 we extend the theory again to locally finite unions of sets with positive reach.
The results are applied in Section 5, where integralgeometric formulas from Section
4 are extended to certain stochastic variants. This will be done in the context of
random processes of sets with positive reach in Section . The results will be applied
to random cell complexes and the more special random mosaics with a very general
cell shape in Section 5.2 at the end of this paper.
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50 Years Sets with Positive Reach – A Survey 125

2 Results before 1959

Before 1959 there were two main branches in mathematics dealing with curvature
and curvature measures. This are convex geometry and differential geometry. The
most important results in these fields will be summarized below. This background
provides a solid basis for the understanding and motivation for Federer’s sets with
positive reach.

2.1 Convex Geometry

We fix a convex set X ⊆ Rd. For r > 0 its r-parallel set or neighborhood Xr is
the set of all points x ∈ Rd with distance to X at most r, i.e. Xr := {x ∈ Rd :
dist(X,x) ≤ r}. If we denote by A⊕B = {a+ b : a ∈ A, b ∈ B} the Minkowski sum
of two sets A and B, the set Xr can be interpreted as Xr = X⊕B(r), where B(r) is
a ball with radius r. A fundamental result in convex geometry is Steiner’s formula:

Theorem 1. For a convex body X ⊂ Rd (this is a compact convex set with non-
empty interior) and r > 0, the volume vol(Xr) = Hd(Xr) is a polynomial in r,
i.e.

vol(Xr) = Hd(Xr) =
d∑

i=0

ωiVd−i(X)ri,

where Vj(X) are coefficients with only depend on X, ωj is the volume of the j-
dimensional unit ball and Hk denotes the k-dimensional Hausdorff measure (see [5,
2.10.2]).

The proof of this formula is quite easy if one knows that any convex body X
can be approximated by a sequence (Pn) of polyhedra. Now one observes that the
formula is true for polyhedra and transfers the result via the above approximation
to arbitrary convex bodies. For more details see for example the monograph [25].
The numbers V0(X), . . . , Vd(X) are usually called intrinsic volumes of X. In partic-
ular we have for any convex body X ⊂ Rd

1. V0(X) = 1,

2. V1(X) = dωd
2ωd−1

b(X), where b(K) is the mean breadth of X (cf. [25]),

3. Vd−1(X) = 1
2H

d−1(∂X), where ∂X is the boundary of the set X,

4. Vd(X) = vol(X) = Hd(X).

In the literature there is also another normalization used. We call

Wi(X) :=
ωi(
n
i

)Vd−i(X)
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126 C. Thäle

the i-th Quermassintegral of X. The name comes from the following projection
formula, which is often used as a definition: Let X be a convex body in Rd and for
i ∈ {1, . . . , d−1}, L(d, i) the family of i-dimensional linear subspaces of Rd equipped
with the unique probability measure dLi. We denote for L ∈ L(d, i) by πL(X) the
orthogonal projection of X onto L, which is again a convex set. Then we have

Vi(X) =

(
d
i

)
ωd

ωiωd−i

∫
L(d,j)

Vj(πL(K))dLi(L).

Here, the integrand Vj(πL(X)) is the volume of the projection of X onto L. Hence,
we can call it Quermass of X in direction L⊥.

The functionals Vi : K → R, where K is the family of convex bodies, have the
following important properties: They are

(i) motion invariant, i.e. Vi(gX) = Vi(X) for any euclidean motion g,

(ii) additive, i.e. Vi(X ∪ Y ) = Vi(X) + Vi(Y )− Vi(K ∩ Y ) for all X,Y,X ∪ Y ∈ K,

(iii) continuous, i.e. if Xn → X in Hausdorff metric then Vi(Xn) → Vi(X),

(iv) homogeneous, i.e. Vi(λX) = λiVi(X) for all λ > 0,

(v) monotone, i.e. X ⊆ Y implies Vi(X) ≤ Vi(Y ),

(vi) non-negative, i.e. Vi(X) ≥ 0 for all X ∈ K.

We will see now that properties (i)-(iii) are sufficient to characterize the intrinsic
volumes. This is the content of Hadwiger’s Theorem:

Theorem 2. Let Ψ : K → R a functional which is motion invariant, additive and
continuous. Then Ψ can be written as a linear combination of the intrinsic volumes,
i.e. there are real constants c0, . . . , cd, such that

Ψ =
d∑

i=0

ciVi.

The proof of this theorem uses deep methods of discrete geometry, see [10]. A
short proof was given by Klain [11]. The so-called principal kinematic formula is
now an easy consequence of Hadwiger’s Theorem:

Corollary 3. Let X,Y ∈ K and i ∈ {0, . . . , d}. Then∫
SO(d)nRd

Vi(X ∩ gY )dg =
∑

m+n=d+i

γ(m,n, d)Vm(X)Vn(Y ),

where SO(d) n Rd is the group of euclidean motions with Haar measure dg and
γ(m,n, d) = Γ

(
m+1

2

)
Γ
(

n+1
2

) (
Γ
(

m+n−d+1
2

)
Γ
(

d+1
2

))−1
.
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Remark 4. The measure dg is the product measure with factors dHd and dϑ, where
dϑ is a Haar measure on the group SO(d). Here and for the rest of this paper we
will use the following normalization of dϑ:

ϑ{g ∈ SO(d) : gO ∈M} = Hd(M),

where O is the origin and M some subset of Rd. With this normalization in mind
it is clear that dϑ is not a probability measure on SO(d).

For the proof one has to observe that for fixed X the left hand side is a functional
in the sense of Theorem 2. Now, fixing Y instead ofX we have the same situation and
can apply Hadwiger’s Theorem once again. It remains to shown that the constant
equals γ(m,n, d). This can be done, by plugging balls with varying radii into the
formula.
An obvious consequence is the so-called Crofton formula:

Corollary 5. For X ∈ K, k ∈ {0, . . . , d} and i ∈ {0, . . . , k} we have∫
E(d,k)

Vi(X ∩ E)dE = γ(i, k, d)Vd+i−k(X),

where E(d, k) is the space of k-dimensional affine subspaces of Rd with Haar measure
dE.

We remark here that it is possible to localize all these formulas in the language of
curvature measures. We omit the details in the convex case, since curvature measures
will be considered in detail below for sets with positive reach, which includes the
case of convex sets. For more details we refer to [25]. We also like to remark that it
is possible to extend the intrinsic volumes as well as the curvature measures to the
so-called convex ring R. This is the family of locally finite unions of convex sets.
For details we also refer to [25], because we will work out in Section 3.3 in detail
such an extension in the case of locally finite unions of sets with positive reach and
the convex ring R is included in these considerations.
We like to finish this section with an introduction to translative integral geometry
for convex sets (see for example [9] for more details). As a main tool we introduce
the so-called mixed volumes:

Theorem 6. Let X1, . . . , Xm ∈ K, m ∈ N and λ1, . . . , λm ≥ 0. Then there exists
a representation of the volume of the linear combination λ1X1 ⊕ . . .⊕ λmXm of the
following form:

vol(λ1X1 ⊕ . . .⊕ λmXm))
m∑

k1,...,kd=1

λk1 · · ·λkd
Vk1...kd

,

where the coefficient Vk1...kd
only depends on the sets Xk1 , . . . , Xkd

.
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128 C. Thäle

We write V1...d = V (X1, . . . , Xd) and called it mixed volume of X1, . . . , Xd. The
mixed volumes have the following important properties:

1. V (X1, . . . , Xd) is symmetric, i.e.

V (X1, . . . , Xm, . . . , Xn, . . . , Xd) = V (X1, . . . , Xn, . . . , Xm, . . . , Xd)

for all 1 ≤ n < m ≤ d,

2. V (X1, . . . , Xd) ≥ 0 and V is monotone in each component,

3. V is translation invariant in each component and

V (ϑX1, . . . , ϑXd) = V (X1, . . . , Xd)

for all ϑ ∈ SO(d),

4. V is continuous on Kd wrt. the natural product topology,

5. we have for x ∈ K and r > 0

vol(Xr) =
d∑

i=0

(
d

d− i

)
riV (X, . . . ,X︸ ︷︷ ︸

d−j

, B(1), . . . B(1)︸ ︷︷ ︸
j

).

A comparison of the last point and Steiner’s formula especially shows

Vd−i(X) =

(
d

d−i

)
ωi

V (X, . . . ,X︸ ︷︷ ︸
d−i

, B(1), . . . , B(1)︸ ︷︷ ︸
i

), i = 0, . . . , d.

Tis concept can also be localized, which leads to mixed curvature measures. They
will be introduced below for sets with positive reach.
Translative integral geometry for convex sets deals with integrands of the form Vi(X∩
τz(Y )), where τz(A), z ∈ Rd, denotes the translation of a set A by a vector z. As a
main result we state the following principal translative integral formula for convex
bodies, where i = 0:

Theorem 7. For two convex bodies X and X we have∫
Rd

V0(X ∩ τz(Y ))dz =
∑

m+n=d+k

(
d

m

)
V (X, . . . ,X︸ ︷︷ ︸

r

,−Y, . . . ,−Y︸ ︷︷ ︸
s

).

A similar formula holds also true for Vi(X ∩ τz(Y )) and i > 0. But in this case
the summands do not have in general a simple explicit interpretation. In section 4.1
we will introduce so-called mixed curvature measures in a more general setting.
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50 Years Sets with Positive Reach – A Survey 129

2.2 Differential Geometry

We consider a d-dimensional submanifold Md in Rd with C2-smooth boundary ∂Md

and denote by ν(x) the unique unit outer normal vector of Md at x ∈ ∂Md. The
map ν : ∂Md → Sd−1 is called Gauss map. Since ∂Md is C2-smooth we know that
the differential

Dν(x) : Tx∂Md → Tν(x)S
d−1 ≡ Tx∂Md

exists in all points x ∈ ∂Md. We assume that in a neighborhood of x ∈ ∂Md the
surface is parameterized by F : U → Rd. Then

L = −Dν ◦ (DF )−1

is a well defined symmetric endomorphism on Tx∂Md. Hence, there exist eigenval-
ues k1(x), ..., kd−1(x) (called principal curvatures) and eigenvectors a1(x), ..., ad−1(x)
(usually called principal directions).

Definition 8. The elementary symmetric functions σk of order k = 0, ..., d− 1 are
defined as

σk(k1(x), ..., kd−1(x)) =
∑

1≤i1<...<ik≤d−1

ki1(x) · · · kik(x).

They are used in the following

Definition 9. The k-th integral of mean curvature (also called Lipschitz-Killing
curvature) of Md is defined as

Ck(Md) := O−1
d−1−k

∫
∂Md

σd−1−k(k1(x), ..., kd−1(x))dHd−1(x), k = 0, . . . , d− 1

where Om is the surface area of the m-dimensional unit ball. Define further Cd(Md) :=
Hd(Md).

In particular we have in the case, where X is compact

1. C0(Md) = χ(Md) (Gauss-Bonnet Theorem),

2. Cd−1(Md) = 1
2H

d−1(∂Md),

3. Cd(Md) = Hd(Md) = vol(Md).

One of the fundamental theorems in differential geometry is Wely’s Tube For-
mula, which has its origin in a statistical problem [28]:

Theorem 10.

Hd((Md)ε) =
d∑

k=0

ωkCd−k(Md)εk,

where the ε-parallel set (Md)ε of Md is defined as (Md)ε := {x ∈ Rd : dist(x,Md) ≤
ε} for sufficiently small ε > 0.
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130 C. Thäle

Integral geometry for smooth hypersurfaces and m-surfaces (m < d − 1) in Rd

was developed in [26, Ch. V] and we refer to this monograph for further details. We
only like to mention here, that similar formulas as in Corollary 3 and Corollary 5
are true in this case. But up to a constant, the k-th intrinsic volume is replaced by
the k-th integral of mean curvature, k = 0, . . . , d. This is the reason, why we omit
to state them here explicitly. Furthermore, the integralgeometric results below will
cover the case of C2-smooth submanifolds.

3 Sets with Positive Reach

We introduce in this section the class of sets with positive reach and their geometric
properties. The focus of our considerations lies on curvature measures for this class
of sets. Therefore, the so-called unit normal cycle is used as a fundamental toll in
singular curvature theory. It also helps to extend the curvature measures to the
class of locally finite unions of sets with positive reach.

3.1 Definition and Basic Properties

Sets with positive reach are characterized by their unique foot point property in a
positive r-parallel set. This property ensures that suitable small parallel neighbor-
hoods have no self-intersections and this allows to compute their volume. This will
lead to a Steiner-type formula and a definition of curvature measures for sets with
positive reach, which extends the cases treated in Section 2.

Definition 11. The reach of a set X ⊆ Rd is defined as

reach X := sup{r ≥ 0 : ∀y ∈ Xr ∃!!x ∈ X nearest to y}.

We say that a set X has positive reach, if reach X > 0 and denote by PR the family
of sets with positive reach.

We can also formulate this property as follows: A set X has positive reach, if
one can roll up a ball of radius at most reach X > 0 on the boundary ∂X. Note
that sets with positive reach are necessarily closed subsets of Rd. This will be useful
when we deal with random sets with positive reach in Section 5, since there exists a
well developed theory of random closed sets in Rd, see for example [12].

Remark 12. It is also possible to define the class of sets with positive reach on
smooth and connected Riemannian manifolds. By a Theorem of Bangert [1, p. 57]
this property does not depend on the Riemannian structure of the underlying man-
ifold. Hence, the theory of sets with positive reach in Rd (and also their additive
extension) can be lifted up to the case of smooth, connected Riemannian manifolds.
But we will not follow this direction further in this paper.
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50 Years Sets with Positive Reach – A Survey 131

Figure 1: A non-convex set X with positive reach: 4 points in R2 and its foot points
on X, the lower one is not unique

We will now show that the classes of sets introduced in Section 2 are included
in our discussion:

Proposition 13. A set X is convex if and only if reach X = +∞.

One direction is clear, the other corresponds to [25, Thm. 1.2.4]. It is a
well known fact in differential geometry that the exponential map of a closed C2-
submanifold is a bijection in a suitable small neighborhood of the submanifold. But
this leads immediately to

Proposition 14. Compact C2-smooth submanifolds X of Rd have positive reach.

The closed convex cone of tangent vectors of X ∈ PR at x will be denoted by
Tan(X,x). Here, a vector u ∈ Sd−1 belongs to Tan(X,x) if there exists a sequence
(xn) ⊂ X \ {x}, such that xn−x

|xn−x| converges to u. The normal cone of X at x

Nor(X,x) = {u ∈ Sd−1 : 〈v, u〉 ≤ 0, v ∈ Tan(X,x)}

is the dual cone of Tan(X,x). For an illustration of these concepts see Figure 2.
The set

nor X := {(x, u) ∈ Rd × Sd−1 : x ∈ X, u ∈ nor(X,x)}

is said to be the (unit) normal bundle of X. Remark that this is a set in the
(2d − 1)-dimensional manifold Rd × Sd−1, whereas X itself is a set in Rd, which is
d-dimensional.
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132 C. Thäle

Figure 2: A set X and two points x ∈ X with associated tangent and normal cone

Remark 15. The unit normal bundle is a (d − 1)-dimensional rectifiable set in
Rd × Sd−1 ⊆ R2d in the sense of Federer [5, 3.2.14]. This means that nor X is
Hd−1-measurable and there exist Lipschitz functions f1, f2, . . . : Rd−1 → R2d and
bounded sets E1, E2, . . . ⊂ Rd−1 such that

Hd−1

(
nor X \

∞⋃
i=1

fi(Ei)

)
= 0.

We recall here the following result, which was proved by Federer [4]. It relates
the boundary of a set X ∈ PR with its unit normal bundle:

Proposition 16. Assume 0 < r ≤ ε < R = reach X. Then

(1) ϕ : ∂Xr → nor X : y 7→
(

ΠX(y),
y −ΠX(y)

r

)
is bijective and bi-Lipschitz.

(2) f : nor X × (0, ε] → (Xε \X) : (x, u, r) 7→ x+ ru is bijective and bi-Lipschitz.

Here ΠX : Rd → X is the metric projection onto X, i.e. ΠX(x) is the set of nearest
points of X to x ∈ Rd.

This proposition is (together with the Area Formula) the key to obtain a Steiner-
type formula and a definition of curvature measures for sets with positive reach.
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50 Years Sets with Positive Reach – A Survey 133

Sets with positive reach are closely connected with Lipschitz functions and semicon-
cave functions. Federer has shown in [4, 4.20] that a Lipschitz function f : Rm → Rn

has Lipschitz derivative if and only if the graph of f has positive reach. This illus-
trates very well of what it means for a submanifold to have positive reach. For a
function f : Rm → R, U ⊂ Rm open, we define its epigraph and its catograph (see
Figure 3) as

epi f := {(x, y) : x ∈ U, y ≥ f(x)},
cato f := {(x, y) : x ∈ U, y < f(x)}.

Figure 3: The graph of a function f(x) with its epi- and catograph

We say that f is semiconcave, if for each bounded open set V ⊂ U with
closure(V ) ⊆ U there exists a constant C <∞, such that the restriction of g(x) :=
C ‖x‖2

2 −f(x) to the set V is a convex function. We define sc(f, V ) to be the smallest
such constant C, sc(f, U) := sup

V
sc(f, V ) and sc0(f, U) := max{sc(f, U), 0}. Then

Fu [6, Th. 2.3] has proved

Proposition 17. For a locally Lipschitz function f : Rm → R we have

sc0(f,Rm) ≥ reach(cato f)−1.

For the opposite direction of the inequality we have [6, Cor. 2.8]

Proposition 18. Let U ⊂ Rm be open and convex, f : U → R Lipschitz with
Lipschitz constant L. Suppose there exists an r > 0 such that for all u ∈ U there
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134 C. Thäle

exists a point p ∈ Rm+1 for which B(p, r) ∩ cato f = {a, f(a)}, where B(p, r) is the
closed ball around p with radius r. Then

reach(cato f)−1 ≥ (1 + L2)−3/2sc(f, U).

Summarizing these results we get under the conditions of Proposition 18

sc0(f, U)−1 ≤ reach(cato f) ≤ (1 + L2)3/2sc(f, U)−1.

From a version of the implicit function theorem for Lipschitz functions, which says
that if p ∈ U ⊂ Rm is a regular value (this is 0 does not belong to the subgradient
at p) and f : U → R is semiconcave then there exists V ⊂ U , p ∈ V , a rotation
ϑ ∈ SO(m), an open set W ⊂ Rm−1 and a semiconcave function g : W → R, such
that ϑ(f−1(f(p) ∩ V )) = graph g and f−1([f(p),∞)) is locally the catograph of g,
we obtain [6, Cor. 3.4], which is also a special case of a result in [1]:

Theorem 19. Suppose that f : Rm → R is semiconcave and proper (this is that the
pre-image of a compact set is compact). Let t be a regular value of f . Then

reach(f−1([f(t),∞))) > 0.

An immediate consequence of the last Theorem is

Corollary 20. Let S ⊂ Rd be a compact set. Denote by distS(x) := inf{‖x− s‖ :
s ∈ S} the distance function of S, by crit(distS) the set of critical points of distS (a
point is critical if it is not regular) and by C := distS(crit(distS)) the set of critical
values. Then for r ∈ (0,∞) \ C, the set closure(Rd \ Sr) has positive reach.

Moreover one can show that H(d−1)/2(C) = 0. This in particular implies that for
d = 2, closure(Rd \ Sr) has positive reach for all r > 0. For d = 3 this is only true
for almost all r.
Corollary 20 has various applications. For example one can show that closure(Rd \
Xr) has positive reach if X ∈ R or X ∈ UPR (for a definition see Section 3.3). This
property is also fulfilled for certain Lipschitz manifolds (cf. [22]) or if X is semial-
gebraic set X (cf. [6, Section 5.3]). One can use this property to approximate or
to construct for example curvature measures or normal cycles for more complicated
classes of sets. An example for this approach can be found in [22]. We think that
this construction can also be applied in other situations.

3.2 Curvature Measures and Normal Cycles

We will need the following important result - called Area Theorem - with is the key
to prove a Steiner-type formula for sets with positive reach [5, 3.2.3]:

******************************************************************************
Surveys in Mathematics and its Applications 3 (2008), 123 – 165

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v03/v03.html
http://www.utgjiu.ro/math/sma


50 Years Sets with Positive Reach – A Survey 135

Theorem 21. Let f : Rm → Rn (m ≤ n) be Lipschitz, A ⊆ Rm Lm-measurable and
g : Rm → R Lm-integrable. Then∫

A
g(x)Jmf(x)dLm(x) =

∫
Rn

∑
x∈f−1(y)∩A

g(x)dHn(y).

Remark 22. The k-Jacobian Jkf(x) of f at x can be introduced as

Jkf(x) =

∥∥∥∥∥∧
k

Df(x)

∥∥∥∥∥ = sup{Hk(Df(x)(C)) : C is a k-dimensional unit cube}.

In the special case k = n = m we have Jkf(x) = |detDf(x)|, which is the same as
in linear algebra.

We apply now the Area Formula of Theorem 21 to the function f of Proposition
16. This yields∫

nor X×(0,ε]
g(f(x, u, r))|detDf(x, u, r)|dHd(x, u, r) =

∫
Xε\X

g(y)dHd(y).

Choose now g(y) := 1Π−1
X (B)(y) = 1B(x) for y = x + ru and B a bounded Borel

set in Rd (We change nothing if we choose the Borel set B to be contained in the
boundary ∂X of X ∈ PR. The advantage of our approach is that we get a measure
on Rd instead of a measure defined on ∂X.). Then the right hand side of the last
equation equals

RHS =
∫

Xε\X
1Π−1

X (B)(y)dH
d(y) = Hd((Xε \X) ∩Π−1

X (B)).

For the left hand side we get by Fubini

LHS =
∫

nor X×(0,ε]
1Π−1

X (B)(x+ ru)|detDf(x, u, r)|dHd(x, u, r)

=
∫

nor X
1B(x)

∫ ε

0
|detDf(x, u, r)|drdHd−1(x, u).

We calculate now the determinant with the help of multilinear algebra (cf. [5, Chap.
1]). We first define the coordinate projections π0 and π1 by

π0(x, u) = x and π1(x, u) = u.

Since norX is a (d−1)-dimensional rectifiable set in R2d we know that Tan(norX, (x, u))
is for almost all (x, u) a linear subspace (cf. [5, 3.2.16]). Hence, there exists for al-
most all (x, u) ∈ nor X a basis a1(x, u), . . . , ad−1(x, u) with positive orientation,
i.e.

sgn 〈(π0 + rπ1)a1(x, u) ∧ . . . ∧ (π0 + rπ1)ad−1(x, u) ∧ n,Ωd〉 = 1,
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where Ωd = dx1∧ . . . , dxd is the volume form in Rd and the property that |a1(x, u)∧
. . . ∧ ad−1(x, u)| = 1. By definition of the determinant we have

|detDf(x, u, r)| = 〈(π0 + rπ1)a1(x, u) ∧ . . . ∧ (π0 + rπ1)ad−1(x, u) ∧ n,Ωd〉

=
d−1∑
k=0

rk
∑

εi=0,1

ε1+...+εd−1=k

〈
πε1a1(x, u) ∧ . . . ∧ πεd−1

ad−1(x, u) ∧ u,Ωd

〉

=
d−1∑
k=0

rkωk 〈a1(x, u),∧ . . . ∧ ad−1(x, u), ϕd−1−k(x, u)〉 .

Definition 23. The k-th Lipschitz-Killing (d− 1)-form ϕk(x, u) = ϕk(u) is defined
via the relation

〈ξ1(x, u) ∧ . . . ∧ ξd−1(x, u), ϕk(u)〉

= O−1
d−k

∑
εi=0,1

ε1+...+εd−1=d−1−k

〈
πε1ξ1(x, u) ∧ . . . ∧ πεd−1

ξd−1(x, u) ∧ u,Ωd

〉
.

Remark 24. The Lipschitz-Killing forms are universal differential forms. We will
see in Theorem 30 below that they can be used to define the curvature measures of
a set X. The forms are universal in the sense that they do not depend on the set
X. This is the reason, why it is possible to define the Lipschitz-Killing curvature
measures for other classes of sets with the help of these forms. This will be shown
for example in Section 3.3.

This means (by LHS=RHS) that

Hd((Xε \X) ∩Π−1
X (B))

=
d−1∑
k=0

ωkr
k

∫
nor X

1B(x) 〈aX(x, u), ϕd−k(x, u)〉 dHd−1(x, u),

where aX(x, u) = a1(x, u) ∧ . . . ∧ ad−1(x, u) is a unit simple orienting vector field of
X.

Definition 25. The k-the Lipschitz-Killing curvature measure of X is defined as

Ck(X,B) :=
∫
nor X

1B(x) 〈aX , ϕk〉 dHd−1

if 0 ≤ k < d and Cd(X,B) := Hd(X ∩B).

Thus, we obtain the following tube formula, which originally is due to Federer
[4] (but he gave a quite different proof using approximations of sets with positive
reach by smooth manifolds) and unifies the formulas of Steiner and Wely:
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Theorem 26. For all X ∈ PR, r < reach X and Borel sets B ⊆ Rd we have

Hd((Xε \X) ∩Π−1
X (B)) =

d−1∑
k=0

ωkCd−k(X,B)rk.

A comparison of Theorem 26 with the formulas of Steiner and Wely shows

Proposition 27. 1. If X is a convex set in Rd then Vk(X) = Ck(X,Rd), k =
0, . . . , d.

2. If X is a compact C2-submanifold of Rd then Mk(X) = Ck(X,Rd), k =
0, . . . , d.

We like to summarize some other important properties of the curvature measures
Ck(X, ·) here:

1. Ck(X, ·) is a signed Radon measure on the Borel σ-algebra of Rd,

2. Ck(X, ·) is motion invariant, i.e. Ck(gX, g·) = Ck(X, ·) for all euclidean mo-
tions g,

3. Ck(X, ·) is additive, i.e. Ck(X ∪ Y, ·) = Ck(X, ·) + Ck(Y, ·) − Ck(X ∩ Y, ·),
whenever X,Y,X ∪ Y,X ∩ Y ∈ PR,

4. Ck(X, ·) is homogeneous, i.e. Ck(λX, λ·) = λkCk(X, ·) for λ > 0,

5. Ck is continuous, i.e. if Xn → X in Hausdorff metric, then Ck(Xn, ·) →
Ck(X, ·) in the sense of weak convergence of measures.

It is now our goal to give explicit representations of these curvature measures.
We start by introducing a fundamental tool in singular curvature theory, the unit
normal cycle NX of a set X. If we denote by Dk(M) the set of k-forms with compact
support on a manifold M , the space Dk(M) of k-currents can be introduced as the
dual space Dk(M) = (Dk(M))∗. The normal cycle will be a (d − 1)-current on
the manifold M = Rd × Sd−1, whose support is the unit normal bundle nor X of
X ∈ PR.

Definition 28. The functional or (d− 1)-current

NX(ω) :=
∫
nor X

〈aX(x, u), ω(x, u)〉 dHd−1(x, u),

where ω ∈ Dd−1(Rd × Sd−1) is a (d − 1)-form, is called the (unit) normal cycle of
X.
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The idea to use this functional goes back to the ideas of Wintgen [29] and Zähle
[32] in the early 80th. It is nowadays one of the fundamental tolls in singular cur-
vature theory and integral geometry, because the proofs of many integral geometric
formulas can be reduced to an application of Federer’s Coarea Formula (Theorem
44 below). This will be shown in Section 4.

We summarize now the properties of the normal cycle NX of a set X ∈ PR:

Proposition 29. 1. NX is a cycle, i.e. ∂NX(ω′) = NX(dω′) = 0, where ω′ is a
(d− 2)-form.

2. NX is Legendrian, i.e. NXxα = 0 for α =
d∑

i=1

nidxi, i.e. the normal vectors

are orthogonal to the associated tangent vectors.

3. NX is a locally (Hd−1, d− 1)-rectifiable current in Rd × Sd−1.

4. NX is additive, i.e. NX∪Y = NX +NY −NX∩Y , if X,Y,X ∪ Y,X ∩ Y ∈ PR.

For the prove of 1. we use the fact of [4], that ∂Xr, X ∈ PR, r < reach X,
is a C1,1-hypersurface (this is a C1-hypersurface with Lipschitz unit outer normal)
without boundary. Thus, 1. follows by Stokes Theorem. 2. is clear by the construc-
tion and 3. follows from the fact that the support nor X is a (d − 1)-dimensional
rectifiable set in Rd×Sd−1. The additivity uses Theorem 33 below and can be shown
as in [8, Thm. 4.2].

The normal cycle leads immediately to the following explicit representation of the
curvatures measures established by Zähle [32]:

Theorem 30.
Ck(X,B) = (NXx1B×Sd−1)(ϕk), 0 ≤ k < d.

We know from above that the boundary ∂Xε is a C1,1-hypersurface. Thus, there
exists d− 1 principal curvatures kε

i (x+ εu) for almost all x+ εu. The limits

ki(x, u) := lim
ε→0

kε
i (x+ εu)

are well defined for almost all (x, u) ∈ nor X. An appropriate choice of an orthonor-
mal basis of Tan(nor X, (x, u)), i.e.

ai(x, u) =

 1√
1 + k2

i (x, u)
bi(x, u),

ki(x, u)√
1 + k2

i (x, u)
bi(x, u)

d−1

i=1
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(here we use the following convention: if ki = ∞ then 1√
1+∞2

= 0 and ∞√
1+∞2

= 1)
and {b1(x, u), . . . , bd−1(x, u)} is a basis of Tan(Xr, x + ru), leads to the following
integral representation of the curvature measures also due to Zähle [32]:

Theorem 31.

Ck(X,B) =
∫
nor X

1B(x)
d−1∏
i=1

σd−1−k(k1(x, u), . . . , kd−1(x, u))√
1 + k2

i (x, u)
dHd−1(x, u).

This is the positive reach analogue to the definition of the k-th integral of mean
curvature of a C2-submanifold with C2-smooth boundary, see Definition 9.

We return again to the normal cycle: Joseph Fu has worked out in [7] the follow-
ing characteristic properties of normal cycles and introduced the family of so-called
geometric sets:

Definition 32. A compact set X ⊂ Rd is called geometric if it admits a normal
cycle, i.e. a current NX ∈ Dd−1(Rd × Sd−1) in Rd × Sd−1 with the following prop-
erties:

(1) NX is a compact supported locally (d− 1)-rectifiable current,

(2) NX is a cycle, i.e. ∂NX = 0,

(3) NX is Legendrian, i.e. NXxα = 0, where α =
d∑

i=1

dxi is the contact 1-form,

i.e. the normal vectors are orthogonal to the associated tangent vectors,

(4) NX satisfies

NX(gϕ0) = O−1
d−1

∫
Sd−1

∑
x∈Rd

g(x, u)jX(x, u)dHd−1(x, u),

where g : Rd × Sd−1 → R is an arbitrary differentiable function,

jX(x, u) := 1X(x)
(

1− lim
ε→0

lim
δ→0

(X ∩B(x, ε) ∩Hu,δ(x))
)

and Hu,δ(x) is the hyperplane with unit normal u, which contains the point
x+ δu (compare with Figure 4).

We remark that in [23] it was shown that the last condition (4) is equivalent to
the following explicit representation of the normal cycle NX :

NX(φ) =
∫

Rd×Sd−1

〈jX(x, u)aX(x, u), φ〉dHd−1(x, u) = (Hd−1xnor X) ∧ jXaX .
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In the case of sets with positive reach X we have jX(x, u) = 1 for almost all (x, u) ∈
nor X and we deduce that PR-sets are geometric. We will see in Section 3.3 that
also locally finite unions of sets with positive reach admit a normal cycle, i.e. are
geometric sets in the sense of Definition 32.
We also mention the following uniqueness theorem due fu Fu [8]:

Theorem 33. For any compact set X ⊂ Rd there is at most one current NX

satisfying the properties (1)− (4) of Definition 32.

The proof of this theorem is very involved and uses deep methods from geometric
measure theory. We therefore omit even to sketch the idea of the proof.
It is clear that not every compact set X ⊂ Rd admits a normal cycle. The set X has
at least to be locally rectifiable in the sense of Federer [5]. For example the so-called
Koch curve (see [3]) is a non-rectifiable set in the euclidean plane and therefore not
geometric in the sense of Definition 32. It is still an open problem to give another,
more explicit and more geometric characterization of the class of geometric sets.

3.3 Additive Extension and UPR-Sets

Curvatures and curvature measures for convex sets admit an additive extension to
the so-called convex ring R (cf. [25]). This is the family of subsets of Rd, which
are locally representable as finite union of convex sets. It is clear that not every
set X ∈ R has positive reach. Therefore it would be desirable to have a family of
subsets of Rd, which contains both, the classes PR and R and extends the notion
of curvature in this sense. We introduce to this end the class UPR of locally finite
unions of sets with positive reach, whose arbitrary finite intersections have also
positive reach (the last condition is of course not necessary for the definition of R,
because intersections of convex sets are always convex). It is our goal to extend now
the Lipschitz-Killing curvatures and curvature measures to the class UPR. Here we
follow [33] and [20].
We start by introducing the following index function for a closed set X ⊆ Rd, x ∈ Rd

and u ∈ Sd−1:

iX(x, u) := 1X(x)
(
1− lim

ε→0
lim
ε→0

χ(X ∩B(x+ (ε+ δ)u, ε))
)
,

where χ is the Euler characteristic in the sense of singular homology and B(y, r) is
the closed ball around y with radius r ≥ 0, see Figure 4.

We remark here that iX(x, u) = (−1)λ(x,u)jX(x, u) for almost all (x, u) ∈ Rd ×
Sd−1, where λ(x, u) is the number of negative principal curvatures k1(x, u), . . . , kd−1(x, u).
Since χ is additive on UPR, i.e. χ(X∪Y ) = χ(X)+χ(Y )−χ(X∩Y ) for X,Y ∈ UPR

we have additivity of the index function:

iX∪Y = iX + iY − iX∩Y
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Figure 4: A set X with its associated index functions jX (left picture) and iX (right
picture)

for such X,Y ∈ UPR with X ∩ Y ∈ UPR. The generalized unit normal bundle of a
set X ∈ UPR is now defined as

nor X := {(x, u) ∈ Rd × Sd−1 : iX(x, u) 6= 0}.

This is a locally (Hd−1, d− 1)-rectifiable subset in Rd × Sd−1 (cf. [5, 3.2.14]). This
implies again that for almost all (x, u) ∈ nor X the approximate tangent space
Tand−1(nor X, (x, u)) is a (d − 1)-dimensional linear subspace of R2d. Therefore
there exist vectors b1(x, u), . . . , bd−1(x, u) (principal directions) in Rd perpendicular
to u and real numbers k1(x, u), . . . , kd−1(x, u) (principal curvatures), such that the
vectors

ai(x, u) =

 1√
1 + k2

i (x, u)
bi(x, u),

ki(x, u)√
1 + k2

i (x, u)
bi(x, u)

 , i = 1, . . . , d− 1

form an orthonormal basis of Tand−1(nor X, (x, u)). If ki = ∞ then we put again
1√

1+∞2
= 0 and ∞√

1+∞2
= 1. For any X ∈ UPR we now define its unit normal

current as
NX := (Hd−1xnor X) ∧ iXaX ,

where aX(x, u) = a1(x, u) ∧ . . . ∧ ad−1(x, u) is a unit simple orienting vector field of
nor X. From the additivity of the index function i on easily deduces [20, Thm. 2.2]

Theorem 34. If X,Y,X ∩ Y ∈ UPR then

NX∪Y = NX +NY −NX∩Y .
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The following properties are an immediate consequence of the additivity and the
corresponding validity in the case of PR-sets:

Proposition 35. For X ∈ UPR we have

1. ∂NX = 0, which means that the (d− 1)-current NX is a cycle.

2. NXxα = 0, where α =
d∑

i=1

dxi is the contact 1-form, i.e. the normal vectors

are orthogonal to the associated tangent vectors.

Hence, by Theorem 33 the current NX is the unique normal cycle of the UPR-set
X ⊂ Rd (1. and 4. are clear).

The curvature measures for an UPR-set X can now be introduced as

Ck(X,B) := (NXx1B×Sd−1)(ϕk), k = 1, . . . , d− 1, B ⊆ Rd Borel.

This are signed Radon measures on Rd, whose support is given by the projection
of the generalized unit normal bundle nor X onto the first component. Using the
additivity from Theorem 34, the following properties carry over from the PR-case
[20, Prop. 4.1]:

Proposition 36. For X,Y,X ∩ Y ∈ UPR, k = 0, . . . , d− 1 and B ∈ B(Rd) bounded
we have

1. Motion invariance, i.e. Ck(gX, gB) = Ck(X,B) for any euclidean motion
g ∈ SO(d) n Rd,

2. Additivity, i.e. Ck(X ∪ Y, ·) = Ck(X, ·) + Ck(Y, ·)− Ck(X ∩ Y, ·),

3. Homogeneity: Ck(λX, λB) = λkCk(X,B), λ ≥ 0,

4. Continuity: F− lim
n→∞

NXn = NX implies w− lim
n→∞

Ck(Xn, ·) = Ck(X, ·), Xn ∈
UPR (compare with Section 3.4).

Using the description of the approximate tangent space Tand−1(nor X, (x, u))
(and the experience from the PR-case) one obtains the following integral represen-
tation for the curvature measures [33, Thm. 4.5.1], [20, Thm. 4.1]:

Theorem 37. Let X ∈ UPR, B ∈ B(Rd) and k ∈ {0, . . . , d− 1} Then

Ck(X,B) = O−1
d−1−k

∫
nor X

1B(x)iX(x, u)
σd−1−k(k1(x, u), . . . , kd−1(x, u))∏d−1

i=1

√
1 + k2

i (x, u)
dHd−1(x, u).
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The integral and current representation of the curvature measures will be used
in Section 4.3 to develop an integral geometry for UPR-sets.
We close this section with the following version of the famous Gauss-Bonnet Theorem
for UPR-sets:

Theorem 38. Let X ⊂ Rd a compact UPR-set. Then

χ(X) = NX(ϕ0) =
∑

x∈∂X

jX(x, u)

for almost all n ∈ Sd−1.

The first equality is proved in [22, Thm. 3.2] and the second one corresponds
to [23, Thm. 4.4 (ii)]. We further remark that the sum in Theorem 38 is finite, i.e.
there are only finitely many x ∈ ∂X with jX(x, u) 6= 0 for almost all n ∈ Sd−1.
After interpreting NX(ϕ0) as the Euler-Characteristic of X, we now give an inter-
pretation of the (d− 1)-st curvature measure Cd−1(X, ·):

Theorem 39. For a set X ∈ UPR, B ⊆ Rd Borel with the property that for all
x ∈ ∂X ∩B, u ∈ Nor(X,x) implies u /∈ Nor(X,x), we have

(NXx1B×Sd−1)(ϕd−1) = Cd−1(X,B) = Hd−1(∂X ∩B).

This was recently shown in [18, Cor. 2.2]. We mention that a similar result is also
true for general Borel sets B. In this case the points x ∈ ∂X, where ±u ∈ Nor(X,x)
have to be weighted by a factor 2.

3.4 Characterization of Curvature Measures

We start by recalling some basic notions and notations from geometric measure
theory [5]. The set of k-forms on some manifold M will be denoted by Dk(M). Its
dual Dk(M) = (Dk(M))∗ is the space of k-currents. For S ∈ Dk(M) and a compact
set K ⊂M we define the flat seminorm of S as

FK(S) = sup
{
S(ϕ) : ϕ ∈ Dk(M), sup

x∈K
‖ϕ(x)‖ ≤ 1, sup

x∈K
‖dϕ(x)‖ ≤ 1

}
,

where ‖ϕ‖ is the comass of the k-form ϕ. We will write

S = F− lim
n→∞

Sn, Sn ∈ Dk(M)

if lim
n→∞

FK((Sn − S)xK) = 0 for any compact set K ⊂M .

We now put M := Rd×Sd−1 and fix a set X ⊆ Rd with positive reach, i.e. X ∈ PR.
The normal cycle of X will be denoted by NX .
We start now by the characterization of Lipschitz-Killing curvatures [36, Thm. 5.3].
Let therefore C be one of the classes PR or UPR.
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Theorem 40. Let ψ : C → R be a functional such that

(1) Ψ is motion invariant, i.e. Ψ(gX) = Ψ(X) for all euclidean motions,

(2) Ψ is additive, i.e. Ψ(X ∪ Y ) = Ψ(X) + Ψ(Y )−Ψ(X ∩ Y ) whenever X,Y,X ∪
Y,X ∩ Y ∈ C,

(3) Ψ is continuous, i.e. lim
n→∞

Ψ(Xn) = Ψ(X) if F− lim
n→∞

NXn = NX , X,Xn ∈ C,

(4) Ψ(X) ≥ 0 for any compact convex polyhedron X.

Then there exist certain constants c0, . . . , cd such that

Ψ(X) =
d−1∑
k=0

ckNX(ϕk) + cdHd(X), X ∈ C

where ϕk is the k-th Lipschitz-Killing curvature form.

We next turn to the characterization of Lipschitz-Killing curvature measures [36,
Th. 5.5]:

Theorem 41. Let Ψ : C × B(Rd) → R a functional such that

(1) for any X ∈ C, Ψ(X, ·) is a signed Radon measure,

(2) Ψ is motion invariant, i.e. Ψ(gX, gB) = Ψ(X,B) for all euclidean motions,

(3) Ψ is additive, i.e. Ψ(X ∪ Y,B) = Ψ(X,B) + Ψ(Y,B)−Ψ(X ∩ Y,B) whenever
X,Y,X ∪ Y,X ∩ Y ∈ C,

(4) Ψ is continuous, i.e. w − lim
n→∞

Ψ(Xn, B) = Ψ(X,B) (the weak limit of mea-

sures) if F− lim
n→∞

NXn = NX , X,Xn ∈ C,

(5) Ψ is locally determined, i.e. Ψ(X,B) = Ψ(Y,B) if NXx(B×Sd−1) = NY x(B×
Sd−1),

(5) Ψ(X, ·) ≥ 0 if X is a compact convex polyhedron.

Then there exist certain constants c0, . . . , cd−1 such that

Ψ(X, ·) =
d−1∑
k=0

ckNX(ϕk), X ∈ C

and ϕk is the k-th Lipschitz-Killing curvature form.

The proof of these results is based on the following two approximation theorems
[36, Thm. 3.1] and [36, Thm. 4.2]:
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Theorem 42. For any set with positive reach X ∈ PR there exists a sequence (Pn)
of simplicial polyhedra such that

F− lim
n→∞

NPn = NX ,

where NPn is the normal cycle associated with Pn.

By a simplicial polyhedron in Rd we mean a euclidean polyhedron generated by
a locally finite number of euclidean d-simplices.

Theorem 43. Let X,Xn ∈ C (here C is again one of the classes PR or UPR) such
that F− lim

n→∞
NXn = NX . Then

w − lim
n→∞

Ck(Xn, B) = Ck(X,B), k = 0, . . . , d− 1, B ∈ B(Rd).

The last statement is clear, since flat convergence implies weak convergence of
currents and the curvature measures are introduced by means of currents. Clearly
Theorem 42 and Theorem 43 imply Theorem 40 and Theorem 41, because all state-
ments may be reduced to the case of polytopes and in this case the situation is clear
(cf. [25]).
Theorem 42 is proved in several steps. The first is to approximate the set X by its
parallel set Xr, 0 < r < reach X. The boundary of these parallel sets are (d − 1)-
dimensional C1-submanifolds with Lipschitz unit outer normal field, which may be
triangulated. The edges of the triangulations generate now the boundary of a sim-
plicial polyhedron. In a next step one shows that these polyhedra behave ’good’,
which means that their associated normal cycles (they are well defined by the results
of [2]) converge in flat seminorm to the normal cycle of X.

4 Integral Geometry for Sets with Positive Reach and
Extensions

It is the aim of this section to show how an integral geometry for sets with positive
reach can be developed by using the normal cycle. This approach can be extended
to UPR-sets using the index function introduced in Section 3.3.

4.1 A Translative Integral Formula

The most important integralgeometric formula, the principal kinematic formula,
deals with the integral ∫

SO(d)nRd

Ck(X ∩ gY,A ∩ gB)dg,
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where X,Y ∈ PR and A,B ⊆ Rd are Borel sets. Using the product structure of the
group of euclidean motions, we can write the last integral also as∫

SO(d)

∫
Rd

Ck(X ∩ ϑ(τzY ))dzdϑ.

It is the goal of this section to obtain an expression for the inner integral, i.e. for
fixed ϑ ∈ SO(d). Such a formula is called translative integral formula.
Before starting, we will recall the following fundamental result from geometric mea-
sure theory, the so-called Coarea Formula [5, 3.2.22]:

Theorem 44. Consider a Lipschitz function f : Rm → Rn with m > n. If A is
Lm-measurable and g : Rm → R Lm-integrable. Then∫

A
g(x)Jnf(x)dLm(x) =

∫
Rn

∫
f−1(y)

g(x)dHn(y)dHm−ndHn(y).

Let us now fix two sets X,Y ∈ PR such that also X ∩ Y ∈ PR. Denote by U
the set of pairs (u, v) ∈ Rd ×Rd such that the closed segment with endpoints u and
v does not contain the origin (this is the shorter geodesic arc on Sd−1 connecting u
and v), R :=

{
(x, u, y, v) ∈ R4d : (u, v) ∈ U

}
and consider the map

n : U × [0, 1] → Rd : (u, v, t) 7→ sin tα
sinα

u+
sin(1− t)α

sinα
v,

where cosα = 〈u, v〉. Consider further the differentiable mapping

f : R× [0, 1] → R2d × Sd−1 : (x, u, y, v, t) 7→ (x, y, n(u, v, t)),

which is locally Lipschitz and not necessarily proper. The joint unit normal bundle
of X and Y is defined as

nor(X,Y ) := f#(((nor X × nor Y ) ∩R)× [0, 1]),

the joint normal cycle as

NX,Y := f#(((NX ×NY )x1R)× [0, 1]).

We further introduce the following two mappings

G : R3d → R : (x, y, u) 7→ x− y,

π : R3d → R2d : (x, y, u) 7→ (x, u).

From a remark in [22, p.112] we infer that the slices 〈NX,ϑY , G, z〉 are well defined
for almost all rotations ϑ ∈ SO(d) and almost all z ∈ Rd, where the slice 〈T, h, z〉 is
defined as (compare with [5, 4.3.1])

〈T, h, z〉 := lim
r↓0

Txh#(1B(z,r)Ωd)
Hd(B(0, r))

.
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For a Borel set A ⊆ R2d we define for 1 ≤ i, j ≤ d− 1 the mixed curvature measures
by

Ci,j(X,Y ;A) :=∫
nor(X,Y )

1A(x, y) 〈iX(x, u)iY (y, u)η(x, y, u), ψi,j(x, y, u)〉 dH2d−1(x, y, u),

Ci,d(X,Y ;B × C) := Ci(X,B) · Cd(Y,C),

Cd,j(X,Y ;B × C) := Cd(X,B) · Cj(Y,C)

where the ψi,j(x, y, u) = ψi,j(u)’s are the mixed Lipschitz-Killing curvature forms de-
fined in [19, Section 2]. This are again universal differential forms like the Lipschitz-
Killing curvature forms. In the special case they correspond to the mixed volumes
of Section 2.1. Here η(x, y, u) is the unit simple orienting vector field of the joint
normal bundle of X and Y , such that

lim
ε↓0

sgn

〈
η(x, y, u),

∑
1≤i,j≤d−1

i+j≥d

ε2d−1−i−jψi,j(x, y, u)

〉
= 1.

Figure 5: Two sets X and Y with positive reach and their intersection S = X ∩ Y
with associated normal cycle nor S

Observe that the normal cycle of X ∩ τzY can be written as NX∩τzY = N1 +
N2 +N3, where N1 = NXx(int τzY × Sd−1), N2 = NτzY x(int X × Sd−1) and N3 =
(Hd−1xnor(∂X ∩ ∂(τzY ))) ∧ aX∩τzY iX∩τzY , see Figure 5. Here aX∩τzY is the unit
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simple orienting vector field of X ∩ τzY and iX∩τzY (x, n) = iX(x, n) · iτzY (x, n). We
use now the current version [5, 4.3.8] of the Coarea Formula 44 to conclude that
N3 = π# 〈NX,Y , G, z〉, whenever the slice is well defined.

Theorem 45. Let X,Y ⊆ Rd be two sets of positive reach. Let further h : R3d → Rd

be a bounded Borel measurable function with compact support supp h ⊂ R3d. Assume
further that Ci,j(X,Y ;K) is well defined for any compact set K ⊆ R2d. Then for
0 ≤ k ≤ d− 1 we have ∫ ∫

h(z, x, u)Ck(X ∩ τzY, d(x, u))dz

=
∑

i+j=k+d

∫
h(x− y, x, u)Ci,j(X,Y ; d(x, y, u)).

Proof. We have

Ck(X ∩ τzY, ·) = NX∩τzY (ϕk) = N1(ϕk) +N2(ϕk) +N3(ϕk)

by the definition of the curvature measures and the additivity of normal cycles for
all z ∈ Rd for which the intersection X ∩ τzY has positive reach. Hence, we can
write the left hand side as∫ ∫

h(x− y, x, u)Ck(X, d(x, u))Cd(Y, dy)

+
∫ ∫

h(x− y, x, u)Cd(X, dx)Ck(Y, d(y, u))

+
∫

Rd

π# 〈NX,Y xh,G, z〉 (ϕk)dLd(z) = (∗)

by using [19, Theorem 1] and the assumption of the theorem. Applying the Coarea
Formula 44 we get for the last integral∫

Rd

π# 〈NX,Y xh,G, z〉 (ϕk)dLd(z)

= ((NX,Y xh)xG#Ωd)(π#ϕk) = (NX,Y xh)(G#Ωd ∧ π#ϕk).

Thus, by using [19, Eq. (7)] we get

(∗) =
∫ ∫

h(x− y, x, u)Ck(X, d(x, u))Cd(Y, dy)

+
∫ ∫

h(x− y, x, u)Cd(X, dx)Ck(Y, d(y, u)) +
∑

i+j=k+d

1≤i,j≤d−1

(NX,Y xh)(ψi,j)

=
∑

i+j=k+d

∫
h(x− y, x, u)Ci,j(X,Y ; d(x, y, u)),

which gives the result.
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For an iterated version of the translative integral formula for sets with positive
reach see [17]. In the original version of this formula, the non-osculating condition

Hd({z ∈ Rd : ∃(x, u) ∈ nor X, (x− z,−u) ∈ nor Y }) = 0

was assumed additionally. However, it was shown in [37] that this condition is
not necessary to prove that reach(X ∩ τzY ) > 0 for almost all z ∈ Rd. It can
therefore by omitted. We further remark that Rataj [16, Thm. 1] gave an example
of two (d − 1)-dimensional Cd−2-submanifolds, d ≥ 3, which violate the condition
Hd({z ∈ Rd : ∃(x, u) ∈ nor X, (x− z,−u) ∈ nor Y }) = 0.
The assumption that Ci,j(X,Y ;K) is well defined for any compact set K ⊆ R2d can
unfortunately not be omitted. Rataj and Zähle gave an example of a compact set
X ⊂ R4 with positive reach and u ∈ Sd−1, such that

H1({〈x, u〉 : (x, u) ∈ nor X or (x,−u) ∈ nor X}) = 0

and the positive part of the mixed curvature measure C1,3(X,u⊥, ·) is infinite on a
compact set. They also gave sufficient conditions for the assumption to hold. One
of them is the following: If for any compact subset K ⊂ R4d∫

K∩(nor X×nor Y )∩R
(sin∠(u, v))3−ddH2d−2(x, u, y, v) < +∞

then all mixed curvature measures Ci,j(X,Y ; ·) are well defined (this is especially
the case for d ≤ 3). Moreover, the Ci,j(X,ϑY ; ·)’s are well defined for almost all
rotations ϑ ∈ SO(d). For details and another condition involving absolute curvature
measures and tangential projections we refer to [21].

4.2 The Principal Kinematic Formula

The principal kinematic formula follows now from an integration of the translative
integral formula of Theorem 45 over the rotation group SO(d). Therefore we will
need the following integral representation of the mixed curvature measures [19, Thm.
3.2]:

Proposition 46. For two sets of positive reach X and Y in Rd let aX = a1∧. . .∧ad−1

and bY = b1 ∧ . . . ∧ bd−1 be unit simple orienting vector field of nor X and nor Y
respectively, both having positive orientation determined by sgn〈ξ(x, n)∧n,Ωd〉 = 1,
where ξ is one of the vector fields aX or bX . Let further 1 ≤ i, j ≤ d− 1, i+ j ≥ d
and A be a bounded Borel set of R2d. Then

Ci,j(X,Y ;A) =
∫

(nor X×nor Y )∩R

1A

σ2d−1−i−j
F (i, j, α)
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×
∑

|I|=i

∑
|J |=j

∏
r∈Ic κr

∏
s∈Jc λs

[∧
r∈I ar,

∧
s∈J bs

]2∏d−1
i=1

√
1 + κ2

i

∏d−1
j=1

√
1 + λ2

j

dH2d−2,

whenever the integral exists. Here

F (i, j, α) :=
α

sinα

∫ 1

0

(
sin tα
sinα

)d−1−i(sin(1− t)α
sinα

)d−1−j

dt,

[∧
i∈I ai,

∧
j∈J bj

]
is the Jacobian of the orthogonal projection of the linear subspace

spanned by {ai : i ∈ I} onto the orthogonal complement of the subspace spanned
by {bj : j ∈ J}, I, J ⊆ {1, . . . , d − 1} and κi and λj are the generalized principal
curvatures of X and Y , respectively. (α was defined at the beginning of Section 4.1.)

By the help of this integral representation, we are now able to show the principal
kinematic formula:

Theorem 47. Suppose X and Y are subsets with positive reach and A and B are
bounded Borel sets of Rd. Then∫

SO(d)nRd

Ck(X ∩ gY,A ∩ gB)dg =
∑

i+j=k+d

γ(i, j, d)Ci(X,A)Cj(Y,B),

where γ(i, j, d) =
Γ( i+1

2 )Γ( j+1
2 )

Γ( i+j−d+1
2 )Γ(d+1

2 )
.

Proof. We distinguish the two cases 1. k = d and 2. k < d. For the first one we
have∫

SO(d)nRd

Hd(X ∩A ∩ (gY ∩ gB))dg =
∫

SO(d)nRd

∫
X∩gY

1A∩gB(x)dHd(x)dg

=
∫

SO(d)nRd

∫
X∩gY

1A(x)dg ·
∫

SO(d)nRd

∫
X∩gY

1gB(x)dg

= Cd(X,A)Cd(Y,B)

and γ(d, d, d)=1. We now treat the case k ≤ d − 1. Choose for the function h of
Theorem 45 the following: h(x, y, u) = 1A(y)1ϑB(y − x), for a rotation ϑ ∈ SO(d).
We now integrate both sides of the translative integral formula and obtain for the
left hand side ∫

SO(d)nRd

Ck(X ∩ gY,A ∩ gB)dg.

For the right hand side we get∫
SO(d)

∑
i+j=k+d

(NX,ϑY x1A×ϑB)(ψi,j)dϑ
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=
∑

i+j=k+d

∫
SO(d)

Ci,j(X,ϑY ;A× ϑB)dϑ.

Note, that Ci,j(X,ϑY ; ·) is well defined for almost all rotations ϑ ∈ SO(d) by the
remark at the end of Section 4.1, see also [22, p. 125]. We can therefore make use
of the integral representation provided by Proposition 46 (the intersection with R
can be omitted after applying ϑ, see [19, Corollary 1]) and conclude that

=
∑

i+j=k+d

∫
nor X×nor Y

1A×BiXiY
∑
|I|=i

∑
|J |=j

∏
r∈Ic κr

∏
s∈Jc λs∏d−1

i=1

√
1 + κ2

i

∏d−1
j=1

√
1 + λ2

j

×
∫

SO(d)

F (i, j, α(n, ϑm))
σ2d−1−i−j

[∧
I

ai,
∧
J

ϑbj

]2

dϑdH2d−2.

The inner integral is a constant c(i, j, d) and the outer one can be written as Ci(X,A)·
Cj(Y,B), by using the integral representation of the generalized curvature measures
in Theorem 31:

=
∑

i+j=k+d

c(i, j, d)
∫

nor X∩A
iX

∑
|I|=i

∏
r∈Ic κr∏d−1

r=1

√
1 + κ2

r

dHd−1

×
∫

nor Y ∩B
iY

∑
|J |=j

∏
s∈Jc λs∏d−1

s=1

√
1 + λ2

s

dHd−1

=
∑

i+j=k+d

c′(i, j, d)Ci(X,A) · Cj(Y,B).

Hence, we have∫
SO(d)nRd

Ck(X ∩ gY,A ∩ gB)dg =
∑

i+j=k+d

c′(i, j, d)Ci(X,A)Cj(Y,B).

The exact value of c′(i, j, d) may be determined by lettingX and Y balls with varying
radii. This leads to c′(i, j, d) = γ(i, j, d).

We can also give the following short alternative proof of the principal kinematic
formula:

Proof. For fixed X and variable Y or variable X and fixed Y it is easy to see that∫
SO(d)nRd

Ck(X ∩ gY,A ∩ gB)dg
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is a functional as in Theorem 40. Applying this result twice, we get∫
SO(d)nRd

Ck(X ∩ gY,A ∩ gB)dg =
∑

i+j=k+d

d(i, j, d)Ci(X,A)Cj(Y,B)

for some constants d(i, j, d). The exact values may again be determined by using
balls with different radii.

4.3 Integral Geometry for UPR-Sets

Using the notions and notations from the last section, we will sketch now, how an
integral geometry can be developed for UPR-sets. The joint unit normal bundle
nor(X,Y ) of two sets X,Y ∈ UPR is introduced in analogy to the PR-case:

nor(X,Y ) = f#(((nor(X)× nor(Y )) ∩R)× [0, 1]).

If it exists, the joint unit normal cycle is given by

NX,Y = f#(((NX ×NY )x1R)× [0, 1]).

Once again it is guarantied NX,ϑY is well defined for almost all rotations ϑ ∈
SO(d) (cf. [20]). In this case the mixed curvature measures can be introduced:
Cr,s(X,Y,A) = (NX,Y x1A×Sd−1)(ψr,s), A ⊆ R2d Borel. For these measures we have
the following integral representation:

Ci,j(X,Y ;A) =
∫

(nor X×nor Y )∩R
1A(x, y) · iX(x, u)iY (y, v)

σ2d−1−i−j
F (i, j, α)

×
∑

|I|=i

∑
|J |=j

∏
r∈Ic κr(x, u)

∏
s∈Jc λs(y, v)

[∧
r∈I ar(x, u),

∧
s∈J bs(y, v)

]2∏d−1
i=1

√
1 + κ2

i (x, u)
∏d−1

j=1

√
1 + λ2

j (y, v)

×dH2d−2(x, u, y, v),

whenever the integral exists (cf. [20]). This is for example the case, if X and Y
belong to the convex ring R [20, Prop. 4.5]. We also have that Cr,s(X,ϑY, ·) is well
defined for almost all rotations ϑ ∈ SO(d) [20, Prop. 4.6]. Moreover, the translative
integral formula as well as the principal kinematic formula hold true and can be
proved in the same way as demonstrated in the last section:

Theorem 48. Let X =
⋃

iXi, Y =
⋃

j Yj be two locally finite unions of sets with
positive reach in Rd. Let further h : R3d → Rd be a bounded Borel measurable
function with compact support supp h ⊂ R3d. Assume further that Ci,j(X,Y ;K) is
well defined for any compact set K ⊆ R2d and that for all index subsets I, J ⊂ N
with non-empty intersection sets

⋂
i∈I Xi,

⋂
j∈J Yj the sets

⋂
i∈I Xi,

⋂
j∈J τzYj are
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non-osculating for Hd-almost all z ∈ Rd. Then X∩τzY ∈ UPR for almost all z ∈ Rd

and for 0 ≤ k ≤ d− 1 we have∫ ∫
h(z, x, u)Ck(X ∩ τzY, d(x, u))dz

=
∑

i+j=k+d

∫
h(x− y, x, u)Ci,j(X,Y ; d(x, y, u)).

By integration over SO(d) we get the principal kinematic formula for UPR-sets:

Theorem 49. Suppose X,Y ∈ UPR and A and B are bounded Borel sets of Rd.
Then ∫

SO(d)nRd

Ck(X ∩ gY,A ∩ gB)dg =
∑

i+j=k+d

γ(i, j, d)Ci(X,A)Cj(Y,B),

where γ(i, j, d) =
Γ( i+1

2 )Γ( j+1
2 )

Γ( i+j−d+1
2 )Γ(d+1

2 )
.

Remark 50. Again, using Theorem 40 one can give another short proof of this
formula as in the PR-case.

The principal kinematic formula will be useful in the context of random processes
of sets with positive reach and their associated union sets in Section 5.1. There, a
stochastic version Theorem 49 will be derived. We also remark that the principal
kinematic formula implies a Crofton-type formula for sets with positive reach as well
as for locally finite unions from UPR.

5 Random Sets with Positive Reach

As in the case of convex sets, a theory of random sets with positive reach or a
theory of random processes of sets with positive reach can be developed. This
general approach and concrete models will be shown within this section.

5.1 Definition and Integralgeometric Formulas

Following [31] we can construct random processes of sets with positive reach. Denote
therefore by G,F ,K the spaces of open, closed and compact sets in Rd, respectively.
As usual, a subbasis of the topology of F is generated by

{FG : G ∈ G} ∪ {FK : K ∈ K},

where FG = {F ∈ F : F ∩ G 6= ∅} and FK = {F ∈ F : F ∩ K 6= ∅} (see for
example [12] or [14]). The σ-algebra F on F is generated by {FG : G ∈ G} and
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{FK : K ∈ K}. Denote here by PR the family of all compact sets with positive
reach of Rd. The trace of F on PR will be denoted by PR. It was shown in [32,
Prop. 1.1.1] that PR is a measurable subset of F (here we used the fact that sets
with positive reach are closed).
We can now introduce random processes of sets with positive reach: Let N be the
space of nonnegative, integer-valued, locally finite measures ϕ on (PR,PR). Any
such measure may be represented as

ϕ(·) =
∑

X∈PR:ϕ({X})>0

ϕ({X})δX(·),

where δX is the Dirac measure concentrated on X. Let further N be the σ-algebra
on N , which is generated by the mappings ϕ 7→ ϕ(X) for all X ∈ PR. A random
point process on (PR,PR) with sample space (N ,N) is now called a random process
of sets with positive reach. Since PR ∈ F and F is a compact separable Hausdorff
space we have that (F ,F) and (PR,PR) are full (in the sense of [13]). Hence, by
[13, Thm. 4], random processes of sets with positive reach can be constructed by
finite dimensional distributions. We can for example construct Poissonian random
processes of sets with positive reach with some given intensity measure. This will
be demonstrated in Example 60.
For any ϕ ∈ N exists an associated union set ϕu, which is defined as

ϕu :=
⋃

X:ϕ({X})>0

X. (1)

As in [31, Prop. 1.3.1] we have that the mapping U : N → F : ϕ 7→ ϕu is
measurable. Hence, ϕu is a random closed set (in the sense of [12] or [14]) for any
random PR-process ϕ. To ensure that ϕu is a UPR-set, for which integralgeometric
formulas are valid, we have to restrict the class of processes to a subclass satisfying
some regularity conditions. We require therefor the components of the union set
ϕu to be in a general relative position. This ensures later that we can investigate
second order properties of the union set. It is clear that for any UPR-set Z ∈ UPR

there exists at least one ϕ ∈ N such that ϕu = Z. We now restrict our attention to
the opposite direction, i.e. those point measures ϕ ∈ N , for which ϕu ∈ UPR and
introduce the space

PRn
r := {(X1, . . . , Xn) ∈ PRn : ∀I ⊆ {1, . . . , n} we have

⋂
i∈I

Xi ∈ PR},

where PRn =
n

×
i=1

PR. Denote further by PRn the product σ-algebra
n⊗

i=1

PR (anal-

ogously the n-fold product σ-algebra of F by Fn). We have that PRn
r is measurable
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in PRn. The n-fold product of ϕ ∈ N with itself will be denoted by ϕn. Since the
families PRn

r are measurable, we deduce that for each n ≥ 1

{ϕ ∈ N : ϕn(PRn \ PRn
r ) = 0} ∈ N.

The space of regular processes of sets with positive reach can now be defined as

Nr =
∞⋂

n=2

{ϕ ∈ N : ϕn(PRn \ PRn
r ) = 0}.

Definition 51. A random PR-process Φ will be called regular, if P(Φ ∈ Nr) = 1.

The following result is now obvious:

Proposition 52. We have Nr ∈ N and Φ ∈ N is a regular iff P(Φn(PRn \PRn
r ) =

0) = 1 for any n ≥ 2.

For a regular PR-process Φ ∈ Nr it is now clear that its associated union set
Φu defined by (1) is a locally finite union of sets with positive reach, for which the
integralgeometric tools of Section 4.3 are available. This will be essential for the
study of second order properties in the next section.

We denote by Gd = SO(d) n Td the group of euclidean motions, where SO(d) is
the special orthogonal group and Td the group of translations of Rd. Gd acts nat-
urally on space of sets with positive reach, namely by rotations, translations and
their compositions. This action induces a natural counterpart on the space N of
point measures by

gϕ(X) := ϕ(gX),

where g ∈ Gd and ϕ ∈ N . Using standard arguments, one easily shows that these
actions are measurable [31, Prop. 1.7.1]

Definition 53. We say that a random PR-process Φ with distribution PΦ = P◦Φ−1

is stationary, if PΦ is invariant under all translations of Rd and isotropic, if PΦ is
invariant under the action of ϑ ∈ SO(d) on Rd. The process Φ will be called motion
invariant, if it is stationary and isotropic, i.e. invariant under all euclidean motions
g ∈ Gd.

Curvature measures of UPR-sets were considered in Section 3.3. We fix now a
regular random PR-process Φ, which ensures that the curvature measures of its
associated union set Φu are well defined.

Definition 54. Ck(Φu, ·) is said to be the k-th (random and signed) curvature mea-
sure of the measure Φ ∈ Nr (or better its associated union set).
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Mean values of curvature measures will play an important roll in the consider-
ations of Section 5.2. Corresponding results and definitions are well known in the
convex case.

Definition 55. Let Φ ∈ Nr a regular PR-process such that

E|Ck|(Φu, B) <∞ and E|Ck|(Φt, B) <∞

for any bounded Borel set B ⊆ Rd, where |Ck| denotes the total variation of the mea-
sure Ck. Then the measures Ck(·) := ECk(Φu, ·) exist and are called the curvature
intensity measures.

From the general result [31, Thm. 6.3.1] for signed random measures, one obtains
that if Φ is stationary and Ck is determined, it is a multiple of the d-dimensional
Lebesgue measure. The proportionality factors, determined by Ck = ckLd, k =
0, . . . , d, are called curvature intensities of Φ, respectively.

We study now the intersection (and union) of processes of sets with positive reach
[31, Thm. 3.1.1, Thm. 3.1.3]:

Proposition 56. Let Φ and Ψ two independent regular PR-processes and further
Φ motion invariant and Φ or Ψ concentrated on compact sets. Then

(Ψ ∩ Φ)(·) :=
∫ ∫

δX∩Y (·)dΦ(X)dΨ(Y )

is a regular PR-process a.s. Moreover, we have Φu ∪Ψu ∈ UPR and Φu ∩Ψu ∈ UPR

a.s. for their associated unions sets Φi and Ψu.

The union and the intersection of Φu and Ψu can be defined as

Φu ∪Ψu :=
⋃

X:Φ({X})>0

X ∪
⋃

Y :Ψ({Y })>0

Y,

Φu ∩Ψu :=
⋃

X:Φ({X})>0

⋃
Y :Ψ({Y })>0

(X ∩ Y ).

Suppose that Φ and Ψ are two independent regular random PR-processes, such
that for their associated union sets we have Φu ∪Ψu ∈ UPR and Φu ∩Ψu ∈ UPR a.s.
- we say that Φu and Ψu are compatible a.s. Then the measures

Ck(Φu ∪Ψu, ·) = Ck(Φu, ·) + Ck(Ψu, ·)− Ck(Φu ∩Ψu),
Ck(Φu ∪Ψu, ·) = Ck(Φu, ·) + Ck(Ψu, ·)− Ck(Φu ∩Ψu)

are well defined, provided the right hand side exists. We use now the principal
kinematic formula of Theorem 49 do derive the following result [31, Thm. 4.2],
which is a stochastic version of the principal kinematic formula:
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Theorem 57. Let Φ and Ψ two independent regular random PR-processes with the
property that Φu and Ψu are compatible. Assume further that Φ is motion invariant
and that for any bounded Borel set B ⊂ Rd

E|Ck|(Φu, B) < ∞, k = 0, . . . , d,
E|Ck|(Ψu, B) < ∞, k = 0, . . . , d,

E|Ck|(Φu ∩Ψu, B) < ∞.

Then we have for bounded Borel sets B ⊆ Rd

Ck(Φu ∩Ψu, B) =
∑

i+j=k+d

γ(i, j, d)cΦi C
Ψ
j (B),

where γ(i, j, d) is the same constant as in Theorem 49.

Proof. We take expectation on both sides of the principal kinematic formula for
UPR-sets. The independence of Φ and Ψ yields together with Fubini’s theorem for
the right hand side

E
∑

i+j=k+d

γ(i, j, d)CΦ
i (A)CΨ

j (B) =
∑

i+j=k+d

γ(i, j, d)CΦ
i (A)CΨ

j (B)

=
∑

i+j=k+d

γ(i, j, d)cΦi C
Ψ
j (B),

where A was chosen in such a way that Ld(A) = 1. Using the motion invariance of

Φ and
∫

Gd

1A(gx)dLd(x) = 1 we infer for the left hand side

= E
∫

Gd

Ck(Φu ∩ gΨu, A ∩ gB)

=
∫

Gd

E
∫

Rd

1A(x)1B(g−1x)Ck(Φu ∩ gΨu, dx)dg

=
∫

Gd

E
∫

Rd

1A(gx)1B(x)Ck(g−1Φu ∩Ψu, dx)dg

=
∫

Gd

E
∫

Rd

1A(gx)1B(x)Ck(Φu ∩Ψu, dx)dg

= E
∫

Rd

1B(x)
∫

Gd

1A(gx)dgCk(Φu ∩Ψu, dx)

= ECk(Φu ∩Ψu, B) = Ck(Φu ∩Ψu, B).
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We also mention the following two important corollaries [31, Cor. 4.4 and Cor.
4.5], which are a stochastic variant of Crofton’s formula and a steriological formula
for the curvature intensities:

Corollary 58. Let Φ and Ψ as in Theorem 57 and assume additionally that Ψ is
stationary. Then

cΦ∩Ψ
k =

∑
i+j=k+d

γ(i, j, d)cΦi c
Ψ
j .

Corollary 59. Let E be a generic p-dimensional plane, p = 0, . . . , d− 1. Then

cΦ∩E
k = γ(d+ k − p, p, d)cΦd+k−p.

Example 60. As pointed out at the beginning of this section, random PR-processes
may be constructed via their finite dimensional distributions. We consider in this
example, Poissonian PR-processes (cf. [31, Sec. 1.6]). Let therefore µ be a non-
negative, locally finite measure on the space (PR,PR) and Φ ∈ N such that

P(Φ(B1) = k1, . . . ,Φ(Bn) = kn) =
n∏

j=1

(µ(Bi))kj

kj !
e−µ(Bj),

where B1, . . . , Bn are disjoint bounded sets with positive reach and k1, . . . , kn ≥ 0.
Such a Φ is called Poissonian PR-process. It can now be shown [31, Sec. 5] that if
Φ is a motion invariant Poissonian PR-process then Φ is regular, i.e. Φ ∈ Nr.

This theory will now be applied to random mosaics or random cell complexes
whose cells (also the lower dimensional) are random sets with positive reach.

5.2 Random Cell Complexes and Random Curved Mosaics

In this section we apply the theory of deterministic and random sets with positive
reach to random cell complexes and random mosaics in Rd. We will follow here
the lines of [35] and [27]. Let therefore Mi, i = 0, . . . , d, be the space of connected
compact i-dimensional submanifolds mi with boundary and positive reach, i.e. mi =
mi∪∂mi and reach mi > 0. By a k-dimensional cell complex in Rd, p ≤ d, we mean
a (k + 1)-tuple M = (M0, . . . ,Mk), where for i ∈ {0, . . . , k} the Mi’s are locally
finite families from Mi (called i-cells) satisfying the incidence relations:

1. The intersection of two i-cells from Mi is either empty or a j-cell from Mj and
j < i.

2. Any (i − 1)-cell from Mi−1 is contained in the boundary of some i-cell from
Mi.

3. The boundary of any i-cell from Mi is the finite union of some (i − 1)-cells
from Mi−1.
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As usual in algebraic topology, the corresponding union sets ∪Mi are denoted
by |Mi| and called i-skeletons of the cell complex M . The cells from Mk are called
k-dimensional PR-polyhedra in Rd. We now omit the smoothness conditions and let
Ui be the space of i-dimensional submanifolds with or without boundary, which are
representable as PR-polyhedra. Any (k+ 1)-tuple U = (U0, . . . , Uk) of locally finite
families of Ui from Ui satisfying the incidence relations 1.-3. is called a k-dimensional
UPR-cell complex. By |Ui| we denote its i-skeleton and by |Uk| the UPR-polyhedron
associated with U .
For a stochastic model we use again the language of point processes. Let Ni be the
space of locally finite, non-negative and integer-valued measures on (Ui,Ui), where
Ui is the the trace of the σ-algebra UPR, which is the smallest σ-algebra for which
the mappings f : UPR → Rd × Sd−1 : X 7→ closure(nor X) are measurable. The set
of atoms A(ϕi), ϕi ∈ Ni will correspond to the family Ui of i-cells. We will identify
ϕi with A(ϕi) and write |ϕi| instead of |A(ϕi)|. The usual σ-algebra on Ni will
be denoted by Ni. The space of k-dimensional random UPR-complexes can now be
introduced as

N k := {η = (η0, . . . , ηk) : ηi ∈ Ni, A(η) = (A(η0), . . . , A(ηk)) is a UPR − compex}.

A random k-dimensional UPR complex is defined as a random variable ξ with values
in (N k,Nk) (here Nk is given by (N0⊗ . . .⊗Nk)∩N ). We also write ξ = (ξ0, . . . , ξk)
as a random vector and |ξi| for the associated random i-skeleton. We call |ξk| also
the random k-polyhedron.

Figure 6: A random mosaic and a random cell complex whose cells are sets with
positive reach. The random cell complex is obtained by a so-called p-thinning of the
underlying random mosaic. Here the gray marked cells are deleted
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For a k-dimensional UPR-complex U = (U0, . . . , Uk) the curvature measures
Cn(|Ui|, ·) are well defined. The following result relates now the curvature mea-
sures of i-cells with its underlying complex (see [34, Thm. 4.2]):

Theorem 61. Let U = (U0, . . . , Uk) be a k-dimensional UPR-complex. Then for
i = 0, . . . , k we have

Cn(|Ui|, B) =
i∑

j=n

(−1)j−n
∑

uj∈Uj

Cn(uj , B)

for all bounded Borel sets B ⊂ Rd.

It follows the following Euler-type relation:

Corollary 62. Under the conditions of Theorem 61 we have

C0(|uk|,Rd) =
k∑

i=0

(−1)iai,

where ai is the number of i-cells of ui.

If we denote by Ni(uj) the number of i-cells adjacent to the j-cell uj then The-
orem 61 implies for i = 0, . . . , n− 1

i−1∑
j=n

(−1)j−n
∑

uj∈Uj

Ni(uj)Cn(uj , B) = (1− (−1)i−n)
∑

ui∈Ui

Cn(ui, B).

We now want to apply this theory to random cell complexes. There for we need
the fact [35, Thm. 3.1.1] that for any random k-dimensional UPR-complex ξ =
(ξ0, . . . , ξk) the curvature measures Cn(|ξi|, ·) are random signed Radon measures on
Rd. In analogy to Definition 53 we call a random UPR-complex ξ (defined on an
abstract underlying probability space (Ω,A,P)) stationary if its distribution P ◦ ξ
is invariant under translations of Rd. We will restrict from now on out attention to
stationary random UPR-complexes which are integrable, i.e. for which

E
∑
ui∈ξi

∫
closure(nor ui)

1B(x)|iui(x, n)|dHd−1(x, n) < +∞

for any bounded Borel set B ⊂ Rd and i = 0, . . . , k. Again, for such a stationary
random cell-complex its associated mean curvature measures ECn(|ξi|, ·) are multi-
ples of the d-dimensional Lebesgue measures. The multiplicities (i.e. the intensities
of the mean curvature measures) cin are called curvature intensities. For integrable,
stationary random UPR-complexes ξ = (ξ0, . . . , ξk) the mean number N i of i-cells
per unit volume and the shape distribution P i of the typical cell from ξi are well
defined (cf. [35]). We denote by Ci

n :=
∫
Cn(ui,Rd)dP i(ui) the mean value of the

n-th curvature of the typical i-cell. In particular
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1. Ci
0 is the mean Euler characteristic,

2. 2Ci
i−1 is the mean (i− 1)-volume of the boundary and

3. Ci
i is the mean i-volume of the typical i-cell of the random complex ξ.

The main result for random UPR-complexes is [35, Thm. 3.3.6]:

Theorem 63. For an integrable, stationary random UPR-complex ξ = (ξ0, . . . , ξk)
in Rd we have

cin =
i∑

j=n

(−1)j−nN jCj
n.

This means that the curvature intensities may be computed by the curvature
properties and the mean number of the typical j-cells, j = 0, . . . , i, i = 0, . . . , k. We
can also conclude the following inversion formula:

Ci
n = (−1)i−n(N i)−1(cin − ci−1

n ).

If all cells are simply connected we also have [33, Cor. 3.3.7]

N i = (−1)i(ci0 − ci−1
0 )

As a special case we study now random stationary mosaic of Rd. This are d-
dimensional stationary random cell complexes ξ = (ξ0, . . . , ξd) (in the above sense)
with the property that |ξd| = Rd, a similar concept was studied in [27]. We remark
that this model is quite more general than the one usually used in the literature on
stochastic geometry (see for example [15]).
The above formulas may be completed in the mosaic case by the relation cdd =
NdCd

d = 1. Moreover the relations from above yield

d∑
j=n

(−1)j−nN jCj
n = 0, n < d.

If moreover the cells are simply connected, the following Euler-type relation holds
true (cf. [32, Eqn. (18)]):

d∑
j=0

(−1)jN j = 0.

Example 64. We assume that ξ is a d-dimensional integrable, stationary random
mosaic in the above sense. In this case we use the following special notations: cik is
the k-th curvature intensity of the typical i-face, Ci

k is the mean total k-th curvature
of the typical i-face, N i is the mean number of i-faces per unit volume, N i,j is the
man number of j-faces adjacent to the typical i-cell, V i,i = Ci

i the mean i-volume of
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the typical i-face and V i = cii the mean total i-dimensional volume of all i-faces per
unit volume. Then we have for d = 2:

c00 = N0, c10 = N0 −N1, c20 = 0 = N0 −N ‘1 +N2,

c11 = V 1 = N1V 1,1, c21 = 0 = N1V 1,1 − 1
2
N2V 2,1, c22 = 1 = N2V 2,2.

For d = 3 we have

c00 = N0, c10 = N0 −N1, c20 = N0 −N1 +N2, c30 = 0 = N0 −N1 +N2 −N3,

c11 = V 1 = N1V 1,1, c21 = N1V 1,1− 1
2
N2V 2,1, c31 = 0 = N1V 1,1− 1

2
N2V 2,1 +N2V 3,1,

c22 = V 2 = N2V 2,2, c32 = 0 = N2V 2,2 − 1
2
N3V 3,2, c33 = 1 = N3V 3,3.

Furthermore we conclude

N0N0,1 = 2N1, N0N0,2 = N1N1,2,

N3N3,2 = 2N2, N0N0,3 −N1N1,3 = 2N3 − 2N2.

We can also apply the stochastic Crofton formula of Corollary 59 from Section
5.1 to our situation. Let therefore E be p-dimensional plane. The intersection of ξ
with E is a random stationary mosaic in E. The curvature intensities of ξ ∩ E can
be calculated as follows:

cik,ξ∩E = γ(d+ k − p, p, d)cd+i−p
d+k−p,ξ, i = 0, . . . , p; k = 0, . . . , i

and γ(i, j, d) is the same constant as in Theorem 49.

Example 65. We have in particular for d = 3 and p = 2

c00,ξ∩E =
1
2
c11,ξ, c

1
0,ξ∩E =

1
2
c21,ξ, c

1
1,ξ∩E =

π

4
c12,ξ.

A similar holds also true for general random UPR-complexes. This follows also
immediately from Corollary 59.
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