UPPER BOUND ON HANKEL DETERMINANT FOR BOUNDED TURNING FUNCTION ASSOCIATED WITH SALÂGEAN-DIFFERENCE OPERATOR

A. Naik and T. Panigrahi

Abstract. By making use of Salâgean-difference operator we introduce a new function class R_α^β which generalizes the class of functions of bounded turning of order alpha. We investigate upper bounds on the third Hankel determinant for the class R_α^β. Our results generalize the results of earlier researchers in this direction.

1 Introduction and Definitions

Let \mathbb{R} and \mathbb{C} be denote the set of real and complex numbers respectively. Denote by \mathcal{A}, the class of of all functions h of the form

$$h(z) = z + \sum_{n=2}^{\infty} a_n z^n \quad (1.1)$$

which are analytic in the open unit disc $\Delta = \{ z \in \mathbb{C} : |z| < 1 \}$ satisfying condition $h(0) = h'(0) - 1 = 0$. Let S be the subclass of \mathcal{A} consist of univalent functions. A function $h \in \mathcal{A}$ said to be of bounded turning if and only if $\Re(h'(z)) > 0$ for any $z \in \Delta$. We denote such class of functions by \mathbb{R}. For a function $h \in \mathcal{A}$, we define a linear operator $D_\lambda^\beta: \mathcal{A} \rightarrow \mathcal{A}$ as follows:

$$D_\lambda^0 h(z) = h(z),$$

$$D_\lambda^1 h(z) = z h'(z) + \frac{\lambda}{2} [h(z) - h(-z) - 2z] \quad (\lambda \in \mathbb{R})$$

$$= z + \sum_{n=2}^{\infty} \left[n + \frac{\lambda}{2} (1 + (-1)^{n+1}) \right] a_n z^n,$$

$$D_\lambda^2 h(z) = D_1^1 (D_\lambda^1 h(z)).$$
In general, for \(\beta \in \mathbb{N}_0 = \{0, 1, 2, 3, \cdots \} \),

\[
D_\lambda^\beta h(z) = D_\lambda^1(D_\lambda^{\beta-1}h(z)) = z + \sum_{n=2}^{\infty} \left(n + \frac{\lambda}{2}(1 + (-1)^{n+1}) \right) a_n z^n \quad (z \in \Delta). \quad (1.2)
\]

The operator \(D_\lambda^\beta \) is known as the S\(\lambda \)-gean-difference operator in literature (see [17, 18]). This operator is a modified Dunkel operator of complex variables (see [8, 16]). When \(\lambda = 0 \), \(D_\lambda^\beta = D_0^\beta = D^\beta \) is known as the S\(\lambda \)-gean differential operator (see [44]).

Example 1. Let

\[
h(z) = ze^z = z + \infty \sum_{n=2}^{\infty} \frac{z^n}{2^{n-1}(n-1)!}.
\]

Then

\[
D_1^1 h(z) = z + z^2 + \frac{z^3}{2} + \frac{z^4}{12} + \frac{z^5}{64} + \cdots.
\]

Example 2. Let

\[
h(z) = z \left(1 - \frac{z}{5} \right)^{-2} = z + \infty \sum_{n=2}^{\infty} \frac{n}{5^n-1} z^n.
\]

Then

\[
D_1^1 h(z) = z + 4 \frac{z^2}{5} + 12 \frac{z^3}{25} + 16 \frac{z^4}{125} + \cdots.
\]

In 1976, Noonan and Thomas [32] defined the \(q \)-th Hankel determinant of function \(h \) for \(q \geq 1 \) and \(n \geq 1 \) as

\[
H_q(n) = \begin{vmatrix}
 a_n & a_{n+1} & \cdots & a_{n+q-1} \\
 a_{n+1} & a_{n+2} & \cdots & a_{n+q} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n+q-1} & a_{n+q} & \cdots & a_{n+2q-2}
\end{vmatrix}.
\]

The Hankel determinant plays an important role in the study of singularities (see [7, 10]). It is useful in showing that a function of bounded characteristic in \(\Delta \), i.e. a function which is a ratio of two bounded analytic functions with its Laurent series around the origin having integral coefficients, is rational (see [3]). Pommerenke [37] proved that the Hankel determinant of univalent functions satisfy \(|H_q(n)| < Kn^{-\left(\frac{q+1}{2}\right)+\frac{\beta}{2}} \), \((n = 1, 2, \cdots; \ q = 2, 3, \cdots) \), where \(\beta > \frac{1}{4000} \) and \(K \) depends only on \(q \). Later, Hayman [15] proved that \(|H_2(n)| < An^{\frac{1}{2}}, \) \((n = 1, 2, \cdots) \), \((A \) is an absolute constant) for areally mean univalent functions. The study of \(|H_q(n)| \) for various subfamilies of \(A \) are of interest for many researchers (see [11, 32, 38]. Finding the upper bounds of the Hankel determinants whose elements are the coefficients of univalent and multivalent functions for different values of \(q \) and \(n \) is an interesting
area of research in the geometric function theory. For $q = 2$, $n = 1$, $a_1 = 1$ and $q = n = 2$, $a_1 = 1$, the Hankel determinant respectively reduce to

$$H_2(1) = \begin{vmatrix} a_1 & a_2 \\ a_2 & a_3 \end{vmatrix} = a_3 - a_2^2$$

and

$$H_2(2) = \begin{vmatrix} a_2 & a_3 \\ a_3 & a_4 \end{vmatrix} = a_2a_4 - a_3^2.$$

The Hankel determinant $H_2(1)$ is popularly known as the Fejér-Szegő functional. Fejér-Szegő [12] gave a sharp estimate of non-linear functional $|a_3 - \mu a_2^2|$ for μ real. It is a combination of the two coefficients which describes the area problem posed earlier by Gronwall [14]. The problem of calculating $\max_{h \in \mathbb{F}} |H_2(1)|$ for various compact subfamilies \mathbb{F} of \mathcal{A} was considered by various researchers (see [4, 22, 23, 29, 34, 35, 36]).

Recent research has focused on $H_2(2)$ for various subclasses of S. Janteng et al. [19, 20] derived the exact bounds for $H_2(2)$ for the class of starlike functions (S^*), the class of convex functions (C) and the class of functions whose derivatives have positive real parts (\mathbb{R}^T) in Δ. The bounds obtained for these three classes are $|H_2(2)| \leq 1$, $|H_2(2)| \leq \frac{1}{8}$, $|H_2(2)| \leq \frac{2}{9}$ respectively. Lee et al. [25] investigated $H_2(2)$ in the general class $S^*(\phi)$ of starlike functions with respect to a given function ϕ and in particular obtained the results when $f \in S^*(\alpha)$, the class of starlike functions of order α ($|H_2(2)| \leq (1 - \alpha)^2$), the class S^*_L of lemniscate starlike functions ($|H_2(2)| \leq \frac{1}{4\alpha^2}$) and the class S^*_S of strongly starlike functions of order β ($|H_2(2)| \leq \beta^2$). Krishna and Ramreddy [24] generalized the result of Janteng et al. [20] giving the sharp bound of $H_2(2)$ in the class of starlike and convex functions of α.

Zaprawa [50] showed that if $f \in \mathbb{T}$, the class of typically real functions, then $|H_2(2)| \leq 9$. Ramreddy and Krishna [40] obtained the Hankel determinant for starlike and convex functions with respect to symmetric points. Using Owa and Srivastava operator Ω^δ_z ($0 \leq \delta \leq 1$), Mishra and Gochhayat [28] introduced the class

$$\mathbb{R}_\delta(\gamma, \alpha) = \left\{ h \in \mathcal{A} : \mathbb{R} \left(e^{i\gamma} \frac{\Omega^\delta_z h(z)}{z} \right) > \alpha \cos \gamma, \ (|\gamma| < \frac{\pi}{2}, \ 0 \leq \alpha \leq 1) \right\}$$

and obtained the sharp upper bounds for $H_2(2)$. Apart from these, many researchers obtained the upper bounds for various subclasses of univalent analytic functions (see [2, 6, 21, 30, 42, 43, 47, 49]).

In this paper, we focus on third Hankel determinant for $q = 3$ and $n = 1$, denoted by $H_3(1)$ given by

$$H_3(1) = \begin{vmatrix} a_1 & a_2 & a_3 \\ a_2 & a_3 & a_4 \\ a_3 & a_4 & a_5 \end{vmatrix}.$$

**

Surveys in Mathematics and its Applications 15 (2020), 525 – 543
http://www.utgjiu.ro/math/sma
For \(h \in \mathcal{A} \) and \(a_1 = 1 \), we have
\[
H_3(1) = a_3(a_2a_4 - a_3^2) - a_4(a_4 - a_2a_3) + a_5(a_3 - a_2^2).
\]
An application of triangle inequality yields
\[
|H_3(1)| \leq |a_3||a_2a_4 - a_3^2| - |a_4||a_4 - a_2a_3| + |a_5||a_3 - a_2^2|.
\]

Recently, Babalola (see [1]) obtained the sharp upper bound of \(H_3(1) \) for the functions belongs to the class \(S^* \), \(C \) and \(RT \). Krishna et al. [48] introduced the generalized class \(RT(\alpha) \) as \(\Re(h'(z)) > \alpha \) \((z \in \Delta)\) and obtained the bound on \(H_3(1) \). Further, Bansal et al. [3] and Raza and Malik [41] obtained the bound \(H_3(1) \) for certain subclass of univalent functions. Very recently, making use of Hohlov operator, Gochhayat et al. [13] introduced the class \(R_{\alpha, \beta} \) and obtained the sharp bounds for \(H_2(2) \) and \(H_3(1) \) in terms of Gauss hypergeometric function. For recent results on third Hankel determinant see [31, 39, 45, 46].

Motivated by the above researchers, we introduced the subclass of univalent function by making use of Salagean-difference operator \(D_{\beta, \lambda} \) as follows:

Definition 3. A function \(h \in \mathcal{A} \) given by (1.1) is in the class \(R_{\alpha, \beta} \) if it satisfy the condition
\[
\Re\left[\frac{D_{\beta, \lambda}h(z)}{z}\right] > \alpha \quad (0 \leq \alpha \leq 1, \ \beta \in \mathbb{N}_0, \ \lambda \in \mathbb{R}, \ z \in \Delta).
\]

It may be noted that by taking \(\lambda = 0 \) and \(\beta = 1 \) the class \(R_{\alpha} \) studied by Krishna et al. [48] (also, see [28]). Also, letting \(\lambda = 0, \ \beta = 1 \) and \(\alpha = 0 \) we obtain the class \(\mathcal{R}_0 \) studied by Babalola [1]. Further, if we take \(\beta = 0 \) in the class \(R_{\alpha, \lambda} \), we get the class \(\mathcal{R}_0(0, \alpha) = \mathcal{R}(\alpha) \) studied by Mishra and Gochhayat [28].

In this paper, following a method of classical analysis derived by Libera and Zlotkiewicz [26, 27], we obtain the upper bounds of \(H_3(1) \) for the function belonging to the class \(R_{\alpha, \lambda} \).

2 Preliminary Lemmas

Let \(\mathcal{P} \) denote the class of functions denoted by \(p \) such that
\[
p(z) = 1 + d_1z + d_2z^2 + \cdots
\]
which are regular in the open unit disk \(\Delta \) and satisfy \(\Re(p(z)) > 0 \) for any \(z \in \Delta \). Here \(p(z) \) is called the Caratheodory function (see [9]).

To prove our main results we need the following lemmas.
Lemma 4. (see[9]) If \(p \in \mathcal{P} \) is of the form (2.1), then
\[
|d_n| \leq 2 \quad (n \in \mathbb{N}).
\] (2.2)
The equality holds for the function
\[
\phi(z) = \frac{1 + z}{1 - z} = 1 + 2 \sum_{n=1}^{\infty} z^n.
\]

Lemma 5. (see [26, 27]) If \(p \in \mathcal{P} \) is of the form (2.1), then
\[
2d_2 = d_1^2 + (4 - d_1^2)x,
\] (2.3)
and
\[
4d_3 = d_1^3 + 2(4 - d_1^2)d_1x - (4 - d_1^2)d_1x^2 + 2(4 - d_1^2)(1 - |x|^2)z,
\] (2.4)
for some complex numbers \(x, z \) satisfying \(|x| \leq 1 \) and \(|z| \leq 1 \).

3 Main Results

Theorem 6. Let the function \(h \) given by (1.1) be in the class \(R_\lambda^\beta(\alpha) \) \((\lambda \in \mathbb{R}, \beta \in \mathbb{N}_0, 0 \leq \alpha \leq 1) \). Then
\[
|a_2| \leq \frac{2(1 - \alpha)}{2^\beta}, \quad |a_3| \leq \frac{2(1 - \alpha)}{(3 + \lambda)^\beta},
\]
\[
|a_4| \leq \frac{2(1 - \alpha)}{4^\beta}, \quad |a_5| \leq \frac{2(1 - \alpha)}{(5 + \lambda)^\beta}.
\]

Proof. Let \(h \in R_\lambda^\beta(\alpha) \). Then there exists an analytic function \(p \in \mathcal{P} \) in the unit disk \(\Delta \) with \(p(0) = 1 \) and \(\Re(p(z)) > 0 \) such that
\[
\frac{D_\lambda^\beta h(z)}{z} = \alpha + (1 - \alpha)p(z).
\] (3.1)
Using the series expansion for \(D_\lambda^\beta h(z) \) and \(p(z) \) in (3.1), we get
\[
1 + 2^\beta a_2z + (3 + \lambda)^\beta a_3z^2 + 4^\beta a_4z^3 + (5 + \lambda)^\beta a_5z^4 + \cdots
\]
\[
= 1 + (1 - \alpha)d_1z + (1 - \alpha)d_2z^2 + (1 - \alpha)d_3z^3 + (1 - \alpha)d_4z^4 + \cdots.
\] (3.2)
Equating the coefficient of various powers of \(z \), \(z^2 \), \(z^3 \) and \(z^4 \) on both the sides of (3.2), we obtain
\[
a_2 = (1 - \alpha)d_1, \quad a_3 = (1 - \alpha)d_2, \quad a_4 = (1 - \alpha)d_3, \quad a_5 = (1 - \alpha)d_4.
\] (3.3)
Application of triangle inequality to (3.3) and followed by the Lemma 4 give the desire estimate. This completes the proof of Theorem 6.
Remark 7. Taking $\lambda = 0$, $\beta = 1$ in the above theorem we obtain the coefficient bounds for the class $R_\alpha^2(\beta)$ as $|a_n| \leq \frac{2(1-\alpha)}{n}$ $(n \geq 2)$.

Theorem 8. Let the function $h(z)$ given by (1.1) be in the class $R_\alpha^2(\alpha)$. Then

$$|a_2a_4 - a_3^2| \leq \frac{4(1-\alpha)^2}{(3+\lambda)^{2\beta}}.$$

Proof. Putting the values of a_2, a_3 and a_4 from (3.3) in the functional $|a_2a_4 - a_3^2|$, we obtain

$$|a_2a_4 - a_3^2| = \left| \frac{(1-\alpha)d_1(1-\alpha)d_2}{2^\beta} \cdot \frac{(1-\alpha)d_3}{4^\beta} - \frac{(1-\alpha)^2d_2^2}{(3+\lambda)^{2\beta}} \right|$$

$$= \frac{(1-\alpha)^2}{2^\beta(3+\lambda)^{2\beta}} \left| (3+\lambda)^{2\beta}d_1d_3 - 2^{3\beta}d_2^2 \right|$$

$$= \frac{(1-\alpha)^2}{2^\beta(3+\lambda)^{2\beta}} \left| e_1d_1d_3 - e_2d_2^2 \right|,$$

where

$$e_1 = (3+\lambda)^{2\beta} \quad \text{and} \quad e_2 = 2^{3\beta}. \tag{3.5}$$

Substituting the values of d_2 and d_3 from (2.3) and (2.4) of Lemma 5 on the right hand side of (3.4), we get

$$|e_1d_1d_3 - e_2d_2^2| = \left| \frac{e_1d_1}{4} \left\{ d_1^2 + 2d_1(4 - d_1^2)x - d_1(4 - d_1^2)x^2 + 2(4 - d_1^2)(1 - |x|^2)z \right\} \right|$$

$$= \left| \frac{e_1d_1}{4} + \frac{e_1d_1(4 - d_1^2)x}{2} - \frac{e_1d_1^2(4 - d_1^2)x^2}{4} + \frac{e_1d_1(4 - d_1^2)(1 - |x|^2)z}{2} \right|$$

$$- \left| \frac{e_2d_1^4}{4} - \frac{e_2(4 - d_1^2)^2x^2}{4} - \frac{e_2d_1^2(4 - d_1^2)x}{2} \right|.$$

Therefore,

$$4|e_1d_1d_3 - e_2d_2^2| = |(e_1 - e_2)d_1^2 + 2e_1d_1(4 - d_1^2)x + 2(e_1 - e_2)d_1^2x(4 - d_1^2) - (4 - d_1^2)x^2(e_1d_1^2 + e_2(4 - d_1^2)) - 2e_1d_1(4 - d_1^2)|x|^2z|. \tag{3.6}$$

Using the fact that $|z| \leq 1$ and $|xa + yb| \leq |x||a| + |y||b|$ where $x, y, a, b \in \mathbb{R}$ in the
expression (3.6), after simplifying we get

\[4|e_1d_1d_3 - e_2d_2^2| \leq |(e_1 - e_2)d_1^4 + 2e_1d_1(4 - d_1^2) + 2(e_1 - e_2)d_1^2(4 - d_1^2)|x| \\
- \{e_1d_1^2 + e_2(4 - d_1^2) + 2e_1d_1\}(4 - d_1^2)|x|^2 \]

By Lemma 4, \(|d_1| \leq 2\). Suppose that \(d_1 = d\) and we may assume without restriction that \(d \in [0, 2]\). Using the well-known results \((d_1 + a)(d_1 + b) \geq (d_1 - a)(d_1 - b)\) where \(a, b \geq 0\) on the right hand side of (3.7) upon simplification give

\[4|e_1d_1d_3 - e_2d_2^2| \leq |(e_1 - e_2)d_1^4 + 2e_1d_1(4 - d_1^2) + 2(e_1 - e_2)d_1^2(4 - d_1^2)|x| \\
- (d_1 - 2)\{(e_1 - e_2)d_1 - 2e_2\}(4 - d_1^2)|x|^2 \].

(3.8)

Applying triangle inequality to the right hand side of (3.8), replacing \(|x|\) by \(\rho\) and putting the values of \(e_1\) and \(e_2\) from (3.5) in (3.8) we get

\[4|e_1d_1d_3 - e_2d_2^2| \leq [(3 + \lambda)^{2\beta} - 2^{3\beta}]d^4 + 2(3 + \lambda)^{2\beta}d(4 - d^2) + 2[(3 + \lambda)^{2\beta} - 2^{3\beta}]d^2(4 - d^2) \rho \\
+ (d - 2)\{(3 + \lambda)^{2\beta} - 2^{3\beta}|d - 2^{3\beta+1}|\}(4 - d^2) \rho_2^2 \\
= (d - 2)\{(3 + \lambda)^{2\beta} - 2^{3\beta}|d - 2^{3\beta+1}|\rho^2\}(4 - d^2) \\
= G(d, \rho) (\text{say}) \quad (0 \leq \rho = |x| \leq 1). \]

(3.9)

Now, we maximize the function \(G(d, \rho)\) on the close interval region \([0, 2] \times [0, 1]\). Differentiating \(G\) partially with respect to \(\rho\) we get

\[\frac{\partial G}{\partial \rho} = 2\left[(3 + \lambda)^{2\beta} - 2^{3\beta} \right]d^2 + (d - 2)\left\{ (3 + \lambda)^{2\beta} - 2^{3\beta} \right\}d - 2^{3\beta+1} \rho \right] (4 - d^2). \quad (3.10) \]

For \(0 < \rho < 1\) and for fixed \(d\) with \(0 < d < 2\) we observe from (3.10) that \(\frac{\partial G}{\partial \rho} > 0\). Therefore \(G(d, \rho)\) is an increasing function of \(\rho\) and hence it cannot have the maximum value in the interior of the close region \([0, 2] \times [0, 1]\). Hence, for fixed \(d \in [0, 2]\), we have

\[\max G(d, \rho) = G(d, 1) = H(d) (\text{say}), \]

**

Surveys in Mathematics and its Applications 15 (2020), 525 – 543
http://www.utgjiu.ro/math/sma
From (3.12), we observe that
\[H = 0 \]
d is a decreasing function of \(No \).
Now, from (3.9) and (3.13) we have
\[\text{Remark 11.} \]
For (3.14) in (3.4) we obtain
\[\left| a_2 a_4 - a_3^2 \right| \leq \frac{(1 - \alpha)^2 e_2}{2\beta(3 + \lambda)^{2\beta}} = \frac{4(1 - \alpha)^2}{(3 + \lambda)^{2\beta}}. \]
This completes the proof of Theorem 8.
\[
\text{Remark 9. For } \lambda = 0 \text{ and } \beta = 1, \text{ our result in Theorem 8 coincides with the result of Krishan and Ramreddy [48] (also, see [28]).}
\]
\[
\text{Remark 10. For } \lambda = 0, \beta = 1 \text{ and } \alpha = 0 \text{ our result coincides to that of Janteng et. al. (see [19]).}
\]
\[
\text{Remark 11. Letting } \beta = 0 \text{ in Theorem 8 we get the result due to Mishra and Gochhayat [28].}
\]
Theorem 12. If the function $h(z)$ defined by (1.1) belongs to the class $R^3_\lambda(\alpha)$, then for $0 \leq \alpha \leq \frac{2^{\beta+1}-(3+\lambda)\beta}{2^{\beta+1}}$, we have

$$|a_2a_3 - a_4| \leq \frac{2(1 - \alpha)}{3\sqrt{34}(3 + \lambda)^\beta} \left| \frac{[3(3 + \lambda)\beta - 2^{\beta+1}(1 + \alpha)]^3}{[(3 + \lambda)\beta - 2\beta]^3} \right|.$$ \hfill (3.16)

Proof. Let the function $h(z)$ given by (1.1) be in the class $R^3_\lambda(\alpha)$. Proceeding as in Theorem 6 and putting the values of a_2, a_3 and a_4 in the functional $|a_2a_3 - a_4|$ we get

$$|a_2a_3 - a_4| = \left| \frac{(1 - \alpha)}{4\beta(3 + \lambda)\beta} \right| k_1d_1d_2 + k_2d_3$$ \hfill (3.17)

where

$$k_1 = 2\beta(1 - \alpha), \quad k_2 = -(3 + \lambda)\beta.$$ \hfill (3.18)

Substituting the values of d_2 and d_3 from (2.2) and (2.3) of Lemma 5 on the right hand side of (3.17) we have

$$|k_1d_1d_2 + k_2d_3| = \left| \frac{k_1d_1}{2} \left\{ d_1^2 + x(4 - d_1^2) \right\} \right|$$

$$+ \frac{k_2}{4} \left\{ d_1^2 + 2d_1x(4 - d_1^2) - d_1x^2(4 - d_1^2) + 2(4 - d_1^2)(1 - |x|^2)z \right\}$$

$$= \left| \frac{1}{2} \left(k_1d_1^2 + k_1d_1x(4 - d_1^2) \right) + \frac{1}{4} \left(k_2d_1^2 + 2k_2d_1(4 - d_1^2)x \right) - k_2d_1(4 - d_1^2)x + 2k_2(4 - d_1^2)(1 - |x|^2)z \right|,$$

which implies

$$4|k_1d_1d_2 + k_2d_3| = \left| 2k_1d_1^3 + 2k_1d_1(4 - d_1^2)x + k_2d_1^2 + 2k_2d_1(4 - d_1^2)x \right.$$

$$- k_2d_1(4 - d_1^2)x^2 + 2k_2(4 - d_1^2)z - 2k_2(4 - d_1^2)|x|^2z \right|.$$ \hfill (3.19)

Using the triangle inequality and the fact that $|z| \leq 1$ in the above equation, we have

$$4|k_1d_1d_2 + k_2d_3| \leq (2k_1 + k_2)d_1^3 + 2(k_1 + k_2)d_1|x|(4 - d_1^2) + 2k_2(4 - d_1^2) + k_2(d_1 + 2)(4 - d_1^2)|x|^2$$

$$= \left| \left[2^{\beta+1}(1 - \alpha) - (3 + \lambda)^\beta \right] d_1^3 + 2(2\beta(1 - \alpha) - (3 + \lambda)^\beta) d_1|x|(4 - d_1^2) \right.$$ \hfill (3.19)

$$- 2(3 + \lambda)^\beta(4 - d_1^2) + (3 + \lambda)^\beta(d_1 + 2)(4 - d_1^2)|x|^2 \right|.$$

Since $|d_1| < 2$ by Lemma 4 we may assume without any restriction $d_1 = d \in [0, 2]$. Using the well-known result that $d_1 + a > d_1 - a$ for $a \geq 0$, replacing $|x|$ by ρ and $0 \leq \rho < 1$...
\(\rho \leq 1 \) and assuming \(\alpha \leq \frac{2^{\beta+1}-(3+\lambda)^{\beta}}{2^{\beta+1}} \) on the right hand side of the above inequality (3.19) we get

\[
4|k_1d_1d_2+k_2d_3| \leq \left[2^{\beta+1}(1-\alpha) - (3+\lambda)^{\beta} \right] d^3 + 2 \left[-2^{\beta}(1+\alpha) + (3+\lambda)^{\beta} \right] d(4-d^2)\rho \\
+ 2(3+\lambda)^{\beta}(4-d^2) + (3+\lambda)^{\beta}(d-2)(4-d^2)\rho^2 = K(d, \rho) \text{(say)},
\]

(3.20)

where

\[
K(d, \rho) = \left[2^{\beta+1}(1-\alpha) - (3+\lambda)^{\beta} \right] d^3 + 2 \left[-2^{\beta}(1+\alpha) + (3+\lambda)^{\beta} \right] d(4-d^2)\rho \\
+ 2(3+\lambda)^{\beta}(4-d^2) + (3+\lambda)^{\beta}(d-2)(4-d^2)\rho^2.
\]

(3.21)

Now, we have to maximize the function \(K(d, \rho) \) over closed region \([0, 2] \times [0, 1] \). Differentiating \(K \) partially with respect to \(\rho \) we get

\[
\frac{\partial K}{\partial \rho} = 2[(3+\lambda)^{\beta} - 2^{\beta}(1+\alpha)]d(4-d^2) + 2(3+\lambda)^{\beta}(d-2)(4-d^2)\rho.
\]

(3.22)

For \(0 < \rho < 1 \), for fixed \(d \) with \(0 < d < 2 \) and for \(\alpha \) with \(0 \leq \alpha \leq \frac{2^{\beta+1}-(3+\lambda)^{\beta}}{2^{\beta+1}} \), we observe from (3.22) that \(\frac{\partial K}{\partial \rho} \geq 0 \) which implies the function \(K(d, \rho) \) is an increasing function of \(\rho \) and hence it cannot have a maximum at any point in the interior of the closed region \([0, 2] \times [0, 1] \). Thus for fixed \(d \), \(0 \leq d \leq 2 \), we have

\[
\max_{0 \leq \rho \leq 1} K(d, \rho) = K(d, 1) = L(d) \text{ (say)}
\]

where

\[
L(d) = \left[2^{\beta+1}(1-\alpha) - (3+\lambda)^{\beta} \right] d^3 + 2(3+\lambda)^{\beta}(4-d^2) \\
+ 2\left[(3+\lambda)^{\beta} - 2^{\beta}(1+\alpha) \right] d(4-d^2) + (3+\lambda)^{\beta}(d-2)(4-d^2) \\
= \left[2^{\beta+2} - 4(3+\lambda)^{\beta} \right] d^2 + 4\left[3(3+\lambda)^{\beta} - 2^{\beta+1}(1+\alpha) \right] d.
\]

(3.23)

A function \(L(d) \) to be maximum or minimum on the interval \([0, 2] \), we have

\[
L'(d) = 3\left[2^{\beta+2} - 4(3+\lambda)^{\beta} \right] d^2 + 4\left[3(3+\lambda)^{\beta} - 2^{\beta+1}(1+\alpha) \right] = 0,
\]

which implies

\[
d = \sqrt{\frac{[3(3+\lambda)^{\beta} - 2^{\beta+1}(1+\alpha)]}{3(3+\lambda)^{\beta} - 2^{\beta+1}}} \in [0, 2], \quad \left(0 \leq \alpha \leq \frac{2^{\beta+1}-(3+\lambda)^{\beta}}{2^{\beta+1}} \right).
\]

(3.24)

Also,

\[
L''(d) = 6\left[2^{\beta+1} - 4(3+\lambda)^{\beta} \right] d.
\]

(3.25)

Surveys in Mathematics and its Applications 15 (2020), 525 – 543

http://www.utgjii.ro/math/sma
Upper bound on Hankel determinant for bounded turning function ... 535

Substitute the value of \(d \) from (3.24) in (3.25) we get

\[
L''(d) = \frac{12}{\sqrt{3}} \left[2^{\beta+1} - 4(3 + \lambda)\beta \right] \sqrt{\left[2^{\beta+1}(1 + \alpha) - 3(3 + \lambda)\beta \right] \left[2^{\beta+2} - 4(3 + \lambda)\beta \right]} < 0,
\]

for \(0 \leq \alpha \leq \frac{2^{\beta+1} - (3 + \lambda)\beta}{2^{\beta+1}} \). Hence it follows from differential calculus, the function \(L(d) \) is maximum at the point \(d \) given by (3.24). Putting the value of \(d \) from (3.24)

in (3.23) and simplifying we get

\[
L_{\text{max}} = \left[2^{\beta+2} - 4(3 + \lambda)\beta \right] \left[2^{\beta+1}(1 + \alpha) - 3(3 + \lambda)\beta \right] \frac{2}{3^{\beta} - (3 + \lambda)\beta}
\]

\[
+ 4[3(3 + \lambda)\beta - 2^{\beta+1}(1 + \alpha)] \left[2^{\beta+1}(1 + \alpha) - 3(3 + \lambda)\beta \right] \frac{1}{3^{\beta} - (3 + \lambda)\beta}
\]

\[
= \frac{-4[2^{\beta+1}(1 + \alpha) + 3(3 + \lambda)\beta]}{3^{\beta} - 2^{\beta} + (3 + \lambda)\beta} + \frac{4[-2^{\beta+1}(1 + \alpha) + 3(3 + \lambda)\beta]}{\sqrt{3}(3 + \lambda)\beta - 2^{\beta} \frac{1}{2}}
\]

\[
= \frac{-4[3(3 + \lambda)\beta - 2^{\beta+1}(1 + \alpha)]}{3\sqrt{3}(3 + \lambda)\beta - 2^{\beta} \frac{1}{2}} + 12[3(3 + \lambda)\beta - 2^{\beta+1}(1 + \alpha)]\frac{3}{2}
\]

\[
= \frac{8}{3\sqrt{3}} \left[3(3 + \lambda)\beta - 2^{\beta+1}(1 + \alpha) \right] \frac{3}{2} \sqrt{(3 + \lambda)\beta - 2^{\beta}}.
\]

(3.26)

From (3.20) and (3.26) we have

\[
|k_1d_1d_2 + k_2d_3| \leq \frac{2}{3\sqrt{3}} \left[3(3 + \lambda)\beta - 2^{\beta+1}(1 + \alpha) \right] \frac{3}{2} \frac{1}{\sqrt{(3 + \lambda)\beta - 2^{\beta}}}.
\]

(3.27)

The relations (3.17) and (3.27) give

\[
|a_2a_3 - a_4| \leq \frac{1 - \alpha}{4^{\beta}(3 + \lambda)\beta} \frac{2}{3\sqrt{3}} \left[3(3 + \lambda)\beta - 2^{\beta+1}(1 + \alpha) \right] \frac{3}{2} \frac{1}{\sqrt{(3 + \lambda)\beta - 2^{\beta}}}
\]

\[
= \frac{2(1 - \alpha)}{3\sqrt{3}(3 + \lambda)\beta} \frac{3(3 + \lambda)\beta - 2^{\beta+1}(1 + \alpha)}{\frac{3}{2} \sqrt{(3 + \lambda)\beta - 2^{\beta}}}
\]

This completes the proof of the Theorem 12. \(\square \)

Remark 13. Putting \(\lambda = 0, \beta = 1 \) in the above theorem we get the following results due to Vamshree Krishna et al.[48].

Corollary 14. (see[48]) Let \(f \in RT(\alpha) \) \((0 \leq \alpha \leq \frac{1}{2})\). Then

\[
|a_2a_3 - a_4| \leq \left(\frac{1 - \alpha}{6} \right) \left(\frac{5 - 4\alpha}{3} \right)^{\frac{3}{2}}.
\]
Putting $\alpha = 0$ in Corollary 14 we get $|a_{2a3} - a_4| \leq \frac{5}{18} \sqrt{\frac{5}{3}}$. This result is coincide with Babalola [see1].

Theorem 15. Let $h(z) \in R^β_λ(\alpha)$ \(0 \leq \alpha \leq \frac{2(\lambda + \beta - 22\beta)}{2(\lambda + \alpha)^2}\). Then

$$|a_3 - a_2^2| \leq \frac{2(1 - \alpha)}{(3 + \alpha)^2}.$$

Proof. Substituting the values of a_2 and a_3 from (3.3) in coefficient functional $|a_3 - a_2^2|$ we obtain

$$|a_3 - a_2^2| = \left| \frac{(1 - \alpha)d_2}{(3 + \lambda)^2} - \frac{(1 - \alpha)^2d_1^2}{2^2\beta} \right|$$

$$= \frac{(1 - \alpha)}{(3 + \lambda)^2(2\beta)} \left| 2^{2\beta}d_2 - (3 + \lambda)^2(1 - \alpha)d_1^2 \right|$$

$$= \frac{1 - \alpha}{(3 + \lambda)^2(2\beta)} \left| l_1d_2 + l_2d_1^2 \right|,$$

where

$$l_1 = 2^{2\beta}, \quad l_2 = -(3 + \lambda)^2(1 - \alpha).$$

Putting the value of d_2 from (2.2) of Lemma 5 in the right hand side of (3.28) we obtain

$$|l_1d_2 + l_2d_1^2| = \left| \frac{l_1}{2} \left(d_1^2 + x(4 - d_1^2) \right) + l_2d_1^2 \right| = \left| \frac{l_1d_1^2 + l_1x(4 - d_1^2) + 2l_2d_1^2}{2} \right|,$$

which implies

$$2|l_1d_2 + l_2d_1^2| = \left| (l_1 + 2l_2)d_1^2 + l_1x(4 - d_1^2) \right|$$

$$= \left| 2^{2\beta} - 2(3 + \lambda)^2(1 - \alpha)|d_1^2 + 2^{2\beta}x(4 - d_1^2) \right|.$$

(3.29)

Choosing $d_1 = d \in [0,2]$, applying triangle inequality, replacing $|x|$ by ρ on the right hand side of (3.29) and assume that $\alpha \leq \frac{2(\lambda + \lambda)^2}{2(3 + \lambda)^2}$, we have

$$2|l_1d_2 + l_2d_1^2| \leq \left| 2(3 + \lambda)^2(1 - \alpha) - 2^{2\beta} \right| d^2 + 2^{2\beta}(4 - d^2) \rho$$

$$= M(d, \rho) \text{(say)} \quad (0 \leq \rho = |x| \leq 1),$$

(3.30)

where

$$M(d, \rho) = [2(3 + \lambda)^2(1 - \alpha) - 2^{2\beta}] d^2 + 2^{2\beta}(4 - d^2) \rho.$$

In order to determine the maximum value of the function $M(d, \rho)$ differentiating $M(d, \rho)$, partially with respect to ρ, we get

$$\frac{\partial M}{\partial \rho} = 2^{2\beta}(4 - d^2) > 0 \quad \text{for} \quad d \in [0,2]$$

Surveys in Mathematics and its Applications 15 (2020), 525 – 543

http://www.utgjiu.ro/math/sma
For $0 < d < 2$, $\frac{\partial M}{\partial \rho} > 0$. Hence the function $M(d, \rho)$ is an increasing function of ρ.

The maximum value of M occurs at $\rho = 1$ and given by

$$\max_{0 \leq \rho \leq 1} M(d, \rho) = M(d, 1) = N(d)$$

where

$$N(d) = \left[2(3 + \lambda)^\beta (1 - \alpha) - 2^{2\beta} \right] d^2 + 2^{2\beta} (4 - d^2)$$

$$= \left[2(3 + \lambda)^\beta (1 - \alpha) - 2^{2\beta+1} \right] d^2 + 2^{2\beta+2}. \quad (3.31)$$

Now

$$N'(d) = 4\left[(3 + \lambda)^\beta (1 - \alpha) - 2^{2\beta} \right] d \leq 0, \quad \forall \quad d \in [0, 2], \quad \alpha \in \left[0, \frac{2(3 + \lambda)^\beta - 2^{2\beta}}{2(3 + \lambda)^\beta} \right].$$

Therefore $N(d)$ becomes a decreasing function of d whose maximum value occur at $d = 0$. From (3.31) we get

$$\max_{0 \leq d \leq 2} N(d) = N(0) = 2^{2\beta+2}. \quad (3.32)$$

It follows from (3.30) and (3.32) that

$$|l_1d_2 + l_2d_1^2| \leq 2^{2\beta+1}. \quad (3.33)$$

Using (3.33) in (3.28) gives

$$|a_3 - a_2^2| \leq \frac{1 - \alpha}{(3 + \lambda)^\beta 2^{2\beta+1}} \frac{2(1 - \alpha)}{(3 + \lambda)^\beta}$$

The proof of Theorem 15 is thus completed.

\[\square\]

Remark 16. Taking $\lambda = 0, \beta = 1$ in Theorem 15 we get the estimate of $|a_3 - a_2^2| \leq \frac{2}{3}(1 - \alpha)$, studied by Vamshree Krishna et al [48].

Remark 17. Letting $\lambda = 0, \beta = 1$ and $\alpha = 0$ we get the results $|a_3 - a_2^2| \leq \frac{2}{3}$ due to Babalola [1]

Theorem 18. Let $f \in R_\lambda^\beta(\alpha)$. Then

$$|h_3(1)| \leq \frac{4(1 - \alpha)^2}{(3 + \lambda)^\beta} \left[\frac{2(1 - \alpha)}{(3 + \lambda)^{2\beta}} + \frac{[3(3 + \lambda)^\beta - 2^{2\beta+1}(1 + \alpha)]^2}{3\sqrt{34^\beta}(3 + \lambda)^\beta - 2^{2\beta}} + \frac{1}{(5 + \lambda)^\beta} \right]$$

**

Surveys in Mathematics and its Applications 15 (2020), 525 – 543

http://www.utmjui.ro/math/sma
Proof. Using the results from Theorem 6, 8, 12 and 15 in (1.3) we obtain

\[
H_3(1) \leq \frac{2(1 - \alpha) 4(1 - \alpha)^2}{(3 + \lambda)^3 (3 + \lambda)^{2\beta}} + \frac{2(1 - \alpha) 2(1 - \alpha) [3(3 + \lambda)^\beta - 2^{\beta+1}(1 + \alpha)]^{\frac{3}{2}}}{3\sqrt{3}4^\beta(3 + \lambda)^\beta [(3 + \lambda)^\beta - 2^\beta]^{\frac{1}{2}}}
\]

\[
+ \frac{2(1 - \alpha) 2(1 - \alpha)}{(5 + \lambda)^2 (3 + \lambda)^3}
\]

\[
= 8(1 - \alpha)^3 + \frac{4(1 - \alpha)^2 [3(3 + \lambda)^\beta - 2^{\beta+1}(1 + \alpha)]^{\frac{3}{2}}}{4^\beta 3\sqrt{3}[(3 + \lambda)^\beta - 2^\beta]^{\frac{1}{2}}} + \frac{4(1 - \alpha)^2}{(3 + \lambda)^2 (5 + \lambda)^3}
\]

\[
= \frac{4(1 - \alpha)^2}{(3 + \lambda)^3} \left[\frac{2(1 - \alpha)}{(3 + \lambda)^{2\beta}} + \frac{3(3 + \lambda)^\beta - 2^{\beta+1}(1 + \alpha)]^{\frac{3}{2}}}{3\sqrt{3}4^\beta[(3 + \lambda)^\beta - 2^\beta]^{\frac{1}{2}}} + \frac{1}{(5 + \lambda)^3} \right].
\]

This complete the proof of Theorem 18.

Remark 19. Putting \(\lambda = 0, \beta = 1 \) in above theorem we get the results due to Vamshhee Krishan (see [48]).

Remark 20. Putting \(\lambda = 0, \beta = 1, \alpha = 0 \) in Theorem 18 we get the results of Babalola (see [1]).

Acknowledgment: The authors would like to thank to the editor and anonymous referees for reading the manuscript carefully and give their comments and suggestions which improve the contents of the manuscript. The present investigation of the second-named author is supported by CSIR research project scheme no: 25(0278) / 17 / EMR-II, New Delhi, India.

References

**

Surveys in Mathematics and its Applications *15* (2020), 525 – 543

http://www.utmujru.ro/math/sma

**

Surveys in Mathematics and its Applications 15 (2020), 525 – 543

http://www.utgjiu.ro/math/sma

**

Surveys in Mathematics and its Applications 15 (2020), 525 – 543

http://www.utgjiu.ro/math/sma

A. Naik
Department of Mathematics,
School of Applied Sciences, KIIT Deemed to be University,
Bhubaneswar-751024, Odisha, India.
e-mail: avayaanaik@gmail.com

T. Panigrahi
Department of Mathematics,
School of Applied Sciences, KIIT Deemed to be University,
Bhubaneswar-751024, Odisha, India.
e-mail: trailokyp6@gmail.com

**

Surveys in Mathematics and its Applications **15** (2020), 525 – 543
http://www.utgjiu.ro/math/sma
License

This work is licensed under a Creative Commons Attribution 4.0 International License.