Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 16 (2021), 43 -- 93

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

LYAPUNOV-TYPE INEQUALITIES FOR FRACTIONAL DIFFERENTIAL EQUATIONS: A SURVEY

Sotiris K. Ntouyas and Bashir Ahmad

Abstract. A survey of results on Lyapunov-type inequalities for fractional differential equations associated with a variety of boundary conditions is presented. We have included some recent work on the topic dealing with sequential, Caputo-Fabrizio, Hadamard, Hilfer, Katugampola, hyprid, or nested fractional derivatives. We have also focused on Lyapunov-type inequalities for problems containing fractional derivatives with respect to a certain function, systems of fractional differential equations, and conformable derivatives. Furthermore, Lyapunov-type inequalities for fractional differential equations based on non Green function approach are discussed.

2020 Mathematics Subject Classification: 26A33; 34A08; 26D10; 33E12; 34B27
Keywords: Lyapunov-type inequality; fractional derivative; fractional integral; Green’s function; fractional boundary value problem; eigenvalue problem

Full text

References

  1. S.K. Ntouyas, B. Ahmad, T. Horikis, Recent developments of Lyapunov-type inequalities for fractional differential equations, Differential and Integral Inequalities, edited by Dorin Andrica and Themistocles M. Rassias, Springer, 2019. Zbl 1431.26003.

  2. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations 204, Elsevier Science, Amsterdam, 2006. MR2218073. Zbl 1092.45003.

  3. I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. MR1658022. Zbl 0924.34008.

  4. D. Basua, J. M. Jonnalagaddaa, D. K. Satpathi, Lyapunov-type inequalities for Riemann-Liouville type fractional boundary value problems with fractional boundary conditions, Advances in the Theory of Nonlinear Analysis and its Applications 3 (2019), 53-63. Zbl 07093000.

  5. X. Meng, M. Stynes, Green’s functions, positive solutions, and a Lyapunov inequality for a Caputo fractional-derivative boundary value problem, Frac. Calc. Appl. Anal. 22 (2019), 750-766. MR3987884. Zbl 1426.34017.

  6. J. M. Jonnalagadda, D. Basua, Lyapunov-type inequalities for Riemann-Liouville type fractional boundary value problems, Novi Sad J. Math. 49, (2019), 137-152.

  7. M. Al-Qurashi, L. Ragoub, Lyapunov’s inequality for a fractional differential equation subject to a non-linear integral condition, ADVCOMP 2016: The Tenth International Conference on Advanced Engineering Computing and Applications in Sciences.

  8. B. Lopez, J. Rocha, K. Sadarangani, Lyapunov-type inequalities for a class of fractional boundary value problems with integral boundary conditions, Math. Methods Appl. Sci. 42 (2019), 49-58. MR3905773. Zbl 1409.35222.

  9. P. Agarwal, S. S. Dragomir, M. Jleli, B. Samet, Advances in Mathematical Inequalities and Applications, Springer Nature Singapore Pte Ltd. 2018. MR3969651. Zbl 1410.26009.

  10. D. Ma, Lyapunov inequalities for two kinds of higher-order multi-point fractional boundary value problems, Frac. Differ. Calc. 8 (2018), 57-71. MR3829188. Zbl 07030622.

  11. J. Harjani, K. Sadarangani, B. Samet, Hartman–Wintner type inequalities for a class of fractional BVPs with higher order, J. Ineq. Appl. (2019) 2019:278. MR3829188.

  12. M. Al-Qurashi, L. Ragoub, Lyapunov-type inequality for a Riemann-Liouville fractional differential boundary value problem, Hacet. J. Math. Stat. 47 (6) (2018), 1447-1452. MR3974522.

  13. R. Aouafi, N. Adjeroud, Lyapunov-type inequalities for m-point fractional boundary value problem, Int. J. Dyn. Syst. Differ. Equ. 9 (2019). MR4041961. Zbl 07157224.

  14. R. Khaldi, Novel Lyapunov-type inequality for fractional boundary value problem, Journal of Multidisciplinary Modeling and Optimization 2(2) (2019), 65-70.

  15. R. Khaldi, A. Guezane-Lakoud, On a generalized Lyapunov inequality for a mixed fractional boundary value problem, AIMS Mathematics, 4 (3) (2019): 506-515

  16. Z. Kayar, An existence and uniqueness result for linear sequential fractional boundary value problems (BVPS) via Lyapunov type inequality, Dyn. Syst. Appl. 26 (2017) 147-156. MR3676332. Zbl 1376.34007.

  17. Y. Peng, X. Wang, Lyapunov type inequalities for a class of linear sequential fractional differential equations, Dyn. Syst. Appli. 28 (2019), 859-867.

  18. R. A. C. Ferreira, Novel Lyapunov-type inequalities for sequential fractional boundary value problems, RACSAM, DOI 10.1007/s13398-017-0462-z. MR3902937. Zbl 1430.34004.

  19. S. Li, X. Han, Q. Li, Lyapunov-type inequalities for fractional differential equations, Journal of Progressive Research in Mathematics, 12, Issue 5.

  20. X. Wang, R. Xu, The existence and uniqueness of solutions and Lyapunov-type inequality for CFR fractional differential equations, J. Function Spaces Volume 2018, Article ID 5875108, 7 pages. MR3877905. Zbl 1406.34023.

  21. M. Kirane, B. Torebek, A Lyapunov-type inequality for a fractional boundary value problem with Caputo-Fabrizio derivative, J. Math. Ineq. 12 (2018), 1005-1012. MR3880613. Zbl 1409.34010.

  22. Z. Laadjal, N. Adjeroud, Q. Ma, Lyapunov-type inequality for the Hadamard fractional boundary value problem on a general interval [a, b], J. Math. Ineq. 13 (2019), 789-799. MR4016548. Zbl 1425.34016.

  23. J. Jonnalagadda, B. Debananda, Lyapunov-type inequalities for Hadamard type fractional boundary value problems, AIMS Mathematics, 2020, 5(2): 1127-1146.

  24. Y. Wang, Q. Wang, Lyapunov-type inequalities for nonlinear differential equations with Hilfer fractional derivative operator, J. Math. Ineq. 12 (2018), 709-717. MR3857357. Zbl 1404.34014.

  25. R. Hilfer (Ed.), Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. MR1890104.

  26. R. Hilfer, Experimental evidence for fractional time evolution in glass forming materials, J. Chem. Phys. 284 (2002), 399-408.

  27. R. Hilfer, Y. Luchko, Z. Tomovski, Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives, Frac. Calc. Appl. Anal. 12 (2009), 299-318. MR2572712.

  28. Y. Wang, Q. Wang, Lyapunov-type inequalities for nonlinear fractional differential equation with Hilfer fractional derivative under multi-point boundary conditions, Frac. Calc. Anal. Appl. 21 (2018), 833-843. MR3827157. Zbl 1406.34024.

  29. W. Zhang, W. Liu, Lyapunov-type inequalities for sequential fractional boundary value problems using Hilfer’s fractional derivative, J. Ineq. Appl. (2019) 2019:98. MR3938026.

  30. B. López, J. Rocha, K. Sadarangani, Lyapunov type inequality for a nonlinear fractional hybrid boundary value problem, J. Anal. Anwend.. 38 (2019), 97-106. MR3899133. Zbl 1418.34015.

  31. M. Jleli, B. Samet, Y. Zhou, Lyapunov-type inequalities for nonlinear fractional differential equations and systems involving Caputo-type fractional derivatives, J. Ineq. Appl. (2019) 2019:19. MR3903210.

  32. F. Jarad, Y. Adjabi, T. Abdeljawad, S. F. Mallak, H. Alrabaiah, Lyapunov type inequality in the frame of generalized Caputo derivatives, Discrete Contin. Dyn. Syst. Ser., doi:10.3934/dcdss.2020212

  33. B. Samet, H. Aydi, Lyapunov-type inequalities for an anti-periodic fractional boundary value problem involving ψ-Caputo fractional derivative, J. Ineq. Appl (2018) 2018:286. MR3866693.

  34. S. Dhar, J. S. Kelly, A non Green's function approach to fractional Lyapunov-type inequalities with applications to multivariate domains, Differ. Equ. Appl. 11 (2019), 409-425. MR3986977. Zbl 07159790.

  35. L. Zhang, Y. Zhao, S. Sun, Lyapunov inequalities of left focal q-difference boundary value problems and applications, Adv. Difference Equ. (2019) 2019:131. MR3936290. Zbl 07048543.

  36. B. Ahmad, S.K. Ntouyas, J. Tariboon, Quantum calculus. New concepts, impulsive IVPs and BVPs, inequalities, Trends in Abstract and Applied Analysis, 4. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2016. MR3526177. Zbl 1361.39002.

  37. Y. Liu, C. Hou, Lyapunov-type inequalities for a fractional qdiifference equation involving p-Laplacian operator, International Journal of Precious Engineering Research and Applications (IJPERA) 2 (2017), 23-30.

  38. Y. Gholami, Lyapunov inequalities of nested fractional boundary value problems and applications, Trans. A. Razmadze Math. Inst. 172 (2018) 189-204. MR3804835. Zbl 1404.34005.

  39. M. Jleli, D. O'Regan, B. Samet, Lyapunov-type inequalities for coupled systems of nonlinear fractional differential equations via a fixed point approach, J. Fixed Point Theory Appl. (2019) 21:45. MR3921435. Zbl 07075053.



Sotiris K. Ntouyas
Department of Mathematics, University of Ioannina, 451 10 Ioannina, Greece.
e-mail: sntouyas@uoi.gr
and
Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group,
Department of Mathematics, Faculty of Science, King Abdulaziz University,
P.O. Box 80203, Jeddah 21589, Saudi Arabia.

Bashir Ahmad
Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group,
Department of Mathematics, Faculty of Science, King Abdulaziz University,
P.O. Box 80203, Jeddah 21589, Saudi Arabia.
e-mail: bashirahmad_qau@yahoo.com



http://www.utgjiu.ro/math/sma