Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 16 (2021), 95 -- 109

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

COUPLED PETTIS HADAMARD FRACTIONAL DIFFERENTIAL SYSTEMS WITH RETARDATION AND ANTICIPATION

Saïd Abbas, Mouffak Benchohra, Gaston M. N'Guérékata and Yong Zhou

Abstract. In this article, we study some existence results concerning the weak solutions for some coupled systems of Hadamard fractional differential equations with the mixed arguments of anticipations and retardation. By utilizing a fixed point theorem of Mönch and the technique of measure of weak noncompactness, we obtain our existence results. Finally, we present an example illustrating the applicability of the imposed conditions.

2020 Mathematics Subject Classification: 34A08; 47H10; 54D30
Keywords: coupled systems; Hadamard fractional differential equations; anticipations; retardation;

Full text

References

  1. S. Abbas, M. Benchohra and G.M. N'Guérékata, Topics in Fractional Differential Equations, Springer, New York, 2012. MR2962045. Zbl 1273.35001.

  2. S. Abbas, M. Benchohra and G.M. N'Guérékata, Advanced Fractional Differential and Integral Equations, Nova Science Publishers, New York, 2015. MR3309582. Zbl 1314.34002.

  3. S. Abbas, M. Benchohra, A. Alsaedi and Y. Zhou, Weak solutions for a coupled system of Pettis-Hadamard fractional differential equations, Adv. Difference Equ. 2017: 332, 11pp. MR3713993. Zbl 07002482.

  4. S. Abbas, M. Benchohra, J. Henderson and J.E. Lazreg, Weak solutions for a coupled system of partial pettis Hadamard fractional integral equations, Adv. Theory Nonlinear Anal. Appl. 1 (2) (2017), 136-146. Zbl 1415.45002.

  5. R.P. Agarwal, S.K. Ntouyas, B. Ahmad and A.K. Alzahrani, Hadamard-type fractional functional differential equations and inclusions with retarded and advanced arguments, Adv. Difference Equ. 2016, 2016:92, 15 pp. MR3482490. Zbl 1408.34045.

  6. B. Ahmad and S. Sivasundaram, Existence results and monotone iterative technique for impulsive hybrid functional differential systems with anticipation and retardation, Appl. Math. Comput. 197 (2008), no. 2, 515-524. MR2400674. Zbl 1142.34049.

  7. R.R. Akhmerov, M.I. Kamenskii, A.S. Patapov,A.E. Rodkina and B.N. Sadovskii, Measures of Noncompactness and Condensing Operators. Birkhauser Verlag, Basel, 1992. MR1153247. Zbl 0748.47045.

  8. J. C. Alvàrez, Measure of noncompactness and fixed points of nonexpansive condensing mappings in locally convex spaces, Rev. Real. Acad. Cienc. Exact. Fis. Natur. Madrid 79 (1985), 53-66. MR0835168. Zbl 0589.47054.

  9. J. Banas and K. Goebel, Measures of Noncompactness in Banach Spaces, Marcel Dekker, New York, 1980. MR0591679. Zbl 0763.47025.

  10. M. Benchohra, J. Graef and F-Z. Mostefai, Weak solutions for boundary-value problems with nonlinear fractional differential inclusions, Nonlinear Dyn. Syst. Theory 11 (3) (2011), 227-237. MR2858134. Zbl 1236.34004.

  11. M. Benchohra, J. Henderson and F-Z. Mostefai, Weak solutions for hyperbolic partial fractional differential inclusions in Banach spaces, Comput. Math. Appl. 64 (2012), 3101-3107. MR2989339. Zbl 1268.35122.

  12. M. Benchohra, J. Henderson and D. Seba, Measure of noncompactness and fractional differential equations in Banach spaces, Commun. Appl. Anal. 12 (4) (2008), 419-428. MR2760586. Zbl 1225.26005.

  13. D. Bugajewski and S. Szufla, Kneser's theorem for weak solutions of the Darboux problem in a Banach space, Nonlinear Anal. \bf 20 (2) (1993), 169-173. MR1200387. Zbl 0776.34048.

  14. F.S. De Blasi, On the property of the unit sphere in a Banach space, Bull. Math. Soc. Sci. Math. R.S. Roumanie 21 (1977), 259-262. MR0482402. Zbl 0365.46015.

  15. T. Gnana Bhaskar, V. Lakshmikantham and J. Vasundhara Devi, Monotone iterative technique for functional differential equations with retardation and anticipation, Nonlinear Anal. 66 (2007), no. 10, 2237-2242. MR2311026. Zbl 1121.34065.

  16. D. Guo, V. Lakshmikantham and X. Liu, Nonlinear Integral Equations in Abstract Spaces, Kluwer Academic Publishers, Dordrecht, 1996. MR1418859. Zbl 0866.45004.

  17. A.A. Kilbas, Hadamard-type fractional calculus. J. Korean Math. Soc. 38 (6) (2001), 1191-1204. MR1858760. Zbl 1018.26003.

  18. A. A. Kilbas, Hari M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier Science B.V., Amsterdam, 2006. MR2218073. Zbl 1092.45003.

  19. A. R. Mitchell and Ch. Smith, Nonlinear Equations in Abstract Spaces. In: Lakshmikantham, V. (ed.) An existence theorem for weak solutions of differential equations in Banach spaces, pp. 387-403. Academic Press, New York, 1978. MR0502554. Zbl 0452.34054.

  20. D. O'Regan, Fixed point theory for weakly sequentially continuous mapping, Math. Comput. Model. 27 (5) (1998), 1-14. MR1616796. Zbl 0957.47038.

  21. D. O'Regan, Weak solutions of ordinary differential equations in Banach spaces, Appl. Math. Lett. 12 (1999), 101--105. MR1663477. Zbl 0933.34068.

  22. B.J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), 277-304. MR1501970. Zbl 0019.41603.

  23. S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon, 1993. MR0915556. Zbl 0617.26004.

  24. Y. Sun and P. Wang, Iterative methods for a fourth-order differential equations with retardation and anticipation, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 17 (2010), no. 4, 487-500. MR2682379. Zbl 1204.34098.

  25. J. Vasundhara Devi and Ch. V. Sreedhar, Euler solutions for integrodifferential equations with retardation and anticipation, Nonlinear Dyn. Syst. Theory 12 (2012), no. 3, 237-250. MR2985050. Zbl 1381.45032.

  26. J. Vasundhara Devi and Ch V. Sreedhar, Quasilinearization for integrodifferential equations with retardation and anticipation, Nonlinear Stud. 19 (2012), no. 2, 303-326. MR2962439. Zbl 1301.45006.

  27. J. Vasundhara Devi, Ch. V. Sreedhar and S. Nagamani, Monotone iterative technique for integrodifferential equations with retardation and anticipation, Commun. Appl. Anal. 14 (2010), no. 3-4, 325-335. MR2757401. Zbl 1218.45009.

  28. M. Yao, A. Zhao and J. Yan, Monotone method for first order functional differential equations with retardation and anticipation, Nonlinear Anal. 71 (2009), no. 9, 4223-4230. MR2536327. Zbl 1177.34082.

  29. M. Yao, L. Wen and X. Hu, Monotone method for first-order impulsive differential equations with retardation and anticipation, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 15 (2008), suppl. S1, 12-14. MR2475209.

  30. Y. Zhou, Attractivity for fractional differential equations in Banach space, Appl. Math. Lett. 75 (2018), 1-6. MR3692152. Zbl 1380.34025.

  31. Y. Zhou, Attractivity for fractional evolution equations with almost sectorial operators, Fract. Calc. Appl. Anal. 21 (3) (2018), 786-800. MR3827154. Zbl 1405.34012.



Sa\id Abbas
Department of Mathematics, Tahar Moulay University of Sa\ida,
P.O. Box 138, EN-Nasr, 20000 Sa\ida, Algeria,
e-mail: abbasmsaid@yahoo.fr


Mouffak Benchohra
Laboratory of Mathematics, Djillali Liabes University of Sidi Bel-Abbès
PO Box 89, Sidi Bel Abbès 22000, Algeria,
e-mail: benchohra@yahoo.com


Gaston M. N'Guérékata
Department of Mathematics, Morgan State University
1700 E. Cold Spring Lane, Baltimore M.D. 21252, USA,
e-mail: NGuerekata@morgan.edu


Yong Zhou
Faculty of Mathematics and Computational Science, Xiangtan University
Hunan 411105, P.R. China,
Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of Science,
King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
e-mail: yzhou@xtu.edu.cn


http://www.utgjiu.ro/math/sma