Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 16 (2021), 127 -- 135

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

FIXED POINT THEOREMS FOR SOME GENERALIZED CONTRACTIVE MAPPINGS OVER A LOCALLY CONVEX TOPOLOGICAL VECTOR SPACE

Sayantan Panja, Abhoy Pada Baisnab and Mantu Saha

Abstract. In this paper we prove some useful fixed point theorems and common fixed point theorems for a class of non-linear mappings acting on locally convex topological vector space with supporting examples.

2020 Mathematics Subject Classification: Primary 47H10; Secondary 54H25.
Keywords: fixed point; Chatterjea type contractive mapping; locally convex topological vector space.

Full text

References

  1. Banach S., Sur les op\acuteerations dans les ensembles abstraits et leur application aux \acuteequations int\acuteegrales, Fund. Math., 3,(1922), 133-181. MR3949898. JFM 48.0201.01.

  2. Chatterjea S.K., Fixed point theorems, C.R. Acad. Bulgare Sci., 25, (1972), 727-730. MR0324493. Zbl 0274.54033.

  3. Horv\acute ath J., Topological Vector Spaces and Distributions, Addison-Wesley Publishing Co., 1966. MR0205028. Zbl 0143.15101.

  4. Kannan R., Some results on fixed points, Bull. Cal. Math. Soc., 60 (1968),71-76. MR0257837. Zbl 0209.27104.

  5. Narici L. and Beckenstein E. Topological Vector Spaces, vol. 95 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., New York, 1985. MR0812056. Zbl 0569.46001.

  6. Reich S., Fixed points of contractive functions, Boll. Un. Mat. Ital. (4) 5 (1972), 26–42. MR0309095. Zbl 0249.54026.

  7. Roy, K. and Saha, M., Fixed points of mappings over a locally convex topological vector space and Ulam-Hyers stability of fixed point problems, Novi Sad J. Math., 50 (2020), no. 1, 99-112. DOI

  8. Rudin W., Principle of Mathematical Analysis, Mc Graw Hill, 3rd ed. MR0385023. Zbl 0346.26002.

  9. Schaeffer H.H. and Wolff M.P. Topological Vector Spaces, second ed., vol. 3 of Graduate Texts in Mathematics Springer-Verlag, New York, 1999. MR1741419. Zbl 0983.46002.

  10. Sehgal V. M. and Singh S.P. On a fixed point theorem of Krasnoselskii for locally convex spaces. Pacific J. Math. 62, 2(1976), 561-567. MR0412911. Zbl 0328.47031.

  11. Tang, Y. Guan, J. Ma, P. Xu, Y. and Su. Y. Generalized contraction mapping principle in locally convex topological vector spaces. J. Nonlinear Sci. Appl. 9,6 (2016), 4659-4665. MR3551128. Zbl 06642301.



Sayantan Panja
Department of Mathematics,
The University of Burdwan,Purba Bardhaman-713104, West Bengal, India.
e-mail: spanja1729@gmail.com



Abhoy Pada Baisnab
PG Section, Department of Mathematics,
Lady Brabourne College, P1/2 Suhrawardy Avenue, Kolkata-700017, West Bengal, India.
e-mail: baisnababhoypada@yahoo.com



Mantu Saha
Department of Mathematics,
The University of Burdwan,Purba Bardhaman-713104, West Bengal, India.
e-mail: mantusaha.bu@gmail.com


http://www.utgjiu.ro/math/sma