Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 16 (2021), 149 -- 192

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

THE HILBERT TRANSFORM

Edisson Arley Arcos and René Erlin Castillo

Abstract. The Hilbert transform is essentially the only singular operator in one dimension. This undoubtedly make it one of the most important linear operator in harmonic analysis. This is an expository paper about the Hilbert transform aimed to anyone that has even scratched the surface of the theory of integration, and functional analysis as well as a basic rudiments of Fourier transform. We provide a systematic (Although by no means complete) account of the basic results on the Hilbert transform. We want to point out that we present a friendly proof of the remarkable result due to Stein and Weiss [Math Mech. 8, 1959] and we use it combined with the Cavalieri principle to obtain an exact formula for the Lp-norm of H(χE).

2020 Mathematics Subject Classification: 44A15; 42A85; 42A75
Keywords: Hilbert transform; Fourier transform; Cauchy principal value.

Full text

References

  1. Arfken, George B. and Weber, Hans J. Mathematical Methods for Physicists. Academic Press, 6th ed. 2005. MR1423357. Zbl 0970.00005

  2. Bedrosian, Edward. A Product Theorem for Hilbert Transforms. Proc. IEEE 51 (1963), 868--869.

  3. Bell, Steven R. The Cauchy Transform, Potential Theory and Conformal Mapping. CRC Press, Boca Raton, 1992. MR1228442. Zbl 1359.30001

  4. Bennett, Colin and Sharpley, Robert C. Interpolation of Operators. Academic Press, 1988. MR0928802. Zbl 0647.46057

  5. Blanchard, P. Bruning, E. Schwartz Distributions in Mathematical Methods in Physics, vol. 26. Springer, Birkhäuser Boston, 2003.

  6. Butzer, P.L. Nessel, R.J. Fourier analysis and Approximation, vol. 1 of One-Dimensional Theory. Academic Press, New York, 1971. MR0510857. Zbl 1140.01309.

  7. Calderon, A. P., Zygmund, A. On the existence of certain singular integrals. Acta Mathematica 88 (1952) 85--139. MR0052553. Zbl 0047.10201.

  8. Calderon, A. P. Singular integrals, Bull. Am. Math. Soc. .72(1996), 427--465. MR0209918. Zbl 0151.16902.

  9. Castillo, R. E. and Rafeiro, H. An Introductory Course in Lebesgue Spaces. CMS Books in Mathematics, Springer, 2016. MR3497415. Zbl 1352.46003.

  10. Cima, J.A. Matheson, A.L. and Roos, W.T. The Cauchy transform. American Mathematical Society, Providence, 2006. MR2215991. Zbl 1096.30046

  11. Ephremidze, L. The Stein-Weiss theorem for the ergodic Hilbert transform. Studia Math 165(2004), 61--71. MR2080328. Zbl 1062.28018

  12. Ferreira, J. Campos. Introduction to the Theory of Distributions. CRC Press, Providence, 1997. MR1477907. Zbl 0905.46001.

  13. Garnett, J. B. Bounded analytic functions. New York. Academic Press. 1981. MR0628971. Zbl 0469.30024.

  14. Grafakos, Loukas. Classical Fourier analysis, 2 ed. Graduate text in Mathematics, Springer, New York, 2008. MR2445437 Zbl 1220.42001.

  15. Henrici, P. Applied and Computational Complex Analysis, vol. 3. Jhon Wiley & Sons, New York, 1986. MR0822470. Zbl 1107.30300.

  16. \mathbbJones,R.L. A Remark on singular integrals with complex homogeneity, Proc. Am. Soc. 114(1992), 763--768. MR1100655. Zbl 0744.42007.

  17. King, Frederick W. Hilbert transforms, vol. 1. Cambridge University Press, New York, 2009. MR2542214. Zbl 1188.44005.

  18. Kress, Rainer. Linear Integral Equations. Springer-Verlag, New York, 1989. MR1723850. Zbl 0920.45001.

  19. Muskhelishvili, N.I. Singular Integral Equations, 2 ed. Dover, New York, 1992. MR1215485.

  20. Pandey, J. N. The Hilbert transform of Schwartz distribution and application. Jhon Wiley & Sons, New York, 1996. MR1363489.

  21. Papoulis, A. Hilbert Transforms of periodic functions. IEEE Transactions on Circuit Theory 20, 4 (1973), 454--454.

  22. Roos, B.W. Analytic Functions and Distributions in Physics and Engineering. Jhon Wiley, New York, 1969. MR0251193.

  23. Sagher, Y. and Xiang, N. Complex methods in the calculation of some distribution functions. In Convergence in Ergodic Theory and Probability. Berlin, de Gruyter. 1996, pp. 381--387. MR1412620. Zbl 0859.60013.

  24. Stein, Elias M. and Weiss, Guido. An extension of a theorem of Marcinkiewicz and some application. Math Mech 8(1959), 263--284. MR0107163.

  25. Torchinsky, Alberto. Real-variable methods in harmonic analysis. Pure and Applied Mathematics. Academic Press, Orlando, Florida, 1986. MR0869816. Zbl 0621.42001.



Edisson Arley Arcos
Departamento de Matemáticas, Universidad Nacional de Colombia
e-mail: earcosb@unal.edu.co

René Erlin Castillo
Departamento de Matemáticas, Universidad Nacional de Colombia
e-mail: recastillo@unal.edu.co



http://www.utgjiu.ro/math/sma