Surveys in Mathematics and its Applications
ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 16 (2021), 193 -- 205
This work is licensed under a Creative Commons Attribution 4.0 International License.A CERTAIN FAMILY OF BI-UNIVALENT FUNCTIONS ASSOCIATED WITH THE PASCAL DISTRIBUTION SERIES BASED UPON THE HORADAM POLYNOMIALS
H. M. Srivastava, A. K. Wanas and G. Murugusundaramoorthy
Abstract. The purpose of this article is to introduce a new subclass ℋΣ(δ,λ,m,θ,x) of analytic and bi-univalent functions by using the Horadam polynomials, which is associated with the Pascal distribution series and to investigate the bounds for |a2| and |a3|, where a2, a3 are the initial Taylor-Maclaurin coefficients. Further we obtain the Fekete-Szegö inequality for functions in the class ℋΣ(δ,λ,m,θ,x) which we have introduced here.
2020 Mathematics Subject Classification: Primary 30C45; Secondary 11B39, 30C50, 33C05.
Keywords: analytic functions; univalent functions; bi-univalent functions; Horadam polynomials; Upper bounds; Fekete-Szegö problem; Pascal distribution series; Subordination between analytic functions.
References
E. A. Adegani, S. Bulut and A. A. Zireh, Coefficient estimates for a subclass of analytic bi-univalent functions, Bull. Korean Math. Soc. 55 (2018), 405--413. MR3789451.
A. G. Al-Amoush, Certain subclasses of bi-univalent functions involving the Poisson distribution associated with Horadam polynomials, Malaya J. Mat. 7 (2019) 618--624. MR4018204.
S. Bulut, Coefficient estimates for general subclasses of m-fold symmetric analytic bi-univalent functions,Turkish J. Math. 40 (2016), 1386--1397. MR3583255. Zbl1424.30032.
S. M. El-Deeb, T. Bulboacá and J. Dziok, Pascal distribution series connected with certain subclasses of univalent functions, Kyungpook Math. J. 59 (2019), 301–-314. MR3987710. Zbl1435.30045.
P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
M. Fekete and G. Szegö, Eine bemerkung uber ungerade schlichte funktionen, J. London Math. Soc. 2 (1933), 85--89. MR1574865. Zbl0006.35302.
H. Ö. Güney, G. Murugusundaramoorthy and J. Sokó\l, Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers, Acta Univ. Sapient. Math. 10 (2018), 70--84. MR3854091. Zbl1412.30043.
A. F. Horadam, Jacobsthal representation polynomials, Fibonacci Quart. 35 (1997), 137--148. MR1448027.
A. F. Horadam and J. M. Mahon, Pell and Pell-Lucas polynomials, Fibonacci Quart. 23 (1985), 7--20. MR1448027.
T. Hörçum and E. G. Kocer, On some properties of Horadam polynomials,Internat. Math. Forum. 4 (2009), 1243--1252. MR2545119.
T. Koshy, Fibonacci and Lucas Numbers with Applications, A Wiley Interscience Publication, John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 2001. MR1855020.
A. Lupas, A guide of Fibonacci and Lucas polynomials, Octagon Math. Mag. 7 (1999), 2--12. MR1730051.
S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Incorporated, New York and Basel, 2000. MR1760285.
G. Murugusundaramoorthy, B. A. Frasin and T. Al-Hawary, Uniformly convex spiral functions and uniformly spirallike function associated with Pascal distribution series, arXiv:2001.07517v1, (2020), 1--10.
H. M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A: Sci. 44 (2020), 327--344. MR4064730.
H. M. Srivastava, Ş. Alt\inkaya and S. Yalçin, Certain subclasses of bi-univalent functions associated with the Horadam polynomials, Iran. J. Sci. Technol. Trans. A: Sci. 43 (2019), 1873--1879. MR3978601.
H. M. Srivastava, S. S. Eker, S. G. Hamidi and J. M. Jahangiri, Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator, Bull. Iran. Math. Soc. 44 (2018), 149--157. MR3879475. Zbl1409.30021.
H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some general subclasses of analytic and bi-univalent functions, Afrika Mat. 28 (2017), 693--706. MR3687384. Zbl1370.30009.
H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for a general subclass of analytic and bi-univalent functions of the Ma-Minda type, Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat. (RACSAM). 112 (2018), 1157--1168. MR3857048. Zbl1401.30011.
H. M. Srivastava, S. Hussain, A. Raziq and M. Raza, The Fekete-Szegö functional for a subclass of analytic functions associated with quasi-subordination, Carpathian J. Math. 34 (2018), 103--113. MR3878172. Zbl07165399
H. M. Srivastava, A. K. Mishra and M. K. Das, The Fekete-Szegö problem for a subclass of close-to-convex functions,Complex Variables Theory Appl. 44 (2001), 145--163. MR1908584/
H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188--1192. MR2665593. Zbl1201.30020.
H. M. Srivastava, A. Motamednezhad and E. A. Adegani, Faber polynomial coefficient estimates for bi-univalent functions defined by using differential subordination and a certain fractional derivative operator,Mathematics. 8 (2020), Article ID 172, 1--12.
H. M. Srivastava, N. Raza, E. S. A. AbuJarad, G. Srivastava and M. H. AbuJarad, Fekete-Szegö inequality for classes of (p,q)-starlike and (p,q)-convex functions, Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat. (RACSAM). 113 (2019), 3563--3584. MR3999035.
H. M. Srivastava, F. M. Sakar and H. Ö. Güney, Some general coefficient estimates for a new class of analytic and bi-univalent functions defined by a linear combination, Filomat. 32 (2018), 1313--1322. MR3848107.
H. M. Srivastava and A. K. Wanas, Initial Maclaurin coefficient bounds for new subclasses of analytic and m-fold symmetric bi-univalent functions defined by a linear combination, Kyungpook Math. J. 59 (2019), 493--503. MR4020441 Zbl1435.30064.
A. K. Wanas, Coefficient estimates of bi-starlike and bi-convex functions with respect to symmetrical points associated with the second kind Chebyshev polynomials, Earthline J. Math. Sci. 3 (2020), 191--198.
A. K. Wanas and A. L. Alina, Applications of Horadam polynomials on Bazileviℑnivalent function satisfying subordinate conditions,J. Phys. : Conf. Ser. 1294 (2019), 1--6.
A. K. Wanas and A. H. Majeed, Chebyshev polynomial bounded for analytic and bi-univalent functions with respect to symmetric conjugate points,Appl. Math. E-Notes. 19 (2019), 14--21. MR3947083 Zbl1427.30035.
A. K. Wanas and S. Yalçin, Initial coefficient estimates for a new subclasses of analytic and m-fold symmetric bi-univalent functions,Malaya J. Mat. 7 (2019), 472--476. MR3987769.
H. M. Srivastava
Department of Mathematics and Statistics, University of Victoria,
Victoria, British Columbia V8W 3R4, Canada.
and
Department of Medical Research, China Medical University Hospital,
China Medical University, Taichung 40402, Taiwan, Republic of China.
and
Department of Mathematics and Informatics, Azerbaijan University,
71 Jeyhun Hajibeyli Street, AZ1007 Baku, Azerbaijan
e-mail: harimsri@math.uvic.ca
A. K. Wanas
Department of Mathematics, College of Science, University of Al-Qadisiyah,
Al Diwaniyah, Al-Qadisiyah, Iraq.
e-mail: abbas.kareem.w@qu.edu.iq
G. Murugusundaramoorthy (corresponding author)
Department of Mathematics, School of Advanced Sciences,
Vellore Institute of Technology (Deemed to be University),
Vellore 632014, Tamil Nadu, India.
e-mail: gmsmoorthy@yahoo.com