Surveys in Mathematics and its Applications
ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 16 (2021), 207 -- 222
This work is licensed under a Creative Commons Attribution 4.0 International License.ON CALIBRATED REPRESENTATIONS OF THE DEGENERATE AFFINE PERIPLECTIC BRAUER ALGEBRA
Zajj Daugherty, Iva Halacheva, Mee Seong Im and Emily Norton
Abstract. We initiate the representation theory of the degenerate affine periplectic Brauer algebra on n strands by constructing its finite-dimensional calibrated representations when n=2. We show that any such representation that is indecomposable and does not factor through a representation of the degenerate affine Hecke algebra occurs as an extension of two semisimple representations with one-dimensional composition factors; and furthermore, we classify such repre-sentations with regular eigenvalues up to isomorphism.
2020 Mathematics Subject Classification: 17B10; 16G99.
Keywords: Periplectic Brauer algebra; degenerate affine Periplectic Brauer algebra; degenerate affine Hecke algebra; calibrated representations; rhizomatic matrices.
References
M. Balagovic, Z. Daugherty, I. Entova-Aizenbud, I. Halacheva, J. Hennig, M.S. Im, G. Letzer, E. Norton, V. Serganova, C. Stroppel. The affine VW supercategory, arXiv:1801.04178. MR4073971. Zbl 07186761.
C.-W. Chen and Y.-N. Peng. Affine periplectic Brauer algebras. J. Algebra 501 (2018), 345--372. MR3768141. Zbl 1432.17034.
V. G. Drinfeld. Degenerate affine Hecke algebras and Yangians, Funktsional. Anal. i Prilozhen., 20:1 (1986), 69--70; Funct. Anal. Appl., 20:1 (1986), 58--60. MR0831053. Zbl 0599.20049.
J. R. Kujawa and B. C. Tharp. The marked Brauer category, J. Lond. Math. Soc. (2) 95 (2017), no. 2, 393--413. MR3656274. Zbl 1427.17015.
G. Lusztig, Affine Hecke algebras and their graded version, J. Am. Math. Soc. 2, No 3 (1989), 599--635. MR0991016. Zbl 0715.22020.
G. Lusztig, Cuspidal local systems and graded Hecke algebras, I, Publ. Math. IHES 67 (1988), 145--202. MR0972345. Zbl 0699.22026.
D. Moon, Tensor product representations of the Lie superalgebra \mathfrakp(n) and their centralizers, Comm. Algebra 31 (2003), no. 5, 2095--2140. MR1976269. Zbl 1022.17005.
A. Ram, Affine Hecke algebras and generalized standard Young tableaux, J. Algebra 260 (2003), no. 1, 367--415. MR1976700. Zbl 1076.20002.
T. Suzuki, Representations of degenerate affine Hecke algebra and \mathfrakgln, Advanced Studies in Pure Mathematics 28, 2000, Combinatorial Methods in Representation Theory, pp. 343--372. MR1864488. Zbl 1058.20007.
E. B. Vinberg. ``Tits system." Encyclopaedia of Mathematics, Band 9. Ed. Michiel Hazewinkel. Springer Science and Business Media, 1993.
Zajj Daugherty
Department of Mathematics,
City College of New York,
New York, NY 10031, USA.
e-mail: zdaugherty@gmail.com
https://zdaugherty.ccnysites.cuny.edu/
Iva Halacheva
Department of Mathematics,
Northeastern University,
Boston, MA 02115, USA.
e-mail: ihalacheva@gmail.com
https://sites.google.com/site/ivahalacheva3/
Mee Seong Im
Department of Mathematics,
United States Naval Academy,
Annapolis, MD 21402, USA.
e-mail: meeseongim@gmail.com
https://sites.google.com/site/meeseongim/
Emily Norton
Department of Mathematics,
TU Kaiserslautern, Germany.
e-mail: enorton@mpim-bonn.mpg.de
https://sites.google.com/view/emilynortonmath