Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 16 (2021), 223 -- 236

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

AN APPLICATION OF GENERALIZED DISTRIBUTION SERIES ON CERTAIN CLASSES OF UNIVALENT FUNCTIONS ASSOCIATED WITH CONIC DOMAINS

Saurabh Porwal and G. Murugusundaramoorthy

Abstract. The purpose of the present paper is to obtain some necessary and sufficient conditions for generalized distribution series belonging to the classes UCV(α, β), SP(α, β), UCV(β), C(λ), S*(λ) and obtain some inclusion relation between the classes Rτ(A, B) and UCV(α, β), UCV(β), C(λ). Finally, we attain some necessary and sufficient conditions of integral operator associated with the generalized distribution series for the classes UCV(α, β), UCV(β) and C(λ). Some particular cases of our main results are briefly indicated.

2020 Mathematics Subject Classification: 30C45.
Keywords: generalized distribution, analytic, univalent functions, uniformly convex function and uniformly starlike functions.

Full text

References

  1. M. S. Ahmad, Q. Mehmood, W. Nazeer and A.U. Haq, An application of a Hypergeometric distribution series on certain analytic functions, Sci. Int.(Lahore), 27(4) (2015), 2989-2992.

  2. S. Altınkaya and S. Yalçın, Poisson distribution series for analytic univalent functions, Complex Anal. Oper. Theory, 12 (5) (2018), 1315--1319. MR3800974. Zbl 1393.30012.

  3. O. Altintas, O. Ozkan and H.M. Srivastava, Neighborhoods of a class of analytic functions with negative coefficients, Appl. Math. Lett., 13 (2000), 63-67. MR1755745. Zbl 0955.30015.

  4. Divya Bajpai, A study of univalent functions associated with distortion series and q- calculus, M.Phil. Dissertation, CSJM Univerity, Kanpur, India, 2016.

  5. A. Baricz, Generalized Bessel functions of the first kind, Lecture Notes in Mathematics, 1994, Springer-Verlag, Berlin, 2010. MR2656410. Zbl 1203.33001.

  6. A. Baricz, S. Ponnusamy and S. Singh, Turán type inequalities for Struve functions, J. Math. Anal. Appl., 445(1)(2017), 971-984. MR3543805. Zbl 1350.33009.

  7. R. Bharati, R. Parvatham and A. Swaminathan, On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamkang J. Math., 28 (1997), 17-32. MR1457247. Zbl 0898.30010.

  8. N. Bohra and V. Ravichandran, On confluent hypergeometric functions and generalized Bessel functions, Anal. Math. 43 (4) (2017), 533--545. MR3738359. Zbl 1399.33008

  9. V. B. L. Chaurasia and H. S. Parihar, Certain sufficiency conditions on Fox-Wright functions, Demonstratio Math. 41 (4)(2008), 813--822. MR2484506. Zbl 1160.30312.

  10. K. K. Dixit and S. K. Pal, On a class of univalent functions related to complex order, Indian J. Pure. Appl. Math., 26(9) (1995), 889--896. MR1347537. Zbl 0835.30006.

  11. S. M. El-Deeb, T. Bulboacă and J. Dziok, Pascal distribution series connected with certain subclasses of univalent functions, Kyungpook Math. J. 59(2) (2019), 301--314. MR3987710. 3A1435.30045.

  12. A. O. Fadare, Hankel determinant for a subclass of generalized distribution function involving Jackson’s derivative operator through Chebyshev polynomials, IOSR J. Math., 16(1)(2020), 12-22.

  13. A. Gangadharan, T.N. Shanmugam and H.M. Srivastava, Generalized hypergeometric functions associated with k-Uniformly convex functions, Comput. Math. Appl., 44 (2002), 1515-1526. MR1944665. Zbl 1036.33003.

  14. D. Girela and C. González, Integral means inequalities, convolution, and univalent functions, J. Funct. Spaces, Vol. (2019), Art. ID 7817353, 1-5. MR3924144. 3A1419.30001.

  15. A. W. Goodman, On uniformly convex functions, Ann. Polon. Math., 56 (1991), 87-92. MR1145573. Zbl 0744.30010.

  16. A.W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl., 155 (1991), 364-370. MR1097287. Zbl 0726.30013.

  17. S. Kanas and A Wisinowaska, Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105 (1999), 327-336. MR1690599. Zbl 0944.30008.

  18. S. Kanas and A. Wisniowska, Conic regions and k-starlike functions, Rev. Roum. Math. Pure Appl., 45, 647-657, (2000).

  19. S. Kanas and H.M. Srivastava, Linear operators associated with k- Uniformly convex functions, Integral Transform Spec. Funct., 9 (2000), 121-132. MR1784495. Zbl 0959.30007.

  20. F. M. Mosa, A.A. Dafallah, E.M. Ahmed, M.Y.A. Bakhet, Q. Ma, Random attractors for semilinear reaction-diffusion equation with distribution derivatives and multiplicative noise on ℛn, Open J. Math. Sci., 4(1)(2020), 126-141.

  21. A. D. Oladipo, Bounds for probabilities of the generalized distribution defined by generalized polylogarithm, Punjab University J. Math., 51(7)(2019), 19-26. MR3983630.

  22. S. Ponnusamy and F. Rønning, Starlikeness properties for convolution involving hypergeometric series, Ann. Univ. Mariae Curie-Sklodowska, L. H 1(16) (1998), 141- 155. MR1665537. Zbl 1008.30004.

  23. G. Murugusundaramoorthy, K. Vijaya and S. Porwal, Some inclusion results of certain subclasses of analytic functions associated with Poisson distribution series, Hacet. J. Math. Stat. 45 (2016), no.~4, 1101--1107. 3585439. Zbl 1359.30022.

  24. W. Nazeer, Q. Mehmood, S.M. Kang and A.U. Haq, An application of a Binomial distribution series on certain analytic functions, J. Comput. Anal. Appl., 26(1) (2019), 11-17. MR3889613.

  25. Saurabh Porwal, An application of a Poisson distribution series on certain analytic functions, J. Complex Anal., Vol.(2014), Art. ID 984135, 1-3. MR3173344. Zbl 1310.30017.

  26. Saurabh Porwal, Generalized distribution and its geometric properties associated with univalent functions, J. Complex Anal. 2018, Art. ID 8654506, 5 pp. MR3816114. Zbl 1409.60032.

  27. Saurabh Porwal and Moin Ahmad, Some sufficient condition for generalized Bessel functions associated with conic regions, Vietnam J. Math., 43(2015), 163-172. MR3319883. Zbl 1318.30033.

  28. Saurabh Porwal and Ankita Gupta, Some properties of convolution for hypergeometric distribution type series on certain analytic univalent functions, Acta Univ. Apul., 56(2018), 69-80. MR3898874. Zbl 1438.30090.

  29. Saurabh Porwal and Shivam Kumar, Confluent hypergeometric distribution and its applications on certain classes of univalent functions, Afr. Mat., 28 (2017), 1-8. MR3613614. Zbl 1368.30008.

  30. R. K. Raina, On univalent and starlike Wright's hypergeometric functions, Rend. Sem. Mat. Univ. Padova, 95 (1996), 11--22. MR1405351. Zbl 0863.30018.

  31. M.S. Robertson, On the theory of univalent functions, Ann. Math., 37(1936), 374-408. MR1503286.

  32. H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51 (1975), 109-116. MR369678.

  33. H. Silverman, Partial sums of starlike and convex functions, J. Math. Anal. Appl., 209 (1997), 221-227. MR1444523. Zbl 0894.30010.

  34. A. Swaminathan, Certain sufficiency conditions on Gaussian hypergeometric functions, J. Inequal. Pure Appl. Math. 5 (4)(2004), Article 83, 10 pp. MR2112436. Zbl 1126.30010.

  35. A.K. Wanas and J.A. Khuttar, Applications of Borel distribution series on analytic functions, Earthline J. Math. Sci., 4(1) (2020), 71-82.




Saurabh Porwal
Department of Mathematics,
Ram Sahai Government Degree College,
Bairi Shivrajpur-Kanpur-209205, (U.P.), India.
e-mail: saurabhjcb@rediffmail.com


G. Murugusundaramoorthy
School of Advanced Sciences, Vellore Institute of Technology,
Vellore-632014, Tamilnadu, India.
e-mail: gmsmoorthy@yahoo.com

http://www.utgjiu.ro/math/sma