Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 16 (2021), 251 -- 257

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ON A CLASS OF ALMOST PARACONTACT STRUCTURES ON T2M

Marcel Roman and Adrian Sandovici

Abstract. A new class of almost paracontact structures on second order tangent bundle built on a Riemannian space is defined and studied in this paper. In particular, characterizations for the integrability and normality of this class of almost paracontact structures are given. Also, compatible linear connections with this class of almost paracontact structures are introduced and certain characterization of them is obtained.

2020 Mathematics Subject Classification: 53B40; 53C60; 58B20
Keywords: Second order tangent bundle; almost paracontact structure; linear connection.

Full text

References

  1. M.~Anastasiei, H.~Shimada, Deformations of Finsler Metrics, in vol. "Finslerian Geometries. A Meeting of Minds", Ed. by P.L. Antonelli, Kluwer Academic Publishers, FTPH 109, 2000, 53--66. MR1903866. Zbl 0954.53015.

  2. A.~Bejancu, Finsler Geometry and Applications, Ellis Horwood Limited, 1990. MR1071171. Zbl 0702.53001.

  3. V.~Balan, Gh.~Munteanu, and P.C.~Stavrinos, Generalized Gauge Asanov Equations on Osc2(M) bundle, Proceedings of the Workshop on Global Analysis, Differential Geometry and Lie Algebras, 1995, 21--32. MR1649549. Zbl 0906.53019.

  4. R.~Miron, The Homogeneous Lift of a Riemannian Metric, Analele Stiintifice ale Universitatii "Al. I. Cuza", Iasi, Vol. 46, (2000), No. 1, 73--81. MR1840127. Zbl 1011.53021.

  5. R.~Miron, The Homogeneous Lift to Tangent Bundle of a Finsler Metric, Publicationes Mathematicae Debrecen, Vol. 57 (2000), No. 3-4, 445--453. MR1798726. Zbl 0980.53093.

  6. R.~Miron, The Geometry of Higher Order Lagrange Spaces. Applications to Mechanics and Physics, Kluwer Academic Publishers, 1997. MR1437362. Zbl 0877.53001.

  7. R.~Miron, The Geometry of Higher Order Finsler Spaces, Hadronic Press, 1998. MR1637384. Zbl 0927.53002.

  8. R.~Miron, M.~Anastasiei, The Geometry of Lagrange Spaces: Theory and Applications, Kluwer Academic Publishers,1994. MR1281613. Zbl 0831.53001.

  9. R.~Miron, V.~Balan, P.C.~Stavrinos and Gr.~Tsagas, Deviations of Stationary Curves in the Bundle Osc(2)(M), Balkan Journal of Geometry and Its Applications, Vol. 2, No. 1, 1997, 51--60. MR1609380. Zbl 0902.53018.

  10. Gh.~Munteanu, Higher Order Gauge-Invariant Lagrangians, Novi Sad Journal of Mathematics, Vol. 27 (1997), No. 2, 101--115. MR1660992. Zbl 1013.53019.

  11. M.~Roman and A.~Sandovici, \itA quasi--homogeneous gauge theory on T2M, in preparation.

  12. A.~Sandovici, σ Deformations of Second Order of Riemann Spaces, Studii si Cercetari Stiintifice, Seria Matematica, Universitatea Bacau, Nr. 9 (1999), 187--202. MR1848995. Zbl 1056.53506.

  13. A.~Sandovici, Implications of Homogeneity in Miron's sense in Gauge Theories of Second Order, in vol. "Finsler and Lagrange Geometries: Proceedings of a Conference Held in August 36-31, 2001,in Iasi,Romania", Kluwer Academic Publishers, 2003, 277--285. MR2010578. Zbl 1069.70014.

  14. A.~Sandovici, Levi-Civita connection on second order tangent bundle, Studii si Cercetari Stiintifice, Seria Matematica, Universitatea Bacau, Nr. 13 (2003). MR2135992. Zbl 1125.53304.

  15. A.~Sandovici, A smooth gauge model on tangent bundle, Rendiconti del Seminario Matematico Torino, vol. 63, no.3, 2005, 255-282. MR2202048. Zbl 1178.53026.

  16. A.~Sandovici and V.~Blanuta, Homogeneous 2-π Metrical Sructures on T2M Manifold, Bulletin of the Malaysian Mathematical Society (Second Series) 26 (2003), 163--174. MR2039918. Zbl 1067.53015.

  17. Y.~TASHIRO and B.~H.~KIM, Almost complex and almost contact structures in fibred Riemannian spaces, HIROSHIMA MATH. J., 18 (1988), 161--188. MR935888. Zbl 0655.53030.

  18. S.~TANNO, Almost complex structures in bundle spaces over almost contact manifolds, J. Math. Sac. Japan, Vol. 17, No. 2 (1965), 167--186. MR184166. Zbl 0132.16801.



Marcel Roman
Department of Mathematics,
"Gheorghe Asachi" Technical University,
B-dul Carol I nr. 11, 700506, Iaşi, Romania.
e-mail: marcel.roman@tuiasi.ro

Adrian Sandovici
Department of Mathematics,
"Gheorghe Asachi" Technical University,
B-dul Carol I nr. 11, 700506, Iaşi, Romania.
e-mail: adrian.sandovici@tuiasi.ro


http://www.utgjiu.ro/math/sma