Surveys in Mathematics and its Applications
ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 16 (2021), 259 -- 274
This work is licensed under a Creative Commons Attribution 4.0 International License.ON A GENERALIZATION OF EULER'S CONSTANT
Stephen Kaczkowski
Abstract. A one parameter generalization of Euler's constant γ from [Numer. Algorithms 46(2) (2007) 141--151] is investigated, and additional expressions for γ are derived. Included are forms involving the Gregory coefficients and the Hurwitz Zeta function, and expressions of the later are shown to lead to an alternative proof of Lerch's limit formula for the gamma function.
2020 Mathematics Subject Classification: 30B10; 33B15; 11M35; 30E20; 11M06
Keywords: Euler's Constant; Gamma Function; Hurwitz Zeta Function
References
M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables Applied mathematics series, National Bureau of Standards, Washington, DC, 1964.
T. M. Apostol, An elementary view of Euler's summation formula, Amer. Math. Monthly 106(5) (1999) 409--418. MR1699259. Zbl 1076.41509.
A. Alzer, On some inequalities for the gamma and psi functions, Math. Comp. 66(217) (1997) 373--389. MR1388887. Zbl 0854.33001.
H. Bateman, A. Erdélyi, Higher Transcendental Functions [in 3 volumes], Mc Graw Hill Book Company, 1955.
I. V. Blagouchine, Two series expansions for the logarithm of the gamma function involving Stirling numbers and containing only rational coefficients for certain arguments related to π-1, J. Math. Anal. Appl. 442(2) (2016) 404--434. MR3504006. Zbl 1339.33003.
J. Bohman, C. Fröberg, The Stieltjes function---definition and properties, Math. Comp. 51(183) (1988) 281--289. MR0942155. Zbl 0654.10038.
T. P. Dence, J. B. Dence, A survey of Euler's constant, Mathematics Magazine 82(4) (2009) 255--265. MR2571789. Zbl 1227.11128.
X. Gourdon, P. Sebah, Numbers, constants and computation, Webpage (accessed April 8, 2020).
I. S. Gradshteyn, I. M. Ryzhik, Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, 2000.
J. Guillera, J. Sondow, Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent, Ramanujan J. 16(3) (2008) 247--270. MR2429900. Zbl 1216.11075.
J. Havil, Gamma: Exploring Euler's Constant, Princeton University Press, Princeton, NJ, (2003).
H. Jeffreys, B. S. Jeffreys, Frullani's Integrals, \S12.16 in Methods of Mathematical Physics, 3rd ed. Cambridge University Press, Cambridge, England, 1988.
C. Jordan, K. Jordán, Calculus of Finite Differences 33, American Mathematical Soc., Providence, Rhode Island, 1965.
N. Kurokawa, M. Wakayama, On q-analogues of the Euler constant and Lerch's limit formula, Proc. Amer. Math. Soc. 132(4) (2004) 935--943. MR2045407. Zbl 1114.33022.
J. Lagarias, Euler's constant: Euler's work and modern developments, Bulletin of the American Mathematical Society 50(4) (2013) 527--628. MR3090422. Zbl 1282.11002.
V. Lampret, An interplay between a generalized-Euler-constant function and the Hurwitz zeta function, Bull. Belg. Math. Soc., 17(4) (2010) 741--747. MR2778449. Zbl 1218.11081.
D. Lehmer, Euler constants for arithmetic progressions, Acta Arith. 27 (1975) 125--142. MR0369233. Zbl 0302.12003.
M. Lerch, Dalℑdie v oboru Malmsténovských ℑozpravy ℑe Akad, 3(28) (1894) 1--61.
M. R. Murty, N. Saradha, Euler--Lehmer constants and a conjecture of Erdös, J. Number Theory 130(12) (2010) 2671--2682. MR2684489. Zbl 1204.11114.
J. A. Scott, 101.31 On series for the Euler constant, Math. Gaz. 101(552) (2017) 486--488.
A. Sîntămărian, A Generalization of Euler's Constant, Numer. Algorithms 46(2) (2007) 141--151, https://doi.org/10.1007/s11075-007-9132-0. MR2358246. Zbl 1130.11075Z.
J. Sondow, Double Integrals for Euler's Constant and ln(4/pi) and an Analog of Hadjicostas's Formula, Amer. Math. Monthly 112(1) (2005) 61--65. MR2110113. Zbl 1138.11356.
H. M. Srivastava, J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier, 2012.
A. E. Taylor, General Theory of Functions and Integration. Dover Books on Mathematics Series, 2012.
E. W. Weisstein, Euler-Mascheroni Constant, From MathWorld--A Wolfram Web Resource. Webpage (accessed April 8, 2020).
E. T. Whittaker, G. N. Watson, A Course of Modern Analysis, Cambridge University Press, Cambridge, England, 1927.
Stephen Kaczkowski
South Carolina Governor's School for Science and Mathematics,
401 Railroad Avenue
Hartsville, SC 29550 USA.
e-mail: s.v.kaczkowski@gmail.com