Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 16 (2021), 339 -- 359

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

POSITIVE DEFINITENESS: FROM SCALAR TO OPERATOR-VALUED KERNELS

V. A. Menegatto

Abstract. In this paper we present a short overview of results that provide relationships among scalar, matrix-valued and certain operator-valued positive definite kernels. We refine and extend some of them in order that they may be applied for strict positive definiteness as well. This is a topic not well explored in the literature but that has potential usefulness in the characterization of several classes of positive definite and strictly positive definite kernels. This is ratified in the paper with the inclusion of a number of applications and examples.

2020 Mathematics Subject Classification: 43A35; 42A82.
Keywords: positive definiteness, strict positive definiteness, scalar kernels, matrix-valued kernels, operator-valued kernels.

Full text

References

  1. N. Aronszajin, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68(1950), 337-404. MR51437 Zbl 0037.20701.

  2. C. Berg, J. P. R. Christensen, and P. Ressel, Harmonic analysis on semigroups. Theory of positive definite and related functions, Graduate Texts in Mathematics, 100, Springer-Verlag, New York, 1984. MR747302 Zbl 0619.43001.

  3. A. Berlinet and C. Thomas-Agnan, Reproducing kernel Hilbert spaces in probability and statistics, With a preface by Persi Diaconis, Kluwer Academic Publishers, Boston, 2004. MR2239907 Zbl 1145.62002.

  4. M. Brault, M. Hainonen, and F. d'Alché-Buc, Random Fourier features for operator-valued kernels, JMLR: Workshop and Conference Proceedings 63:110-125, 2016.

  5. J. C. Guella, A unifying approach to isotropic and radial positive definite kernels, Dissertation, ICMC-Universidade de São Paulo, 2019.

  6. J. Guella, Operator valued positive definite kernels and differentiable universality, arXiv:2003.11199v1 [math.FA], 2020.

  7. J. C. Guella and V. A. Menegatto, Schoenberg's Theorem for positive definite functions on products: A unifying framework, J. Fourier Anal. Appl. 25 (2019), no. 4, 1424-1446. MR3977123 Zbl 1420.42005.

  8. J. C. Guella, V. A. Menegatto, and E. Porcu, Strictly positive definite multivariate covariance functions on spheres, J. Multivariate Anal., 166 (2018), 150-159. MR3799640 Zbl 06869756.

  9. E. J. Hannan, Multiple time series, John Wiley and Sons, Inc., New York-London-Sydney, 1970. MR279952 Zbl 0211.49804.

  10. R. A. Horn and C. R. Johnson, Matrix analysis, Second edition, Cambridge University Press, Cambridge, 2013. MR2978290 Zbl 1267.15001.

  11. C. A. Micchelli and M. Pontil, On learning vector-valued functions, Neural Computation 17 (2005), 177- 204. MR2175914 Zbl 1092.93045.

  12. M. Micheli and J. A. Glaunc, Matrix-valued kernels for shape deformation analysis, Geometry, Imaging and Computing 1 (2014), no. 1, 57-139. MR3392140 Zbl 1396.46025.

  13. C. Müller, Analysis of spherical symmetries in Euclidean spaces, Applied Mathematical Sciences, 129. Springer-Verlag, New York, 1998. MR1483320 Zbl 0884.33001.

  14. K.-H. Neeb, Operator-valued positive definite kernels on tubes, Monatsh. Math. 126(2) (1998), 125-160. MR1639387 Zbl 1074.43004.

  15. A. Pinkus, Strictly Hermitian positive definite functions, J. Anal. Math. 94 (2004), 293-318. MR2124464 Zbl 1074.43004.

  16. A. Pinkus, Strictly positive definite functions on a real inner product space, Adv. Comput. Math. 20 (2004), no. 4, 263-271. MR2032278 Zbl 1142.42307.

  17. E. Porcu and V. Zastavnyi, Characterization theorems for some classes of covariance functions associated to vector valued random fields, J. Multivariate Anal., 102 (2011), no. 9, 1293-1301. MR2811618 Zbl 1219.60053.

  18. A. Saha and P. Balamurugan, Learning with operator-valued kernels in reproducing kernel Krein spaces, in Advances in Neural Information Processing Systems 33 (NeurIPS 2020). Edited by: H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin., 11 pp.

  19. S. Saitoh and Y. Sawano, Theory of reproducing kernels and applications, Developments in Mathematics, 44. Springer, Singapore, 2016. MR3560890 Zbl 1358.46004.

  20. L. Schwartz, Sous-espaces hilbertiens d'espaces vectoriels topologiques et noyaux associés (noyaux reproduisants), J. Anal. Math. 13 (1964), 115-256. MR179587 Zbl 0124.06504.

  21. A. M. Yaglom, Correlation theory of stationary and related random functions, Vol. I, Basic results, Springer Series in Statistics, Springer-Verlag, New York, 1987. MR893393 Zbl 0685.62077.

  22. D. Wittwar, G. Santin, and B. Haasdonk, Interpolation with uncoupled separable matrix-valued kernels. Dolomites Res. Notes Approx. 11 (2018), 23-29. MR3895571.

  23. Haizhang Zhang, Yuesheng Xu, and Qinghui Zhang, Refinement of operator-valued reproducing kernels, J. Mach. Learn. Res., 13 (2012), 91-136. MR2913695 Zbl 1283.68310.



V. A. Menegatto
Departamento de Matemática -ICMC
Universidade de São Paulo
13560-970 São Carlos SP
Brazil

Current Affiliation:
Departamento de Matemática - ICE
Universidade Federal de Juiz de Fora
36036-330 Juiz de Fora MG
Brazil


e-mail: menegatt@gmail.com


http://www.utgjiu.ro/math/sma