Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 16 (2021), 361 -- 370

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

RIEMANN SOLITONS ON GENERALIZED WEAKLY ω-SYMMETRIC α-COSYMPLECTIC MANIFOLDS

Sabina Eyasmin, Kanak Kanti Baishya and Manoj Ray Bakshi

Abstract. Generalized quasi-conformal curvature tensor (ω-tensor) has the flavour of conformal, conharmonic, concircular, projective, m-projective, W1-curvature, W2-curvature and W4-curvature tensors. In the present paper we have investigated the nature of Riemann solitons in α-cosymplectic manifold in the light of generalized weakly ω-symmetric structure.

2020 Mathematics Subject Classification: 53C15; 53C25.
Keywords: Riemann solitons; α-cosymplectic manifold; generalized weakly symmetric space; generalized quasi-conformal curvature tensor.

Full text

References

  1. K.K. Baishya, On generalized weakly symmetric manifolds, Bull. Transilv. Univ. Braşov 10(59)(1) (2017), 31--38. MR3680879 Zbl 1399.53048

  2. K.K. Baishya and M.R. Bakshi, Certain types of (LCS)n-manifold and the case of Riemann soliton, Differ. Geom. Dyn. Syst. 22 (2020), 11--25. MR4161645 Zbl 1455.53052

  3. D.E. Blair, Contact Manifolds in Riemannian Geometry, Lect. Notes in Math. 509, Springer-Verlag, New York, 1976. MR0467588 Zbl 0319.53026

  4. I.E. Hirică and C. Udrişte, Ricci and Riemann solitons, Balkan J. Geom. Appl. 21(2) (2016), 35--44. MR3511171 Zbl 1358.53067

  5. C. Udrişte, Riemann flow and Riemann wave, Ann. Univ. Vest, Timisoara. Ser. Mat.-Inf. 48 (2010), 265--274. MR2849340 Zbl 1224.53104

  6. I.E. Hirică and C. Udrişte, Basic evolution PDE's in Riemannian Geometry, Balkan J. Geom. Appl. 17(1) (2012), 30--40. MR2911953 Zbl 1284.53063

  7. I.E. Hirică, Properties of Concircular Curvature Tensors on Riemann Spaces, Filomat 30(11) (2016), 2901--2907. MR3593087 Zbl 1474.53078

  8. M.N. Devaraja, H.A. Kumara and V. Venkatesha, Riemann soliton within the framework of contact geometry, Quaest. Math. 45(5) (2020), 1--15. MR4266735 Zbl 1467.53053

  9. K.K. Baishya and P.R. Chowdhury, On generalized quasi-conformal N(k,μ )-manifolds, Commun. Korean Math. Soc. 31(1) (2016), 163--176. MR3458739 Zbl 1346.53030

  10. K.K. Baishya, GRW-spacetime and certain type of energy momentum tensor, J. Geom. Phys. 157 (2020), 1--5. MR4137707 Zbl 1448.53022

  11. R.S. Hamilton, The Ricci flow on surfaces, Contemp. Math. 71 (1988), 237--262. MR0954419 Zbl 0663.53031

  12. R.S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17(2) (1982), 255--306. MR0664497 Zbl 0504.53034

  13. L.P. Eisenhart, Riemannian Geometry, Princeton University Press, 1949. MR0035081 Zbl 0041.29403

  14. Y. Ishii, On conharmonic transformations, Tensor (N.S.) 7 (1957), 73--80. MR0102837 Zbl 0079.15702

  15. K. Yano and S. Bochner, Curvature and Betti numbers, Annals of Mathematics Studies 32, Princeton University Press, 1953. MR0062505 Zbl 0051.39402

  16. H. Öztürk, N. Aktan and C. Murathan, Almost f-cosymplectic (\kappa ,μ ,ν)-spaces, arXiv:1007.0527v1 [math.DG] (2010), 1--24.

  17. M. Yildirim, N. Aktan and C. Murathan, Almost f-cosymplectic manifolds, Mediterr. J. Math. 11 (2014), 775--787. MR3198639 Zbl 1291.53088

  18. Z. Olszak, Locally conformal almost cosymplectic manifolds, Coll. Math. 57 (1989), 73--87. MR1028604 Zbl 0702.53025

  19. G.P. Pokhariyal and R.S. Mishra, Curvature tensor and their relativistic significance II, Yokohama Math. J. 19(2) (1971), 97--103. MR0426797 Zbl 0229.53026

  20. G.P. Pokhariyal, Relativistic significance of curvature tensors, Int. J. Math. Sci. 5(1) (1982), 133--139. MR0666500 Zbl 0486.53022

  21. G.P. Pokhariyal and R.S. Mishra, Curvature tensor and their relativistic significance, Yokohama Math. J. 18(2) (1970), 105--108. MR0292473 Zbl 0228.53022

  22. H. Öztürk, C. Murathan, N. Aktan and A.T. Vanli, Almost α -cosymplectic f-manifolds, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 60(1) (2014), 211--226. MR3252468 Zbl 1299.53081





Sabina Eyasmin - Corresponding author
Department of Mathematics, Chandidas Mahavidyalaya,
Birbhum-731215, West Bengal, India.
e-mail:sabinaeyasmin2010@gmail.com

Kanak Kanti Baishya
Department of Mathematics, Kurseong College
Kurseong, Darjeeling, India.
e-mail: kanakkanti.kc@gmail.com

Manoj Ray Bakshi
Department of Mathematics, Raiganj University,
Uttar Dinajpur, India.
e-mail: raybakshimanoj@gmail.com


http://www.utgjiu.ro/math/sma