SUBORDINATING RESULTS FOR A CLASS OF ANALYTIC FUNCTIONS DEFINED BY HADAMARD PRODUCT AND ATSHAN AND RAFID OPERATOR

M. K. Aouf, A. O. Mostafa and F. Y. Al-Quhali

Abstract. In this paper, we defined a class of analytic functions defined by Hadamard product and Atshan and Rafid operator and obtained some subordinating results for functions in this class.

1 Introduction

Let S be the class of analytic univalent functions of the form:

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k, \ z \in \mathbb{U} = \{z : z \in \mathbb{C} : |z| < 1\} \ (1.1)$$

and C be the subclass of $f(z) \in S$ which are convex in \mathbb{U} and let $M(\beta)$ and $N(\beta)$ denote the subclasses of S consisting of $f(z)$ which satisfying (see [2,3,15,17,18,21])

$$M(\beta) = \text{Re}\left\{ \frac{zf'(z)}{f(z)} \right\} < \beta, \ \beta > 1 \ (1.2)$$

and

$$N(\beta) = \text{Re}\left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} < \beta, \ \beta > 1. \ (1.3)$$

Then, we note that $f(z) \in N(\beta) \Leftrightarrow z f'(z) \in M(\beta)$.

For $f \in S$ given by (1.1) and $g \in S$ given by

$$g(z) = z + \sum_{k=2}^{\infty} b_k z^k \ (b_k \geq 0), \ (1.4)$$

2020 Mathematics Subject Classification: 30C45

Keywords: Analytic function; Hadamard product; Atshan and Rafid operator; subordinating; factor sequence.

http://www.utgjiu.ro/math/sma
then the Hadamard product \(f \ast g \) of \(f \) and \(g \) is defined by

\[
(f \ast g)(z) = z + \sum_{k=2}^{\infty} a_k b_k z^k = (g \ast f)(z).
\] (1.5)

Let \(f \) and \(g \) be analytic in \(\mathbb{U} \), then \(f \) is subordinate to \(g \) \((f(z) \prec g(z))\) if there exists an analytic function \(w(z) \), with \(w(0) = 0 \) and \(|w(z)| < 1 \) \((z \in \mathbb{U})\), such that \(f(z) = g(w(z)) \) (see [14]), and if \(g \) is univalent in \(\mathbb{U} \), then

\[
f(z) \prec g(z) \iff f(0) = g(0) \text{ and } f(\mathbb{U}) \subset g(\mathbb{U}).
\]

Definition 1. (Subordinating factor sequence) [22] A sequence \(\{d_k\}_{k=1}^{\infty} \) of complex numbers is said to be a subordinating factor sequence if, whenever \(f \) of the form (1.1) is analytic, univalent and convex in \(\mathbb{U} \), we have the subordination given by

\[
\sum_{k=1}^{\infty} a_k d_k z^k \prec f(z) \quad (z \in \mathbb{U}, \; a_1 = 1).
\] (1.6)

For \(f(z) \in S \), Atshan and Rafid [4] defined the operator \(R_{\theta, \mu}^\alpha \) for \(0 \leq \mu < 1 \), \(0 \leq \theta \leq 1 \) by

\[
R_{\theta, \mu}^\alpha(f(z)) = \frac{1}{(1 - \mu)^{1+\theta} \Gamma(\theta + 1)} \int_0^{\infty} t^{\theta-1} e^{-\frac{t}{1-\mu}} f(zt) dt = z + \sum_{k=2}^{\infty} K(k, \mu, \theta) a_k z^k,
\] (1.7)

where

\[
K(k, \mu, \theta) = \frac{(1 - \mu)^{k-1} \Gamma(\theta + k)}{\Gamma(\theta + 1)}.
\] (1.8)

Definition 2. By using the operator \(R_{\theta, \mu}^\alpha \) and for \(\alpha \leq 0 \), \(\beta > 1 \), \(0 \leq \lambda \leq 1 \), \(0 \leq \mu < 1 \), \(0 \leq \theta \leq 1 \), let \(M_{\mu}^\alpha(f, g, \lambda, \beta, \alpha) \) be the class consisting of functions \(f, g \in S \) satisfying

\[
\text{Re}\left\{ \frac{z(R_{\mu}^\alpha(f \ast g)(z))'}{(1 - \lambda)R_{\mu}^\alpha(f \ast g)(z) + \lambda z R_{\mu}^\alpha(f \ast g)(z)'} - \beta \right\} < \alpha \left| \frac{z(R_{\mu}^\alpha(f \ast g)(z))'}{(1 - \lambda)R_{\mu}^\alpha(f \ast g)(z) + \lambda z R_{\mu}^\alpha(f \ast g)(z)'} - 1 \right|.
\] (1.9)

For suitable choices of \(\lambda \) and \(g \), we obtain the new classes:

**

Surveys in Mathematics and its Applications 16 (2021), 1 – 11

http://www.utgjiu.ro/math/sma
Subordinating results for a class of analytic functions

(i) \[M_\mu^\theta(f, \frac{z}{1-z}, \lambda, \beta, \alpha) = M_\mu^\theta(f, \lambda, \beta, \alpha) = \]
\[
\left\{ f \in S : \text{Re} \left(\frac{z(R_\mu^\theta f(z))' + \lambda z(R_\mu^\theta f(z))''}{(1 - \lambda)R_\mu^\theta f(z) + \lambda z(R_\mu^\theta f(z))''} - \beta \right) \right\} < \alpha
\]
\[
\left. \left(z(R_\mu^\theta f(z))' + \lambda z(R_\mu^\theta f(z))'' \right) \right|_{(1 - \lambda)R_\mu^\theta f(z) + \lambda z(R_\mu^\theta f(z))''} - 1,
\]
\[
\alpha \leq 0, \beta > 1, 0 \leq \lambda \leq 1, 0 \leq \theta \leq 1, 0 \leq \mu < 1, z \in \mathbb{U}, \}
\]

(ii) \[M_\mu^\theta(f, \frac{z}{1-z}, 0, \beta, \alpha) = EM_\mu^\theta(f, \beta, \alpha) = \]
\[
\left\{ f \in S : \text{Re} \left(\frac{z(R_\mu^\theta f(z))'}{R_\mu^\theta f(z)} - \beta \right) \right\} < \alpha
\]
\[
\left. \left(z(R_\mu^\theta f(z))' \right) \right|_{R_\mu^\theta f(z)} - 1,
\]
\[
\alpha \leq 0, \beta > 1, 0 \leq \theta \leq 1, 0 \leq \mu < 1, z \in \mathbb{U}, \}
\]

(iii) \[M_\mu^\theta(f, \frac{z}{1-z}, 1, \beta, \alpha) = M_\mu^\theta(f, \lambda, \beta, \alpha) = \]
\[
\left\{ f \in S : \text{Re} \left(\frac{1 + z(R_\mu^\theta f(z))''}{(R_\mu^\theta f(z))'} - \beta \right) \right\} < \alpha
\]
\[
\left. \left(z(R_\mu^\theta f(z))'' \right) \right|_{(R_\mu^\theta f(z))'}
\]
\[
\alpha \leq 0, \beta > 1, 0 \leq \theta \leq 1, 0 \leq \mu < 1, z \in \mathbb{U}, \}
\]

(iv) \[M_\mu^\theta(f, g, 0, \beta, \alpha) = M_\mu^\theta(f, g, \beta, \alpha) = \]
\[
\left\{ f \in S : \text{Re} \left(\frac{z(R_\mu^\theta (f * g)(z))'}{R_\mu^\theta (f * g)(z)} - \beta \right) \right\} < \alpha
\]
\[
\left. \left(z(R_\mu^\theta (f * g)(z))' \right) \right|_{R_\mu^\theta (f * g)(z)} - 1,
\]
\[
\alpha \leq 0, \beta > 1, 0 \leq \theta \leq 1, 0 \leq \mu < 1, z \in \mathbb{U}, \}
\]

(v) \[M_\mu^\theta(f, g, 1, \beta, \alpha) = TM_\mu^\theta(f, g, \beta, \alpha) = \]
\[
\left\{ f \in S : \text{Re} \left(\frac{1 + z(R_\mu^\theta (f * g)(z))''}{(R_\mu^\theta (f * g)(z))'} - \beta \right) \right\} < \alpha
\]
\[
\left. \left(z(R_\mu^\theta (f * g)(z))'' \right) \right|_{(R_\mu^\theta (f * g)(z))'}
\]
\[
\alpha \leq 0, \beta > 1, 0 \leq \theta \leq 1, 0 \leq \mu < 1, z \in \mathbb{U}, \}
\]
Also, we note that:

(1) if \(g(z) = z + \sum_{k=2}^{\infty} \Gamma_k(\alpha_1)z^k \) (or \(b_k = \Gamma_k(\alpha_1) \)), where

\[
\Gamma_k(\alpha_1) = \frac{(\alpha_1)_{k-1} \cdots (\alpha_1)_{k-1}}{(\beta_1)_{k-1} \cdots (\beta_s)_{k-1}(k-1)!}
\]

(1.10)

(\(\alpha_i > 0, i = 1, \ldots, q; \beta_j > 0, j = 1, \ldots, s; q \leq s + 1; q, s \in \mathbb{N}_0 = \mathbb{N}, N = \{1, 2, \ldots\} \)) then

\[
R^\theta_k(f * g)(z) = M^\theta_{\mu,q,s}(\alpha_1)f(z) = z + \sum_{k=2}^{\infty} K(k, \mu, \theta)\Gamma_k(\alpha_1)a_kz^k,
\]

where \(K(k, \mu, \theta) \) is given by (1.8) and \(M^\theta_{\mu}(f, g, \lambda, \beta, \alpha) = M^\theta_{\mu,q,s}([\alpha_1], \lambda, \beta, \alpha) \)

\[
f \in S : \text{Re} \left\{ \frac{z(M^\theta_{\mu,q,s}(\alpha_1)f(z))'}{(1 - \lambda)M^\theta_{\mu,q,s}(\alpha_1)f(z) + \lambda z(M^\theta_{\mu,q,s}(\alpha_1)f(z))^\prime} - \beta \right\}
\]

\[
< \alpha \left| \frac{z(M^\theta_{\mu,q,s}(\alpha_1)f(z))'}{z(M^\theta_{\mu,q,s}(\alpha_1)f(z))'} - 1 \right|,
\]

\[
\alpha \leq 0, \beta > 1, 0 < \theta < 1, 0 \leq \mu < 1, \lambda \leq 1, \alpha_i, \beta_j > 0, q, s \in \mathbb{N}_0, z \in \mathcal{U},
\]

where \(g(z) \) is the Dziok-Srivastava operator (see [10, 11]) which contains well known operators (see [5, 6, 8, 9, 12, 13, 16, 19] and [20]):

(2) if \(g(z) = z + \sum_{k=2}^{\infty} \left[\frac{l+1+\delta(k-1)}{l+1} \right]^m z^k \) (or \(b_k = \left[\frac{l+1+\delta(k-1)}{l+1} \right]^m \), \(m \in \mathbb{N}_0; \delta \geq 0; l \geq 0 \)), then \(R^\theta_k(f * g)(z) = N^\theta_{\mu,m}(\delta, l)f(z) = z + \sum_{k=2}^{\infty} K(k, \mu, \theta) \left[\frac{l+1+\delta(k-1)}{l+1} \right]^m a_kz^k \)

and \(M^\theta_{\mu}(f, g, \lambda, \beta, \alpha) = N^\theta_{\mu}(l, m, \delta, \lambda, \beta, \alpha) \)

\[
f \in S : \text{Re} \left\{ \frac{z(N^\theta_{\mu,m}(\delta, l)f(z))'}{(1 - \lambda)N^\theta_{\mu,m}(\delta, l)f(z) + \lambda z(N^\theta_{\mu,m}(\delta, l)f(z))^\prime} - \beta \right\}
\]

\[
< \alpha \left(\frac{z(N^\theta_{\mu,m}(\delta, l)f(z))'}{z(N^\theta_{\mu,m}(\delta, l)f(z))'} - 1 \right),
\]

\[
\alpha \leq 0, \beta > 1, 0 < \theta < 1, 0 \leq \mu < 1, \lambda \leq 1, m \in \mathbb{N}_0; \delta \geq 0; l \geq 0; z \in \mathcal{U},
\]

where \(g(z) \) is the Catas operator introduced and studied by Catas et al. [7].

In this paper the techniques used are similar to those of Aouf et al. [1–3], Nishiwaki and Owa [15], Owa and Nishiwaki [17] and Owa and Srivastava [18].

2 Main results

Unless indicated, we assume that \(\alpha \leq 0, \beta > 1, 0 \leq \lambda \leq 1, 0 \leq \theta \leq 1, 0 \leq \mu < 1, k \geq 2, K(k, \mu, \theta) \) is defined by (1.8), \(b_k \geq 0 \) and \(z \in \mathcal{U} \).

To prove our results we need the following lemma.

**

Surveys in Mathematics and its Applications 16 (2021), 1 – 11
http://www.utgjiu.ro/math/sma
Lemma 3. \[\text{[22]}\] The sequence \(\{d_k\}_{k=1}^{\infty}\) is a subordinating factor sequence if and only if
\[
\text{Re}\left\{1 + 2 \sum_{k=1}^{\infty} d_k z^k\right\} > 0, \quad (z \in \mathbb{U}).
\] (2.1)

Theorem 4. If \(f(z)\) defined by (1.1) satisfies the following condition:
\[
\sum_{k=2}^{\infty} K(k, \mu, \theta) [1 + \lambda(k - 1)] [(k - 1)(1 - 2\alpha) + |k - 2\beta + 1|] b_k |a_k| \leq 2(\beta - 1).
\] (2.2)

Then \(f(z) \in M^\theta_{\mu}(f, g, \lambda, \beta, \alpha)\).

Proof. Assume that (2.2) holds. It suffices to show that
\[
\left|\frac{z(R_0^\theta(f \ast g)(z))' + \lambda z^2 (R_0^\theta(f \ast g)(z))''}{(1 - \lambda) R_0^\theta(f \ast g)(z) + \lambda z (R_0^\theta(f \ast g)(z))'} - 1\right| - 1 - (2\beta - 1) < 1.
\]

We have
\[
\left|\frac{z(R_0^\theta(f \ast g)(z))' + \lambda z^2 (R_0^\theta(f \ast g)(z))''}{(1 - \lambda) R_0^\theta(f \ast g)(z) + \lambda z (R_0^\theta(f \ast g)(z))'} - 1\right| - 1 - (2\beta - 1) \leq \frac{\sum_{k=2}^{\infty} K(k, \mu, \theta) [1 + \lambda(k - 1)] (k - 1)(1 - \alpha) b_k |a_k| |z|^{k-1}}{2(\beta - 1) - \sum_{k=2}^{\infty} K(k, \mu, \theta) [1 + \lambda(k - 1)] [k - 2\beta + 1 - \alpha(k - 1)] b_k |a_k| |z|^{k-1}}.
\]

This last expression is bounded above by 1 if
\[
\sum_{k=2}^{\infty} K(k, \mu, \theta) [1 + \lambda(k - 1)] (k - 1)(1 - \alpha) b_k |a_k| + \sum_{k=2}^{\infty} K(k, \mu, \theta) [1 + \lambda(k - 1)] [k - 2\beta + 1 - \alpha(k - 1)] b_k |a_k| \leq 2(\beta - 1).
\]

Which leads to (2.2), and hence the proof is completed. \(\square\)

Surveys in Mathematics and its Applications 16 (2021), 1 – 11
http://www.utgjiu.ro/math/sma
Corollary 5. Let \(f(z) \in M^\theta_\mu(f, g, \lambda, \beta, \alpha) \). Then

\[
|a_k| \leq \frac{2(\beta - 1)}{K(k, \mu, \theta) \left(1 + \lambda(k-1) \right) \left((k-1)(1-2\alpha) + |k-2\beta+1| \right) b_k} (k \geq 2). \tag{2.3}
\]

The result is sharp for

\[
f(z) = z + \frac{2(\beta - 1)}{K(k, \mu, \theta) \left(1 + \lambda(k-1) \right) \left((k-1)(1-2\alpha) + |k-2\beta+1| \right) b_k} z_k (k \geq 2).	ag{2.4}
\]

Putting \(g(z) = \frac{z}{1-z} = z + \sum_{k=2}^{\infty} z^k \) (or \(b_k = 1 \)) and \(\lambda = 0 \) in Theorem 4, we obtain the following corollary:

Corollary 6. Let \(f(z) \) defined by (1.1) satisfy the following condition:

\[
\sum_{k=2}^{\infty} K(k, \mu, \theta) \left((k-1)(1-2\alpha) + |k-2\beta+1| \right) |a_k| \leq 2(\beta - 1).
\]

Then \(f(z) \in EM^\theta_\mu(f, \beta, \alpha) \).

Putting \(g(z) = \frac{z}{1-z} = z + \sum_{k=2}^{\infty} z^k \) (or \(b_k = 1 \)) and \(\lambda = 1 \) in Theorem 4, we obtain the following corollary:

Corollary 7. Let \(f(z) \) defined by (1.1) satisfy the following condition:

\[
\sum_{k=2}^{\infty} K(k, \mu, \theta) k \left((k-1)(1-2\alpha) + |k-2\beta+1| \right) |a_k| \leq 2(\beta - 1).
\]

Then \(f(z) \in M^\theta_\mu(f, \beta, \alpha) \).

Let \(M^\theta_\mu(f, g, \lambda, \beta, \alpha) \) be the subclass of \(M^\theta_\mu(f, g, \lambda, \beta, \alpha) \) whose coefficients satisfy (2.2). We note that \(M^\theta_\mu(f, g, \lambda, \beta, \alpha) \subseteq M^\theta_\mu(f, g, \lambda, \beta, \alpha) \).

Theorem 8. Let \(f(z) \in M^\theta_\mu(f, g, \lambda, \beta, \alpha) \), \(b_k \geq b_2 > 0 \) (\(k \geq 2 \)). Then for every function \(\Psi \in C \), we have

\[
\frac{K(2, \mu, \theta)(1+\lambda)(2-\alpha-\beta)b_2}{2[K(2, \mu, \theta)(1+\lambda)(2-\alpha-\beta)b_2+(\beta-1)]}(f * \Psi)(z) < \Psi(z) \tag{2.5}
\]

and

\[
\text{Re} \{ f(z) \} > -\frac{K(2, \mu, \theta)(1+\lambda)(2-\alpha-\beta)b_2}{K(2, \mu, \theta)(1+\lambda)(2-\alpha-\beta)b_2+(\beta-1)} \frac{(2-\alpha-\beta)b_2}{b_2+(\beta-1)} \tag{2.6}
\]

The constant \(\frac{K(2, \mu, \theta)(1+\lambda)(2-\alpha-\beta)b_2}{2[K(2, \mu, \theta)(1+\lambda)(2-\alpha-\beta)b_2+(\beta-1)]} \) is the best estimate.
Subordinating results for a class of analytic functions

Proof. Let \(f(z) \in M^\theta_\mu (f, g, \lambda, \beta, \alpha) \) and let \(\Psi(z) = z + \sum_{k=2}^\infty d_k z^k \in C \). Then we have

\[
\frac{K(2, \mu, \theta)(1+\lambda)(2-\alpha-\beta)b_2}{2[K(2, \mu, \theta)(1+\lambda)(2-\alpha-\beta)b_2+(\beta-1)]}(f \ast \Psi)(z)
= \frac{K(2, \mu, \theta)(1+\lambda)(2-\alpha-\beta)b_2}{2[K(2, \mu, \theta)(1+\lambda)(2-\alpha-\beta)b_2+(\beta-1)]}\left(z + \sum_{k=2}^\infty a_k d_k z^k \right). \tag{2.7}
\]

Thus, by Definition 1, the subordinating result (2.5) will hold true if

\[
\left\{ \frac{K(2, \mu, \theta)(1+\lambda)(2-\alpha-\beta)b_2}{2[K(2, \mu, \theta)(1+\lambda)(2-\alpha-\beta)b_2+(\beta-1)]} a_k \xi \right\}_{k=1}^\infty,
\tag{2.8}
\]

is a subordinating factor sequence, with \(a_1 = 1 \). In view of Lemma 3, this is equivalent to:

\[
\text{Re} \left\{ 1 + \sum_{k=1}^\infty \frac{K(2, \mu, \theta)(1+\lambda)(2-\alpha-\beta)b_2}{[K(2, \mu, \theta)(1+\lambda)(2-\alpha-\beta)b_2+(\beta-1)]} a_k \xi \right\} > 0. \tag{2.9}
\]

Now, since

\[
K(k, \mu, \theta) [1 + \lambda(k-1)] [(k-1)(1-2\alpha) + k-2\beta + 1] b_k,
\]

is an increasing function of \(k \) \((k \geq 2)\), we have

\[
\text{Re} \left\{ 1 + \sum_{k=1}^\infty \frac{K(2, \mu, \theta)(1+\lambda)(2-\alpha-\beta)b_2}{[K(2, \mu, \theta)(1+\lambda)(2-\alpha-\beta)b_2+(\beta-1)]} a_k \xi \right\}
= \text{Re} \left\{ 1 + \frac{K(2, \mu, \theta)(1+\lambda)(2-\alpha-\beta)b_2}{[K(2, \mu, \theta)(1+\lambda)(2-\alpha-\beta)b_2+(\beta-1)]} \right\}
+ \frac{1}{[K(2, \mu, \theta)(1+\lambda)(2-\alpha-\beta)b_2+(\beta-1)]} \sum_{k=2}^\infty K(2, \mu, \theta)(1+\lambda)(2-\alpha-\beta)b_2 a_k \xi
\geq 1 - \frac{K(2, \mu, \theta)(1+\lambda)(2-\alpha-\beta)b_2}{[K(2, \mu, \theta)(1+\lambda)(2-\alpha-\beta)b_2+(\beta-1)]} - \frac{1}{[K(2, \mu, \theta)(1+\lambda)(2-\alpha-\beta)b_2+(\beta-1)]} \sum_{k=2}^\infty \frac{1}{2} K(k, \mu, \theta) [1 + \lambda(k-1)] [(k-1)(1-2\alpha) + k-2\beta + 1] b_k |a_k| r^k
\geq 1 - \frac{K(2, \mu, \theta)(1+\lambda)(2-\alpha-\beta)b_2}{[K(2, \mu, \theta)(1+\lambda)(2-\alpha-\beta)b_2+(\beta-1)]} - \frac{1}{[K(2, \mu, \theta)(1+\lambda)(2-\alpha-\beta)b_2+(\beta-1)]} \sum_{k=2}^\infty \frac{1}{2} K(k, \mu, \theta) [1 + \lambda(k-1)] [(k-1)(1-2\alpha) + k-2\beta + 1] b_k |a_k| r^k
= 1 - r > 0 \quad (|z| = r < 1),
\]

where we have also made use of (2.2) of Theorem 4. Thus (2.9) holds true in \(U \). This proves (2.5). The inequality (2.6) follows from (2.5) by taking the convex function

\[
\Psi(z) = \frac{z}{1-z} = z + \sum_{k=2}^\infty z^k \in C.
\]
To prove the sharpness of the constant $\frac{K(2, \mu, \theta)(1+\lambda)(2-\alpha-\beta)b_2}{2K(2, \mu, \theta)(1+\lambda)(2-\alpha-\beta)b_2+(\beta-1)}$, we consider $f_0(z) \in M_\mu^{\theta_*}(f, g, \lambda, \beta, \alpha)$ given by

$$f_0(z) = z - \frac{(\beta-1)}{K(2, \mu, \theta)(1+\lambda)(2-\alpha-\beta)b_2} z^2.$$ \hfill (2.10)

Thus from (2.5), we have

$$\frac{K(2, \mu, \theta)(1+\lambda)(2-\alpha-\beta)b_2}{2K(2, \mu, \theta)(1+\lambda)(2-\alpha-\beta)b_2+(\beta-1)} f_0(z) < \frac{z}{1-z}.$$ \hfill (2.11)

Moreover, it can easily be verified for $f_0(z)$ given by (2.10) that

$$\min_{|z| \leq r} \left\{ \text{Re} \left\{ \frac{K(2, \mu, \theta)(1+\lambda)(2-\alpha-\beta)b_2}{2K(2, \mu, \theta)(1+\lambda)(2-\alpha-\beta)b_2+(\beta-1)} f_0(z) \right\} \right\} = -\frac{1}{2}.$$ \hfill (2.12)

This shows that $\frac{K(2, \mu, \theta)(1+\lambda)(2-\alpha-\beta)b_2}{2K(2, \mu, \theta)(1+\lambda)(2-\alpha-\beta)b_2+(\beta-1)}$ is the best possible. This completes the proof.

Putting $g(z) = \frac{z}{1-z} = z + \sum_{k=2}^{\infty} z^k$ (or $b_k = 1$) in Theorems 4 and 8, we obtain the following corollary:

Corollary 9. Let $f(z) \in M_\mu^{\theta_*}(f, \frac{z}{1-z}, \lambda, \beta, \alpha)$ and satisfies the condition

$$\sum_{k=2}^{\infty} K(k, \mu, \theta) [1 + \lambda(k-1)] [(k-1)(1-2\alpha) + |k-2\beta+1| |a_k|] \leq 2(\beta-1).$$

Then for every $\Psi(z) \in C$, we have

$$\frac{K(2, \mu, \theta)(1+\lambda)(2-\alpha-\beta)}{2K(2, \mu, \theta)(1+\lambda)(2-\alpha-\beta)+(\beta-1)} (f * \Psi)(z) < \Psi(z),$$

and

$$\text{Re} \left\{ f(z) \right\} > -\frac{K(2, \mu, \theta)(1+\lambda)(2-\alpha-\beta) + (\beta-1)}{K(2, \mu, \theta)(1+\lambda)(2-\alpha-\beta)}. $$

The constant $\frac{K(2, \mu, \theta)(1+\lambda)(2-\alpha-\beta)}{2K(2, \mu, \theta)(1+\lambda)(2-\alpha-\beta)+(\beta-1)}$ is the best estimate.

Putting $g(z) = z + \sum_{k=2}^{\infty} \Gamma_k(\alpha_1) z^k$ (or $b_k = \Gamma_k(\alpha_1)$) in Theorems 4 and 8, we obtain the following corollary:

Corollary 10. Let $f(z) \in M_\mu^{\theta_*}([\alpha_1]; \lambda, \beta, \alpha)$ and satisfies the condition

$$\sum_{k=2}^{\infty} K(k, \mu, \theta) [1 + \lambda(k-1)] [(k-1)(1-2\alpha) + |k-2\beta+1| \Gamma_k(\alpha_1) |a_k|] \leq 2(\beta-1).$$

**

Surveys in Mathematics and its Applications 16 (2021), 1 – 11

http://www.utgjiu.ro/math/sma
Then for every $\Psi(z) \in C$, we have
\[
\frac{K(2,\mu,\theta)(1+\lambda)(2-\alpha-\beta)\Gamma_2(\alpha_1)}{2[K(2,\mu,\theta)(1+\lambda)(2-\alpha-\beta)\Gamma_2(\alpha_1)+(\beta-1)]} (f * \Psi)(z) < \Psi(z),
\]
and
\[
\Re \{f(z)\} > - \frac{K(2,\mu,\theta)(1+\lambda)(2-\alpha-\beta)\Gamma_2(\alpha_1)}{K(2,\mu,\theta)(1+\lambda)(2-\alpha-\beta)\Gamma_2(\alpha_1)}.
\]
The constant $\frac{K(2,\mu,\theta)(1+\lambda)(2-\alpha-\beta)\Gamma_2(\alpha_1)}{2[K(2,\mu,\theta)(1+\lambda)(2-\alpha-\beta)\Gamma_2(\alpha_1)+(\beta-1)]}$ is the best estimate.

Putting $g(z) = z + \sum_{k=2}^{\infty} \left[\frac{1+\delta(k-1)}{l+1} \right]^m z^k$ (or $b_k = \left[\frac{1+\delta(k-1)}{l+1} \right]^m$, $m \in \mathbb{N}_0$; $\delta \geq 0$; $l \geq 0$), in Theorem 4 and Theorem 8, we obtain the following corollary:

Corollary 11. Let $f(z) \in N^\mu_{\alpha}(l,m,\delta,\lambda,\beta,\alpha)$ and satisfies the condition
\[
\sum_{k=2}^{\infty} K(k,\mu,\theta) [1 + \lambda(k-1)] [(k-1)(1-2\alpha) + |k-2\beta+1|] \left[\frac{1+\delta(k-1)}{l+1} \right]^m |a_k| \leq 2(\beta-1).
\]
Then for every $\Psi(z) \in C$, we have
\[
\frac{K(2,\mu,\theta)(1+\lambda)(2-\alpha-\beta)[l+1+\delta]^m}{2K(2,\mu,\theta)(1+\lambda)(2-\alpha-\beta)[l+1+\delta]^m+(\beta-1)}(f * \Psi)(z) < \Psi(z),
\]
and
\[
\Re \{f(z)\} > - \frac{K(2,\mu,\theta)(1+\lambda)(2-\alpha-\beta)[l+1+\delta]^m+(\beta-1)}{K(2,\mu,\theta)(1+\lambda)(2-\alpha-\beta)[l+1+\delta]^m}.
\]
The constant $\frac{K(2,\mu,\theta)(1+\lambda)(2-\alpha-\beta)[l+1+\delta]^m}{2K(2,\mu,\theta)(1+\lambda)(2-\alpha-\beta)[l+1+\delta]^m+(\beta-1)}$ is the best estimate.

Remark 12. Putting $b_k = K(k,\mu,\theta)$ in Aouf et al. [2], we obtain Corollary 9, above.

Acknowledgement. The authors express their sincere thanks to the referee for his valuable comments and suggestions.

References

**

Surveys in Mathematics and its Applications 16 (2021), 1 – 11
http://www.utgjiu.ro/math/sma
Subordinating results for a class of analytic functions

M. K. Aouf
Mansoura University
Department of Mathematics,
35516, Mansoura, Egypt.
e-mail: mkaouf127@yahoo.com

A. O. Mostafa
Mansoura University
Department of Mathematics,
35516, Mansoura, Egypt.
e-mail: adelaeq254@yahoo.com

F. Y. Al-Quhali
Mansoura University
Department of Mathematics,
35516, Mansoura, Egypt.
e-mail: fyalquhali89@gmail.com

License
This work is licensed under a Creative Commons Attribution 4.0 International License.

**

Surveys in Mathematics and its Applications 16 (2021), 1 – 11
http://www.utgjiu.ro/math/sma