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TWO SHARED SET PROBLEMS IN THE LIGHT OF
POWERS OF MEROMORPHIC FUNCTIONS

Sanjay Mallick

Abstract. In the paper, we deal the two shared set problems in view of powers of meromorphic

functions and find results in the sense of least cardinality. We have also shown the sharpness of our

main results. Moreover, one of our main results improve a result of Yi [25] significantly.

1 Introduction

The uniqueness theory of entire or meromorphic functions via pre-images of it’s
shared sets is an established and active area of research. The genesis of this theory
is the famous “Gross Problem” introduced in 1976 by Fred Gross [9]. So first of all,
we recall some basic definitions and the famous “Gross Problem” as follows.

Definition 1.1. [9] For a non-constant meromorphic function f and S ⊂ C ∪ {∞},
let Ef (S) =

⋃
a∈S{(z, p) ∈ C× N : f(z) = a with multiplicity p}(

Ef (S) =
⋃

a∈S{(z, 1) ∈ C× N : f(z) = a}
)
. Then we say f , g share the set S

CM(IM) if Ef (S) = Eg(S)
(
Ef (S) = Eg(S)

)
.

If S contains only one element, then we say f and g share the value a CM(IM).

Definition 1.2 ([13],[14]). Let k be a non-negative integer or infinity. For a ∈ C
we denote by Ek(a; f) the set of all a-points of f, where an a-point of multiplicity m
is counted m times if m ≤ k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g), we
say that f , g share the value a with weight k.

We write f , g share (a, k) to mean that f , g share the value a with weight k.
Clearly if f , g share (a, k) then f , g share (a, p) for any integer p, 0 ≤ p < k. Also
we note that f , g share a value a IM or CM if and only if f , g share (a, 0) or (a,∞)
respectively.

Definition 1.3. [13] For S ⊂ C ∪ {∞}, we define Ef (S, k) = ∪a∈SEk(a; f),
where k is a non-negative integer a ∈ S or infinity. Clearly Ef (S) = Ef (S,∞)
and Ef (S) = Ef (S, 0). Further, if Ef (S, k) = Eg(S, k) for two non-constant
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14 S. Mallick

meromorphic functions f and g, then we say that f and g share the set S with
weight k.

Gross Problem: Can one find two finite sets Sj (j = 1, 2) such that any two
non-constant entire functions f and g satisfying Ef (Sj ,∞) = Eg(Sj ,∞) for j = 1, 2
must be identical ? If the answer is affirmative, it would be interesting to know how
large both sets would have to be ?

Regarding “Gross Problem”, a lot of investigations [21, 20, 22, 23, 24, 25] have
been made by various authors in different time. Finally, Yi [25] settled the problem in
1998 by providing two sets, one containing only one element and the other containing
three elements. Below we recall the result.

Theorem A. [25] Let S1 = {0} and S2 = {z : z2(z + a) − b = 0}, where a and b
are two non-zero constants such that the algebraic equation z2(z + a) − b = 0 has
no multiple roots. If f and g are any two non-constant entire functions satisfying
Ef (Sj ,∞) = Eg(Sj ,∞) for j = 1, 2, then f ≡ g.

In the same paper [25], Yi also provided examples showing that the cardinality
of these two sets are the smallest possible. Now observe that, in view of the notion
of weighted sharing one may naturally inquire about the fact whether the sharing
conditions of the sets in Theorem A are also settled or can be relaxed further. Hence
let us formulate this query as follows.

Question 1.1. Can we have the same result as obtained in Theorem A under more
relaxed sharing hypothesis?

To obtain the best possible answer of the above question is one of the motivations
of the paper. In fact, in Theorem 2.2 of this paper we answer this question affirmatively
and improve Theorem A significantly.

On the other hand, after the initiation of “Gross Problem” researchers also
started to study the analogue of “Gross Problem” for meromorphic functions. Below
we recall the problem.

Question 1.2. Can one find two finite sets Sj (j = 1, 2) such that any two non-
constant meromorphic functions f and g satisfying Ef (Sj ,∞) = Eg(Sj ,∞) for j =
1, 2 must be identical ? If the answer is affirmative it would be interesting to know
how large both sets would have to be ?

With respect to Question 1.2, also a number of affirmative answers [17, 8, 27, 2,
28, 5, 21, 4, 19, 6, 7] have been obtained by various authors throughout these years.
Naturally like Gross Problem, the research in this direction mainly confined towards
obtaining the shared sets with least possible cardinalities. In this connection, the
notion of bi-unique range sets introduced by Banerjee in [4] played a vital role to
obtain shared sets with smallest possible cardinalities. Below we recall the definition
of bi-unique range sets and the result of Banerjee in [4], respectively.

******************************************************************************
Surveys in Mathematics and its Applications 16 (2021), 13 – 30

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v16/v16.html
http://www.utgjiu.ro/math/sma


Two shared set problems in the light of ... 15

Definition 1.4. [4] A pair of finite sets S1 and S2 in C is called bi-unique range sets
for meromorphic (entire) functions with weights m, k if for any two non-constant
meromorphic (entire) functions f and g, Ef (S1,m) = Eg(S1,m), Ef (S2, k) =
Eg(S2, k) imply f ≡ g. We write Si’s i = 1, 2 as BURSMm, k (BURSEm, k)
in short. As usual if both m = k = ∞, we say Si’s i = 1, 2 as BURSM (BURSE).

Theorem B. [4] Let S1 = {0, 1} and

S2 =
{
z : (n−1)(n−2)

2 zn − n(n− 2)zn−1 + n(n−1)
2 zn−2 − d = 0

}
, where n(≥ 5) is an

integer and d ̸= 0, 1, 1
2 is a complex number such that d2 − d + 1 ̸= 0. Then Si’s

i = 1, 2 are BURSM1, 3, BURSM3, 2.

Observe that, in Theorem B the least cardinalities of the shared sets are 2 and
5, respectively. Later to obtain the shared sets with lesser cardinalities, Banerjee-
Mallick [7] considered the class of derivatives of the meromorphic functions instead
of the class of meromorphic functions only. Below we recall the result of Banerjee-
Mallick [7].

Theorem C. [7] Let S1 = {0}, S2 = {z : zn + azn−1 + b = 0}, where n(≥ 4)
be an integer and a, b be two non-zero constants such that zn + azn−1 + b has no
multiple zero. If for two non-constant meromorphic functions f and g, with f (k) and
g(k) having no simple −a (n−1)

n points; Ef (k)(S1, 1) = Eg(k)(S1, 1) and Ef (k)(S2, 2) =

Eg(k)(S2, 2), then f (k) ≡ g(k).

Clearly S1 and S2 in Theorem C are bi-unique range sets for the derivatives of
meromorphic functions. Also note that in Theorem C considering the derivatives
of the meromorphic functions instead of the original ones, the authors became
successful to obtain smaller sets or in particular smaller bi-unique range sets than
those of Theorem B. In the same paper, authors also mentioned in their concluding
section that using the method adopted to prove Theorem C the lower bound of the
degree of the underlying polynomial of a BURSM cannot be reduced further. So
natural query arose whether we can obtain further smaller sets for any subclass of
meromorphic functions or these are the smallest possible sets in the direction of
Question 1.2. Pertinent to this, the authors posed the following question in their
paper [7] for further investigations.

Question 1.3. [7] Does there exist any pair of bi-unique range sets, even if for a
special class of meromorphic functions, sum of whose cardinalities are less than 5?

To obtain the answer of Question 1.3 is the another motivation of the paper.
In fact, in Theorem 2.1 we answer Question 1.3 affirmatively. We obtain a pair of
bi-unique range sets with one and three elements respectively, for a special class of
meromorphic functions. This result also provides two shared sets with least possible
cardinality in the direction of Question 1.2. We have further exhibited two examples
to show the sharpness of the result. For this purpose, we consider the class of powers
of meromorphic functions. Apropos of that, we define the following notions.
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16 S. Mallick

Definition 1.5. Suppose M(C) denotes the set of all meromorphic functions defined
on C. We define Md(C) to be the collection of all such meromorphic functions
which are powers of some meromorphic functions of power at least d, where d is a
positive integer. That is, in set theoretic notation, Md(C) = {fd+r | d ∈ N, r ∈
N ∪ {0} and f ∈ M(C)}.

Clearly, Mp(C) ⊂ M s(C) ⊂ M1(C) = M(C) whenever p > s > 1.

Similar notions can be defined for entire functions and be denoted by E(C) and
Ed(C). In that case also we would have Ep(C) ⊂ Es(C) ⊂ E1(C) = E(C) whenever
p > s > 1.

Definition 1.6. A pair of finite sets S1 and S2 in C is called bi-unique range sets
for meromorphic (entire) functions of power at least d with weights m, k; if for any
two non-constant functions f, g ∈ Md(C), Ef (S1,m) = Eg(S1,m) and Ef (S2, k) =
Eg(S2, k) imply f ≡ g. We write Si’s i = 1, 2 as BURSP dMm, k (BURSP dEm,
k) in short.

If both m = k = ∞, then we say Si’s i = 1, 2 are bi-unique range sets for
meromorphic (entire) functions of power at least d or BURSP dM (BURSP dE) in
short.

As usual, if m = k = ∞ and d = 1, then we say Si’s i = 1, 2 are bi-unique range
sets for meromorphic (entire) functions or BURSM (BURSE) in short.

Using this notion of BURSP dMm,k(BURSP dEm, k), we answer Question 1.3
as well as Question 1.1. Now we proceed to our main results.

2 Main Results

Let us consider the following polynomial

P (z) = zn + azn−1 + b, (2.1)

where n(≥ 2) ∈ N and a, b ∈ C− {0} be such that P (z) has only simple zeros.

Theorem 2.1. Let P (z) be given by (2.1) and S1 = {0}, S2 = {z : P (z) = 0}.
Then Si’s are BURSP dM0, 2 for n > 2 +

13

2d
, where d ≥ 2.

The following example shows that the condition d ≥ 2 in Theorem 2.1 is sharp.

Example 2.1. Let S1 = {0} and S2 = {z : P (z) = 0}, where P (z) is given by (2.1).
Now consider

f(z) = −a
ez + e2z + e3z + . . .+ e(n−1)z

1 + ez + e2z + e3z + . . .+ e(n−1)z
,

g(z) = −a
1 + ez + e2z + e3z + . . .+ e(n−2)z

1 + ez + e2z + e3z + . . .+ e(n−1)z
.
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Two shared set problems in the light of ... 17

Then clearly f , g share (Si,∞) for i = 1, 2; but f ̸≡ g.

Corollary 2.1. Let S1 and S2 be defined as in Theorem 2.1. Then Si’s are
BURSP 7M0, 2 for n > 2.

Remark 2.1. Corollary 2.1 answers Question 1.3 successfully. Here we would have
one set containing only one element and the other set containing only three elements
and this pair of sets are bi-unique range sets too. That is, we obtain a pair of
bi-unique range sets (for a special class of meromorphic functions) sum of whose
cardinalities are less than 5. Clearly, this result provides two shared sets with least
possible cardinality in the direction of Question 1.2.

Theorem 2.2. Let S1 and S2 be defined as in Theorem 2.1. Then Si’s are
BURSP dE0, 2 for n > 2.

Remark 2.2. Observe that the statement of Theorem 2.2 itself says the result does
not depend upon the values of d; i.e., it is true for all values of d; i.e., Si’s are
nothing but BURSE0, 2; which significantly improves Theorem A by relaxing the
nature of sharing the sets.

Now we have the following two examples which show the sharpness of Corollary
2.1 and Theorem 2.2 with respect to the cardinalities of the shared sets.

Example 2.2. Suppose that S1 = {0} and S2 = {a}, where a ∈ C− {0}. Consider

f = ez and g = a
2
d e−z, where d ∈ N and by a

2
d we mean exactly one of the values of

the dth roots of a2. Then clearly fd and gd share S1 and S2 CM but fd ̸≡ gd.

Example 2.3. Suppose that S1 = {0} and S2 = {α, β}, where α, β ∈ C − {0}.
Consider f = ez and g = (αβ)

1
d e−z, where d ∈ N and by (αβ)

1
d we mean exactly

one of the values of the dth roots of αβ. Then clearly fd and gd share S1 and S2

CM but fd ̸= gd.

Next we exhibit the following two examples in support of Theorem 2.2 and
Theorem 2.1.

Example 2.4. Let S1 = {0} and S2 = {−2, 3, 6} = {z : z3 − 7z2 + 36 = 0}.
Then according to Theorem 2.2 for any two non-constant entire functions f , g;
Ef (S1, 0) = Eg(S1, 0) and Ef (S2, 2) = Eg(S2, 2) implies f ≡ g.

Example 2.5. In the above example, if f and g are considered as non-constant
meromorphic functions, then Ef7+r(S1, 0) = Eg7+s(S1, 0) and
Ef7+r(S2, 2) = Eg7+s(S2, 2) implies f7+r ≡ g7+s, where r, s ∈ N ∪ {0}.
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18 S. Mallick

3 Lemmas

In this section, we present different lemmas which are required to prove the
main results of the paper. Before that, we recall the following definitions of different
notations which we use in different lemmas and in the proofs of the main theorems.
For standard notations and definitions of Nevanlinna Theory we refer our readers to
follow [11, 18].

Definition 3.1. [12] For a ∈ C ∪ {∞} we denote by N(r, a; f |= 1) the counting
function of simple a-points of f . For a positive integer m we denote by N(r, a; f |≤
m)(N(r, a; f |≥ m)) the counting function of those a-points of f whose multiplicities
are not greater(less) than m, where each a-point is counted according to its multiplicity.
N(r, a; f |≤ m)(N(r, a; f |≥ m)) are defined similarly, where in counting the a-points
of f we ignore the multiplicities.
Also, N(r, a; f |< m), N(r, a; f |> m), N(r, a; f |< m) and N(r, a; f |> m) are
defined analogously.

Definition 3.2. [26] Let f and g be two non-constant meromorphic functions such
that f and g share (a, 0), where a ∈ C ∪ {∞}. Let z0 be an a-point of f with
multiplicity p, an a-point of g with multiplicity q. We denote by NL(r, a; f)
(NL(r, a; g)) the reduced counting function of those a-points of f and g where p > q

(q > p), by N
1)
E (r, a; f) the counting function of those a-points of f and g where p =

q = 1. Clearly when f and g share (a,m), m ≥ 1, then N
1)
E (r, a; f) = N(r, a; f |= 1).

Definition 3.3. [13, 14] Let f , g share (a, 0). We denote by N∗(r, a; f, g) the
reduced counting function of those a-points of f whose multiplicities differ from the
multiplicities of the corresponding a-points of g.

Clearly N∗(r, a; f, g) = N∗(r, a; g, f) = NL(r, a; f) +NL(r, a; g).

Definition 3.4. [15] Let a, b1, b2, . . . , bq ∈ C ∪ {∞}. We denote by N(r, a; f |
g ̸= b1, b2, . . . , bq) the counting function of those a-points of f , counted according to
multiplicity, which are not the bi-points of g for i = 1, 2, . . . , q.

Consider two arbitrary functions belonging to Md(C). Then they must be of the
form fd+r and gd+s, where f and g be two meromorphic functions with d ∈ N and
r, s ∈ N ∪ {0}. Suppose

F =
(fd+r)n−1(fd+r + a)

−b
, G =

(gd+s)n−1(gd+s + a)

−b
; (3.1)

and

H = (
F

′′

F ′ − 2F
′

F − 1
)− (

G
′′

G′ − 2G
′

G− 1
), (3.2)

Φ =
F

′

F − 1
− G

′

G− 1
. (3.3)
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Two shared set problems in the light of ... 19

Lemma 3.1. [29] If F , G are two non-constant meromorphic functions such that
they share (1, 0) and H ̸≡ 0, then

N
1)
E (r, 1;F ) ≤ N(r,H) + S(r, F ) + S(r,G).

Lemma 3.2. [3] Let F and G be two non-constant meromorphic functions sharing
(1,m), where 0 ≤ m < ∞. Then

N(r, 1;F ) +N(r, 1;G)−N
1)
E (r, 1;F ) +

(
m− 1

2

)
N∗(r, 1;F,G)

≤ 1

2
[N(r, 1;F ) +N(r, 1;G)] .

Lemma 3.3. Let F and G be given by (3.1) and H ̸≡ 0. If fd+r, gd+s share (0, l)
and F , G share (1,m) for 0 ≤ l < ∞ and 0 ≤ m < ∞, then

N(r,H) ≤ N(r,−a
(n− 1)

n
; fd+r) +N(r,∞; fd+r) +N(r,−a

(n− 1)

n
; gd+s)

+N(r,∞; gd+s) +N∗(r, 0; f
d+r, gd+s) +N∗(r, 1;F,G)

+N0(r, 0; (f
d+r)

′
) +N0(r, 0; (g

d+s)
′
) + S(r, fd+r) + S(r, gd+s),

where N0(r, 0; (f
d+r)

′
) denotes the reduced counting function corresponding to the

zeros of (fd+r)
′
which are not the zeros of fd+r(fd+r+a (n−1)

n )(F−1). N0(r, 0; (g
d+s)

′
)

is defined similarly.

Proof. Since F , G share (1, 0) and H has only simple poles, therefore the result is
obvious by some simple calculations. We omit the details.

Lemma 3.4. Let F and G be given by (3.1) and H ̸≡ 0. If fd+r, gd+s share (0, l)
and F , G share (1,m) for 0 ≤ l < ∞ and 0 ≤ m < ∞, then(n

2
− 1
) [

T (r, fd+r) + T (r, gd+s)
]

≤ N(r, 0; fd+r) +N(r, 0; gd+s) + 2
[
N(r,∞; fd+r) +N(r,∞; gd+s)

]
+N∗(r, 0; f

d+r, gd+s)− (m− 3

2
)N∗(r, 1;F,G) + S(r, fd+r) + S(r, gd+s).

Proof. By the second fundamental theorem we get

(n+ 1)T (r, fd+r) ≤ N(r, 1;F ) +N(r,∞; fd+r) +N(r, 0; fd+r) (3.4)

+N(r,−a
(n− 1)

n
; fd+r)−N0(r, 0; (f

d+r)
′
) + S(r, fd+r).

(n+ 1)T (r, gd+s) ≤ N(r, 1;G) +N(r,∞; gd+s) +N(r, 0; gd+s) (3.5)

+N(r,−a
(n− 1)

n
; gd+s)−N0(r, 0; (g

d+s)
′
) + S(r, gd+s).
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Now combining (3.4), (3.5) and using Lemma 3.2, Lemma 3.1 and Lemma 3.3 we
get

(n+ 1)
[
T (r, fd+r) + T (r, gd+s)

]
≤ N(r, 1;F ) +N(r, 1;G) +N(r,∞; fd+r) +N(r,∞; gd+s)

+N(r, 0; fd+r) +N(r, 0; gd+s) +N(r,−a
(n− 1)

n
; fd+r)

+N(r,−a
(n− 1)

n
; gd+s)−N0(r, 0; (g

d+s)
′
)

−N0(r, 0; (f
d+r)

′
) + S(r, fd+r) + S(r, gd+s)

≤ n

2

[
T (r, fd+r) + T (r, gd+s)

]
+
[
N(r, 0; fd+r) +N(r, 0; gd+s)

]
+2

[
N(r,−a

(n− 1)

n
; fd+r) +N(r,−a

(n− 1)

n
; gd+s)

]
+N∗(r, 0; f

d+r, gd+s)− (m− 3

2
)N∗(r, 1;F,G)

+2
[
N(r,∞; fd+r) +N(r,∞; gd+s)

]
+ S(r, fd+r) + S(r, gd+s),

which proves the lemma.

Lemma 3.5. Let S1 and S2 be defined as in Theorem 2.1 and F , G be given by (3.1).
If Efd+r(S1, l) = Egd+s(S1, l) and Efd+r(S2,m) = Egd+s(S2,m), where 0 ≤ l < ∞,
0 ≤ m < ∞ and H ̸≡ 0, then

(2l + 1)
{
N
(
r, 0; fd+r |≥ l + 1

)}
≤ N(r,∞; fd+r) +N(r,∞; gd+s) +N∗(r, 1;F,G) + S(r, fd+r) + S(r, gd+s).

Proof. By the given condition clearly F and G share (1,m). Now we consider two
cases as follows.

Case-1 Let Φ ≡ 0. Then from (3.3) we have

F − 1 = A(G− 1)

=⇒ F
′
= AG

′

=⇒ F
′′
= AG

′′
,

which in turn implies that H ≡ 0, a contradiction.

Case-2 Let Φ ̸≡ 0. Then observe that

Φ =
(fd+r)n−2

(
nfd+r + a(n− 1)

)
(fd+r)

′

−b(F − 1)
−

(gd+s)n−2
(
ngd+s + a(n− 1)

)
(gd+s)

′

−b(G− 1)
.
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Let z0 be a zero of fd+r with multiplicity t. Since Efd+r(S1, l) = Egd+s(S1, l), then
that would be a zero of Φ of multiplicity (n−2)t+t−1 i.e., of multiplicity (n−1)t−1
if t ≤ l and a zero of multiplicity at least (n− 2)(l+1)+ l i.e., a zero of multiplicity
at least (n − 1)l + (n − 2) if t > l. Since it is clear from the statement of Theorem
2.1 that n ̸< 3, so the order of z0 in Φ is at least 2l + 1 when t > l. Hence we can
write

{2l + 1}
{
N(r, 0; fd+r |≥ l + 1)

}
≤ N(r, 0; Φ)

≤ T (r,Φ)

≤ N(r,∞; Φ) + S(r, F ) + S(r,G)

≤ N∗(r, 1;F,G) +N(r,∞; fd+r) +N(r,∞; gd+s) + S(r, fd+r) + S(r, gd+s).

Lemma 3.6. Let S1, S2 be defined as in Theorem 2.1 and F , G be given by (3.1).
Further suppose that ω1, ω2 . . . ωn are the members of the set S2. If Efd+r(S1, l) =
Egd+s(S1, l) and Efd+r(S2,m) = Egd+s(S2,m), where 0 ≤ l < ∞, 2 ≤ m < ∞ and
H ̸≡ 0, then

N∗(r, 1;F,G) ≤ 3

2(m− 1)

[
N(r,∞; fd+r) +N(r,∞; gd+s)

]
+ S(r, fd+r) + S(r, gd+s).

Proof. First we note that ‘0’ is not a member of S2. Therefore proceeding as follows
with the help of Lemma 3.5 for l = 0 we get,

N∗(r, 1;F,G)

≤ N(r, 1;F |≥ m+ 1)

≤ 1

m

(
N(r, 1;F )−N(r, 1;F )

)
≤ 1

m

⎡⎣ n∑
j=1

(
N(r, ωj ; f

d+r)−N(r, ωj ; f
d+r)

)⎤⎦
≤ 1

m

[
N
(
r, 0; (fd+r)

′ | fd+r ̸= 0
)]

≤ 1

m

[
N

(
r,∞;

fd+r

(fd+r)′

)]
≤ 1

m

[
N

(
r,∞;

(fd+r)
′

fd+r

)]
+ S(r, fd+r)

≤ 1

m

[
N(r, 0; fd+r) +N(r,∞; fd+r)

]
+ S(r, fd+r)

≤ 1

m

[
2N(r,∞; fd+r) +N(r,∞; gd+s) +N∗(r, 1;F,G)

]
+ S(r, fd+r) + S(r, gd+s),

******************************************************************************
Surveys in Mathematics and its Applications 16 (2021), 13 – 30

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v16/v16.html
http://www.utgjiu.ro/math/sma


22 S. Mallick

which clearly implies

N∗(r, 1;F,G) ≤ 1

m− 1

[
2N(r,∞; fd+r) +N(r,∞; gd+s)

]
(3.6)

+S(r, fd+r) + S(r, gd+s).

Similarly, applying the above method for G instead of F we can obtain

N∗(r, 1;F,G) ≤ 1

m− 1

[
2N(r,∞; gd+s) +N(r,∞; fd+r)

]
(3.7)

+S(r, fd+r) + S(r, gd+s).

Now adding (3.6) and (3.7) we get the desired result.

Lemma 3.7. Let S1, S2 be defined as in Theorem 2.1 and F , G be given by (3.1)
with d ≥ 2. Further suppose that ω1, ω2 . . . ωn are the members of the set S2. If
Efd+r(S1, l) = Egd+s(S1, l) and Efd+r(S2,m) = Egd+s(S2,m), where 0 ≤ l < ∞,
1 ≤ m < ∞ and H ̸≡ 0, then

N∗(r, 1;F,G) ≤ 5

2(3m− 1)

[
N(r,∞; fd+r) +N(r,∞; gd+s)

]
+ S(r, fd+r) + S(r, gd+s).

Proof. Since d ≥ 2, so N(r, 0; fd+r) = N(r, 0; fd+r |≥ 2) and N(r, 0; gd+s) =
N(r, 0; gd+s |≥ 2). Now proceeding similarly like Lemma 3.6, in view of Lemma
3.5 we get,

N∗(r, 1;F,G)

≤ 1

m

[
N(r, 0; fd+r) +N(r,∞; fd+r)

]
+ S(r, fd+r)

≤ 1

m

[
N(r, 0; fd+r |≥ 2) +N(r,∞; fd+r)

]
+ S(r, fd+r)

≤ 1

m

[
1

3

(
N(r,∞; fd+r) +N(r,∞; gd+s) +N∗(r, 1;F,G)

)
+N(r,∞; fd+r)

]
+S(r, fd+r)

≤ 1

3m

[
4N(r,∞; fd+r) +N(r,∞; gd+s) +N∗(r, 1;F,G)

]
+ S(r, fd+r),

which implies

N∗(r, 1;F,G) ≤ 1

3m− 1

[
4N(r,∞; fd+r) +N(r,∞; gd+s)

]
+ S(r, fd+r). (3.8)

Similar approach for gd+s will provide

N∗(r, 1;F,G) ≤ 1

3m− 1

[
4N(r,∞; gd+s) +N(r,∞; fd+r)

]
+ S(r, gd+s). (3.9)
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Combining (3.8) and (3.9) we get

N∗(r, 1;F,G) ≤ 5

2(3m− 1)

[
N(r,∞; gd+s) +N(r,∞; fd+r)

]
+S(r, fd+r)+S(r, gd+s).

Lemma 3.8. Let F and G be defined by (3.1). Then FG ̸= 1 for n ≥ 3.

Proof. If possible suppose that FG = 1. That is

(fd+r)n−1(fd+r + a)(gd+s)n−1(gd+s + a) = b2. (3.10)

Clearly applying the first fundamental theorem on (3.10) we would get

T (r, fd+r) = T (r, gd+s) +O(1). (3.11)

Since fd+r, gd+s share (0, 0), so (3.10) clearly implies that fd+r and gd+s both omit
the value 0. Also note that N(r,∞; fd+r) = N(r,−a; gd+s) and N(r,∞; gd+s) =
N(r,−a; fd+r), so each −a point of gd+s or fd+r is of multiplicity at least n. Hence
by the second fundamental theorem in view of (3.11) we get

T (r, fd+r) ≤ N(r, 0; fd+r) +N(r,∞; fd+r) +N(r,−a; fd+r) + S(r, fd+r)

≤ N(r,−a; gd+s) +N(r,−a; fd+r) + S(r, fd+r)

≤ 2

n
T (r, fd+r) + S(r, fd+r),

which is a contradiction for n ≥ 3.

Lemma 3.9. Let F and G be defined by (3.1). Then F ≡ G implies fd+r ≡ gd+s

for n ≥ 2, where d ≥ 2.

Proof. Since F ≡ G. Therefore we have

(fd+r)n−1(fd+r + a) = (gd+s)n−1(gd+s + a) (3.12)

By substituting h =
gd+s

fd+r
in the above equation we get

(fd+r)n(1− hn) + a(fd+r)n−1(1− hn−1) = 0. (3.13)

If h is non-constant, then from (3.13) we have

fd+r = −a
hn−1 − 1

hn − 1
= −a

n−2∏
i=1

(h− αi)

n−1∏
i=1

(h− βi)

, (3.14)
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where αi’s are distinct (n− 1)th roots of unity with αi ̸= 1 and βi’s are distinct nth
roots of unity with βi ̸= 1. Clearly αi ̸= βj . Note that from (3.14), it is obvious
that each αi and βi point of h is of multiplicity at least d. Further, from (3.12) we
get that fd+r, gd+s share (0,∞) and (∞,∞). Hence h does not have any zero or
pole. So, by the second fundamental theorem we get

(2n− 3)T (r, h)

≤
n−2∑
i=1

N(r, αi;h) +
n−1∑
i=1

N(r, βi;h) +N(r, 0;h) +N(r,∞;h) + S(r, h)

≤ (2n− 3)

d
T (r, h) + S(r, h),

which is a contradiction for n ≥ 2 as d ≥ 2.
Thus h is a constant, which implies hn = hn−1 = 1; i.e., h = 1 and hence fd+r ≡
gd+s.

Remark 3.1. Note that if fd+r and gd+s are entire functions in Lemma 3.9, then
from (3.14) one can easily conclude that h omits βi points for i = 1, 2, . . . , n − 1,
where n ≥ 2 at the same time h omits zeros and poles as discussed above, which
contradicts the fact that h is non-constant. Hence we would have fd+r ≡ gd+s for
n ≥ 2 even if d = 1.

4 Proof of the Theorems

Proof of Theorem 2.1. Let F and G be defined by (3.1). Then F , G share (1, 2).
Case-1 Suppose H ̸≡ 0. Since fd+r, gd+s share (0, 0), so we have

N∗(r, 0; f
d+r, gd+s) ≤ N(r, 0; fd+r) = N(r, 0; gd+s). Also we have N(r, 0; fd+r) =

N(r, 0; f |≥ 2) as d ≥ 2. Now, using Lemma 3.4 for m = 2 and l = 0, Lemma 3.5
for l = 1 and then Lemma 3.7 for m = 2, we get

(
n

2
− 1)

[
T (r, fd+r) + T (r, gd+s)

]
≤

[
N(r, 0; fd+r) +N(r, 0; gd+s)

]
+N(r, 0; fd+r)− 1

2
N∗(r, 1;F,G)

+2
[
N(r,∞; fd+r) +N(r,∞; gd+s)

]
+ S(r, fd+r) + S(r, gd+s)

≤ 3N(r, 0; fd+r) + 2
[
N(r,∞; fd+r) +N(r,∞; gd+s)

]
−1

2
N∗(r, 1;F,G) + S(r, fd+r) + S(r, gd+s)

≤ 3N(r, 0; fd+r |≥ 2) + 2
[
N(r,∞; fd+r) +N(r,∞; gd+s)

]
−1

2
N∗(r, 1;F,G) + S(r, fd+r) + S(r, gd+s)
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≤ 3

[
1

3

(
N(r,∞; fd+r) +N(r,∞; gd+s) +N∗(r, 1;F,G)

)]
+2
[
N(r,∞; fd+r) +N(r,∞; gd+s)

]
− 1

2
N∗(r, 1;F,G) + S(r, fd+r) + S(r, gd+s)

≤ 3
[
N(r,∞; fd+r) +N(r,∞; gd+s)

]
+

1

2
N∗(r, 1;F,G) + S(r, fd+r) + S(r, gd+s)

≤ 3
[
N(r,∞; fd+r) +N(r,∞; gd+s)

]
+

1

2

[
1

2

(
N(r,∞; fd+r) +N(r,∞; gd+s)

)]
+S(r, fd+r) + S(r, gd+s)

≤
[
3 +

1

4

] [
N(r,∞; fd+r) +N(r,∞; gd+s)

]
+ S(r, fd+r) + S(r, gd+s)

≤ 13

4d

[
N(r,∞; fd+r) +N(r,∞; gd+s)

]
+ S(r, fd+r) + S(r, gd+s)

≤
(
13

4d

)[
T (r, fd+r) + T (r, gd+s)

]
+ S(r, fd+r) + S(r, gd+s),

which is a contradiction for n > 2 +
13

2d
.

Case-2 Suppose H ≡ 0. Then on integration we get

1

F − 1
=

A

G− 1
+B, (4.1)

where A(̸= 0), B are complex constants. From (4.1), clearly we have

T (r, fd+r) = T (r, gd+s) + S(r, gd+s). (4.2)

Now we can write (4.1) as

F =
(B + 1)G+A−B − 1

BG+A−B
. (4.3)

Hence let us consider the following subcases.
Subcase-2.1 Let B ̸= 0.
Subcase-2.1.1 Let B ̸= −1. Obviously A−B−1

B+1 ̸= A−B
B . For if A−B−1

B+1 = A−B
B ,

then A = 0, which is absurd. Therefore

N(r,
B −A

B
;G) = N(r,∞;F ). (4.4)

Now using the second fundamental theorem in view of (4.2) we have

T (r,G) ≤ N(r, 0;G) +N(r,∞;G) +N(r,
B −A

B
;G) + S(r,G)

≤ N(r, 0; gd+s) +N(r,−a; gd+s) +N(r,∞; gd+s) +N(r,∞; fd+r) + S(r,G)

≤

⎛⎜⎝1 +
3

d
n

⎞⎟⎠T (r,G) + S(r,G),
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which is a contradiction for n > 1 +
3

d
.

Subcase-2.1.2 Let B = −1. Then from (4.3) we get

F =
A

−G+A+ 1
. (4.5)

Subcase-2.1.2.1 Let A + 1 ̸= 0. Then N(r,A + 1;G) = N(r,∞;F ) and
N(r,∞;G) = N(r, 0;F ). Now using the second fundamental theorem in view of
(4.2) we have

T (r,G) ≤ N(r, 0;G) +N(r,∞;G) +N(r,A+ 1;G) + S(r,G)

≤ N(r, 0; gd+s) +N(r,−a; gd+s) +N(r,∞; gd+s) +N(r,∞; fd+r) + S(r,G)

≤

⎛⎜⎝1 +
3

d
n

⎞⎟⎠T (r,G) + S(r,G),

which is a contradiction for n > 1 +
3

d
.

Subcase-2.1.2.2 Let A+1 = 0. Then FG = 1. Since n > 2+
13

2d
, so in view of

Lemma 3.8, this case is invalid.
Subcase-2.2 Suppose B = 0 then from (4.3) we get

AF = G+A− 1. (4.6)

Subcase-2.2.1 Let A ̸= 1. Therefore (4.6) implies N(r, 0;F ) = N(r, 1− A;G).
Now using the second fundamental theorem in view of (4.2), we get

T (r,G)

≤ N(r, 0;G) +N(r,∞;G) +N(r, 1−A;G) + S(r,G)

≤ N(r, 0; gd+s) +N(r,−a; gd+s) +N(r,∞; gd+s) +N(r, 0; fd+r) +N(r,−a; fd+r)

+S(r,G)

≤

⎛⎜⎝2 +
3

d
n

⎞⎟⎠T (r,G) + S(r,G),

which is a contradiction for n > 2 +
3

d
.

Subcase-2.2.2 Let A = 1 i.e., F ≡ G. So in view of Lemma 3.9, we get

fd+r ≡ gd+s as n > 2 +
13

2d
.

Proof of Theorem 2.2. Let F and G be defined by (3.1). Then F , G share (1, 2).
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Case-1 Suppose H ̸≡ 0. Then using l = 0 and m = 2 in Lemma 3.4, Lemma
3.5 and Lemma 3.6 respectively, we get

(
n

2
− 1)

[
T (r, fd+r) + T (r, gd+s)

]
≤

[
N(r, 0; fd+r) +N(r, 0; gd+s)

]
+N(r, 0; fd+r)− 1

2
N∗(r, 1;F,G)

+2
[
N(r,∞; fd+r) +N(r,∞; gd+s)

]
+ S(r, fd+r) + S(r, gd+s)

≤ 3N(r, 0; fd+r) + 2
[
N(r,∞; fd+r) +N(r,∞; gd+s)

]
+ S(r, fd+r) + S(r, gd+s)

≤ 3N∗(r, 1;F,G) + 5
[
N(r,∞; fd+r) +N(r,∞; gd+s)

]
+ S(r, fd+r) + S(r, gd+s)

≤
[
9

2
+ 5

] [
N(r,∞; fd+r) +N(r,∞; gd+s)

]
+ S(r, fd+r) + S(r, gd+s)

≤ S(r, fd+r) + S(r, gd+s),

which is a contradiction for n ≥ 3.

Case-2 SupposeH ≡ 0. Then usingN(r,∞; fd+r) = S(r, fd+r), N(r,∞; gd+s) =
S(r, gd+s), Remark 3.1 and proceeding similarly like Case-2 of Theorem 2.1, we
obtain fd+r ≡ gd+s for n ≥ 3. In this process, we just need to deal the Subcase-
2.2.1 in a slight detail as follows.

Here we would again have AF = G+A− 1 with A ̸= 1. Since fd+r, gd+s share
(0, 0), so for a z0 ∈ C if fd+r(z0) = 0, then gd+s(z0) = 0. For that z0, we must
have AF (z0) = G(z0) + A − 1. But this contradicts the fact that A ̸= 1. So, fd+r

and gd+s must omit the value 0; i.e., N(r, 0; fd+r) = S(r, fd+r) and N(r, 0; gd+s) =
S(r, gd+s). Now applying this fact in Subcase-2.2.1 of Theorem 2.1, we would have
a contradiction for n ≥ 3.

Acknowledgement. The author thanks the anonymous referee for his/her valuable
suggestions towards the betterment of the paper.
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[29] H. X. Yi and W. R. Lü, Meromorphic functions that share two sets II, Acta
Math. Sci. Ser. B Engl. Ed., 24(1)(2004), 83-90. MR2036066. Zbl 1140.30315.

Sanjay Mallick

Department of Mathematics

Cooch Behar Panchanan Barma University

West Bengal, 736101

India.

E-mail: sanjay.mallick1986@gmail.com, smallick.ku@gmail.com

******************************************************************************
Surveys in Mathematics and its Applications 16 (2021), 13 – 30

http://www.utgjiu.ro/math/sma

http://www.ams.org/mathscinet-getitem?mr=2105668
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1070.30011&format=complete
http://www.ams.org/mathscinet-getitem?mr=2963005
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1265.30162&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1265.30162&format=complete
http://www.ams.org/mathscinet-getitem?mr=1265362
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0809.30024&format=complete
http://www.ams.org/mathscinet-getitem?mr=1324763
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0821.30024&format=complete
http://www.ams.org/mathscinet-getitem?mr=1262958
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0807.30017&format=complete
http://www.ams.org/mathscinet-getitem?mr=1339947
http://www.ams.org/mathscinet-getitem?mr=1348480
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0844.30022&format=complete
http://www.ams.org/mathscinet-getitem?mr=1617332
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0905.30026&format=complete
http://www.ams.org/mathscinet-getitem?mr=1700596
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0939.30020&format=complete
http://www.ams.org/mathscinet-getitem?mr=1923666
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1092.30051&format=complete
http://www.ams.org/mathscinet-getitem?mr=2261398
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1110.30017&format=complete
http://www.ams.org/mathscinet-getitem?mr=2036066
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1140.30315&format=complete
http://www.utgjiu.ro/math/sma/v16/v16.html
http://www.utgjiu.ro/math/sma


30 S. Mallick

License

This work is licensed under a Creative Commons Attribution 4.0 International
License.

******************************************************************************
Surveys in Mathematics and its Applications 16 (2021), 13 – 30

http://www.utgjiu.ro/math/sma

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.utgjiu.ro/math/sma/v16/v16.html
http://www.utgjiu.ro/math/sma

	Introduction
	Main Results
	Lemmas
	Proof of the Theorems

