Surveys in Mathematics and its Applications

ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 16 (2021), 95 — 109

COUPLED PETTIS HADAMARD FRACTIONAL
DIFFERENTIAL SYSTEMS WITH RETARDATION
AND ANTICIPATION

Said Abbas, Mouffak Benchohra, Gaston M. N’Guérékata and Yong Zhou

Abstract. In this article, we study some existence results concerning the weak solutions for
some coupled systems of Hadamard fractional differential equations with the mixed arguments of
anticipations and retardation. By utilizing a fixed point theorem of Ménch and the technique of
measure of weak noncompactness, we obtain our existence results. Finally, we present an example

illustrating the applicability of the imposed conditions.

1 Introduction

The study of fractional differential equations has received great attention from
many researchers, both in theory and in applications; we refer the reader to the
monographs of Abbas et al. [1, 2], Kilbas et al. [18], Samko et al. [23], and the
recent papers [30, 31], and the references therein.

The measure of weak noncompactness is introduced by De Blasi [14]. The strong
measure of noncompactness was considered by Banas and Goebel [9] and in many
papers; see for example, Akhmerov et al. [7], Alvarez [8], Benchohra et al. [12], Guo
et al. [16], and the references therein. In [12, 21] the author considered some
existence results by applying measure of noncompactness techniques. Recently,
several authors used the technique of measure of weak noncompactness for other
results (existence, stability,. .. ); see [2, 10, 11], and the references therein.

In [3, 4], the authors studied the existence of weak solutions for some classes of
coupled systems of Hadamard fractional differential and integral equations. Integer
order differential equations with retardation and anticipation have been considered
by many authors, see for example [6, 15, 24, 25, 26, 27, 28, 29].

In the present paper, we consider the following coupled system of Pettis—Hadamard
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fractional differential equations with retardation and anticipation

(u(t), v(t)) = (¢1(t), d2(t)); t € [1 — hy, 1],
(D7) (t), Do) (1)) = (fi(t, ut, vr, ul, vb), fa(t, us, v, ul, vt)); t € I = [1, €],
(u(t), v(t)) = (1 (D), ¥2(D); € € e, + hal,

(1.1)
where 7; € (1,2], fi: I x Cy x C1 x Cy x Cy — E; i = 1,2 are given continuous
functions, Cy := C[—h1,0], Cy := C[0,h3], hi,he > 0, ¢; € C[1 — hy,1]; with
¢i(1) = 0, and ¢; € Cle,e + hg]; with ¥;(e) = 0. Furthermore, u; : [—h1,0] - E
such that u(s) = u(t + s); s € [—h1,0], and u® : [0, hy] — E such that u'(c) =
u(t+0); o € [0,hs]. (E,| -||lg) is a real (or complex) Banach space with dual E*,
such that F is the dual of a weakly compactly generated Banach space X and ¥ Dy
is the Pettis-Hadamard fractional derivative of order r;; i =1, 2.

In this paper, we establish some existence results for coupled systems of Hadamard
fractional differential equations with the mixed arguments of anticipations and retardation.

2 Preliminaries

By C(I) we denote the Banach space of all continuous functions w from [ into E
with the supremum norm

[w]loo := sup [Jw(t)| -
tel

Also C([1 — hq, e + hs]) denotes the Banach space of all continuous functions from
[1 — h1,e+ hg] into E with the supremum norm.

As usual, by AC(I) we denote the space of absolutely continuous functions from I
into E. Also, C%([1 — hy, e+ ha]) := C([1 — h1,e+ ha]) x C([1 — hq, e+ ha]), denotes
the product Banach space with the norm

[ (u, U)Hc?([l—hl,eJrhz}) = HUHC([khl,eJrhg]) + HUHC([khl,eJrhz})-
Let (E,w) = (E,o(E, E*)) be the Banach space E with its weak topology.

Definition 1. A Banach space X is called weakly compactly generated (WCG, in
short) if it contains a weakly compact set whose linear span is dense in X.

Definition 2. A function h: E — E is said to be weakly sequentially continuous if
h takes each weakly convergent sequence in E to a weakly convergent sequence in E
(i.e., for any (u,) in E with u, — u in (E,w) then h(u,) — h(u) in (E,w)).

Definition 3. [22] The function w : I — E is said to be Peltis integrable on I
if and only if there is an element uy € E corresponding to each J C I such that
d(ug) = [, d(u(s))ds for all ¢ € E*, where the integral on the right hand side is
assumed to exist in the sense of Lebesgue, (by definition, uy = [;u(s)ds).
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Let P(I, E) be the space of all E—valued Pettis integrable functions on I, and
LY(I, E), be the Banach space of measurable functions u : I — E which are Bochner
integrable. Define the class P; (I, F) by

Pi(I,E) = {u € P(I,E) : ¢(u) € L*(I,R); for every ¢ € E*}.
The space P;(I, E) is normed by
e
fule = swp [ lotu()lan,
peE*, |lpll<1J1
where )\ stands for a Lebesgue measure on I.
The following result is due to Pettis (see [[22], Theorem 3.4 and Corollary 3.41})).

Proposition 4. [22] If u € Pi(I, E) and h is a measurable and essentially bounded
real-valued function, then uh € Pi(J, E).

For all what follows, the sign ” [” denotes the Pettis integral.
Let us recall some definitions and properties of Hadamard fractional integration and
differentiation. We refer to [18] for a more detailed analysis.

Definition 5. [18/ The Hadamard fractional integral of order ¢ > 0 for a function
g € LY(I, E), is defined as

(1)) = oy [ ()" s

I'(q) s

where I'(+) is the Gamma function defined by

e = /000 tte7tdt; € >0,

provided the integral exists.
Let g € Pi(I,E). For every ¢ € E*, we have

(M 1lg)(t) = (T I{pg)(t); for a.e. t € I.

Analogously to the Riemann-Liouville fractional calculus, the Hadamard fractional
derivative is defined in terms of the Hadamard fractional integral in the following
way. Set

0=x— 0, n= 1
xd$7q> y 1 [q]+7

where [q] is the integer part of ¢, and
ACY :={u:1— FE: 6" u(z)] € AC(I)}.
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Definition 6. [17, 18] The Hadamard fractional derivative of order q applied to the
function w € ACY is defined as

(" Dtw)(e) = "1 ) 0) = <tjt) / t (lgt) vl g,

Corollary 7. [18] Let ¢ > 0 and n = [q] + 1. The equality D1h(t) = 0 is valid if
and only if

h(t) = Z c; (logt)?™7 for each t € I,
j=1

where ¢; € IR (j =1,...,n) are arbitrary constants.

From Lemma 2.3 in [5], we concluded the following Lemma:

Lemma 8. Let hy,ho > 0, 1 < a < 2, ¢ € C([—h1,0], E) with $(0) = 0, ¢ €
C([0, he], E) with 1(0) = 0 and o : I — E be a continuous function. The linear
problem

uy = ¢7
(ID)(t) = o(t); tel,
u® =1,

has a following unique solution

u(t) = —/ G2 s if ter
1 S
where
G(t. 5) 1 (logt)*~1(1 —logs)*~! — (logt —logs)*™1; 1 <s<t<e,
yS) = 77~
I(a) | (logt)* '(1 —logs)*™ ! 1<t <s<e.

(2.1)

Definition 9. [14] Let E be a Banach space, Qg the bounded subsets of E and
By the unit ball of E. The De Blasi measure of weak noncompactness is the map
p: Qg — [0,00) defined by

u(X) =inf{e > 0: there exists a weakly compact subset Q of E: X C eBy + Q}.

The De Blasi measure of weak noncompactness satisfies the following properties:
(a) AC B = p(A) < u(B),
(b) u(A) =0« A is weakly relatively compact,
(¢) 1(AU B) = max{u(A), u(B)},
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(d) p(A”) = pu(A), (A” denotes the weak closure of A),
() u(A+ B) < pu(A)+ pu(B),

(£) p(AA) = [Au(A),

(8) p(conv(A)) = u(A),

(h) p(Upn<nAA) = hu(A).

The next result follows directly from the Hahn-Banach theorem.
Proposition 10. Let E be a normed space, and xog € E with xg # 0. Then, there
exists ¢ € E* with ||¢|| =1 and p(zo) = ||xo]].

For a given set V of functions v : I — FE let us denote by
V(t)={v(t):veV} tel,

and
V(I)=A{v(t):veV, tel}.

Lemma 11. [16] Let H C C be a bounded and equicontinuous. Then the function
t — p(H(t)) is continuous on I, and

pe(H) = max p(H (1)),

» ( / u(s)ds> < [ ntats)as

where H(s) = {u(s) : w € H, s € I}, and pc is the De Blasi measure of weak
noncompactness defined on the bounded sets of C.

and

For our purpose we will need the following fixed point theorem:

Theorem 12. [20] Let Q be a nonempty, closed, convex and equicontinuous subset
of a metrizable locally convex vector space C(I) such that 0 € Q. Suppose T : Q@ — Q
1s weakly-sequentially continuous. If the implication

V =conv({0} UT(V)) =V is relatively weakly compact, (2.2)
holds for every subset V. C @, then the operator T has a fized point.
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3 Existence of weak solutions

Let us start by defining what we mean by a weak solution of the coupled system
(1.1).

Definition 13. A coupled functions (u,v) € C*([1 — hy, e+ hg)) is said to be a weak
solution of the coupled system (1.1) if (u,v) satisfies the equations (2 D]'u)(t) =
f1(t,ug, v, ut,vt) and (Do) (t) = fa(t, ug, v, ut,v?) on I, and the conditions (u(t),v(t)) =
(@1(t), d2(t)); t € [L=ha, 1], with ¢i(1) = 0; i = 1,2 and (u(t),v(t)) = (¥1(t),¥2(?)); t €

le, e + ha], with 1;(e) =0; i = 1,2 hold.
The following hypotheses will be used in the sequel.

(Hy) For a.e. t € I, the functions u — fi(t,u,-,-,-), v — fi(t,,v,-,:), w —
filt,-,,w,-)and z — fi(t,-,-, -, 2); i = 1,2 are weakly sequentially continuous,

(Hs) For a.e. u,v € C1, and w, z € Cy, the functions ¢t — f;(t,u,v,w, z) are Pettis
integrable a.e. on I,

(H3) There exist p; € C(I,[0,00)) such that for all ¢ € E*, we have

pi(t)(lulle, +1lvlley + lwlie, +12lle,)
+ el + max{[[ulley, [vllen, lwliess lI2lle.}

’w(fz(tﬂua v, w, Z))| < 1

for a.e. t € I, and each u,v € C1, and w, z € (s,

(H4) For each bounded and measurable sets B; C C?; i = 1,2 and for each t € I,
we have

p(fi(t, B1, B2),0) < p1(t)u(B), and u(0, fa(t, B1, B2),0) < pa(t)u(B),
where

(f1(t, B1,B2),0) = {(fl(t,ut,vt,ut,vt),O) s (ug,vp) € By, (ut,vt) € By},
and

(07 fQ(ta BlaBQ)) = {(O’ f?(tautavtautavt)) : (Ut,vt) € Blv (Utvvt) € BQ}

Set

p; =supp;(t); i =1,2,
tel

Theorem 14. Assume that the hypotheses (Hy) — (Hy) hold. If

2p7 2p5
+
D(1+7r) T(1+re)

then the coupled system (1.1) has at least one weak solution defined on [1—hy,e+ha).

L= <1, (3.1)
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Proof. Define the operators Ny, Ny : C[1 — hy,e + ha] — C[1 — hy, e + ha] by

; te[l—hy,1],
(Nyu)(t) = / G (1, 5) 1L “:“ s ter, (3.2)
;i t € e, e+ hal,
and
; te[l—hy,1],
(Nav)(t) = / Gt 5) 125 “SZU ) g e, (3.3)
; t € e e+ hal,
where
G0 = g | oy e sy

Consider the continuous operator N : C?[1 — hy, e+ ha] — C?[1 — hy, e + ha] defined
by
(N (u, 0))(t) = (N1u)(1), (N2v)(t))

= (—/ Gl(t,s)fl(s’us’vs’u Y )ds,—/ Gg(t,s)fQ(S’us’vs’u Y )ds>; tel
1 1

S S

(3.4)
We can show that our operator N is well defined. Indeed; the hypotheses imply
that for all ¢t € I, the functions ¢ — G(-,t), and t — fi(s,us, vs,u®,v®) are Pettis
integrable, over I.

In all what follows, we denote ||w||cji—p, e+hs] DY llwl]c-
Set R = max{R1, Ro}, with

8p; .
R; > max {IM’ Pillcri—hy 15 Hd)i||0[e,e+h2}} pi=1,2,

and consider the closed, convex end equicontinuous set
Q = {(u,0) € C*[L = hu, e + ha] : [ (w,0) 21—y o] < Ry [Julta) —ults)|i

¢ ds ¢ ds
<41 [ 161(t2,5) = Galer, )| and folte) = (@)l < 53 [ [Gatta,s) = Gaten, )| |
1 1

We shall show that the operator N satisfies all the assumptions of Theorem 12. The
proof will be given in three steps.

kst sk ok sk ok sk s ok sk sk ok ok sk sk ok sk sk sk s ok sk sk sk s ok sk sk ok sk sk sk sk ok sk sk sk s sk sk sk ok sk sk sk sk ok sk sk sk s sk sk sk sk sk ok sk sk ok ok sk ok sk sk ok ok sk skok ok sk ok

Surveys in Mathematics and its Applications 16 (2021), 95 — 109
http://www.utgjiu.ro/math/sma


http://www.utgjiu.ro/math/sma/v16/v16.html
http://www.utgjiu.ro/math/sma

102 S. Abbas, M. Benchohra, G. M. N’Guérékata and Y. Zhou

Step 1. N maps Q into itself.
Let (u,v) € Q; t € I and assume that (N (u,v))(t) # (0,0). Then there exists ¢; €

E*; i = 1,2 such that for each t € I, we have ||( (u, ) () |lg = (e1(|(N1u) (1)), p2(|(N2v)(t)))-

Thus

I(Nw) Ol = o1 ( / e Gla,s)fl(s?us,us)f) |

For each t € I and any ¢ = 1,2, we have

1 t t\" "t ds 1 [C e\ri—1ds
(t,s)|— < log — — 4+ (logt)"™ log — —
/’G S‘ - I(ry) [/1 <og5> 5+(Og) /1(Ogs> s]
¢ ri—1 ds 2
2 log < P2
F(Ti)/l (Ogs> s (1 +r)

Next, from (Hs), we have

<

(3.5)

dpi max{||ullc,, |vlley s [wlie,, ll2lle, }

|fi(t,u,v,w,2)| <
R max{||ullcy, [lv]ley, [wlos, lI2]le,

= 4p7.

Thus, for each t € I, we have

Il < [ G, Pt
1
8p1
- F(1+T1)
S Rla

Hence, for each t € [1 — hy, e + ho], we have

[(N1u) (@) & < R
Also, for each t € [1 — hy, e+ ha], we obtain

[(N2v) (8|2 < Ra.
Therefore, for each ¢t € [1 — hy, e+ ho] and all (u,v) € Q, we get

(N (u,v) ()] & < R.
Next, let ¢1,ty € I such that ¢; < to and let (u,v) € Q, with

(N (u, 0))(t2) = (N(u,v))(t1) # (0,0).
Then there exists ¢; € E*, i = 1,2 with [|¢1] = 1 such that
[(N1u)(t2) = (N1u)(t1) |2 = @1((N1u)(t2) — (N1u)(t1),
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and

[(N2v)(t2) — (N2v) (1)l B = p2((N2v)(t2) — (Nav)(t1))-

Thus

[(N1u)(t2) — (N1u)(t1)|| e = e1((N1u)(t2) — (N1u)(t1))
ds

< ¥1 </ (Gg(tg,S)fQ(S,’LLs,US,US,’US) - Gl(tl,S)fl(S,US,US,US,US))> ’
1

S
This gives

€ d
||(N1U)(t2)—(N1U)(t1)HES/ yGl(tg,s)—Gl(tl,s)|\f1(s,u5,vs,us,vs)|§
1
€ d
SPT/ |G1(t278)—G1(t173)|§~
1

Also, we can obtain

e d
[(Nav)(t2) — (N2v)(t1)||e < / |Ga(t2, s) — G2(t175)||f2(87umUs,usavs)|§s
1
¢ d
SPE/ |G2(t2, 5) —GQ(tl,S)’§~
1

Hence N(Q) C Q.

Step 2. N is weakly-sequentially continuous.
Let (up,vy) be a sequence in @ and let (uy,(t), v, (t)) — (u(t),v(t)) in (E,w) x (E,w)
for each t € [1—hq,e+hs]. Fixt € [1—hq, e+hs], since the functions f;; ¢ = 1, 2 satisfy
the assumption (Hj), we have f;(t, uns, vng, u™, v™) converge weakly uniformly to
fi(t, ug,vg, ut, v?). Hence the Lebesgue dominated convergence theorem for Pettis
integral implies (N (up, vy))(t) converges weakly uniformly to (N (u,v))(t) in (E,w) X
(E,w), for each t € [1 — hy, e + ha]. Thus, N(up,v,) = N(u,v). Hence, N : Q — Q
is weakly-sequentially continuous.

Step 3. The implication (2.2) holds.
Let V be a subset of Q such that V = conv(N (V) U {(0,0)}). Obviously

V() C @ro(NV)(t) U{(0)}), for all t € [1— hy,e+ hol.

Further, as V' is bounded and equicontinuous, by Lemma 3 in [13], the function
t — (v1(t),v2(t)) = u(V(t)) is continuous on [1 — hy,e + ho]. From (Hz), (Ha),
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Lemma 11 and the properties of the measure p, for any ¢ € [1 — hy, e + ha], we have

Thus

IN

IN

IN

IN

IN

IN

p(V (1) < u((NV)(t) U{0})

p((NV)(#))
p({(N101) () (), (Nav2)(8)); (v1,v2) € V'})
p({(G1(t; s) f1(s, v1(s), va(s), v1(s), va(s)),

1
Ga(t, s) fa(s,v1(8),va(s), v1(s),v2(8))); (v1,v2) € V})%
/6 |Gt 8)[p({(f1(5,v1(5), v2(5), v1(5), v2(5)), 0); (v, 02) € V}) =
/ |Ga(t, {00, fa(s,v1(s8),v2(s), v1(s),v2(s))); (v1,v2) € V})@
/1 |G1(t, 8)|p1(s)p({(v1(s), v2(5)); (vi,v2) € V})%
[ 1Gatt (w1 (), va(s)) (vr,00) € VIS
¢ ds ¢ ds
/1 |Gt $)lpa(s)u(V(s) +/1 |G2(t, 8)lp2(s)u(V(s)—
(1 [ 1t 405 [ 1Galt.)1 % ) supu(v o)

2p} 2p3
<F(1 +m) T+ w)) sup pu(V())

L sup n(V(1))-

sup u(V(t) <L Sup u(V (1))

Hence, the inequality (3.1) gives sup (V' (¢)) = 0, that is pu(V(¢)) = 0; for each
tel

t € [1 — hi,e+ hg|, and then Theorem 2 in [19] implies that V' is weakly relatively
compact in C%[1 — hy, e+ hs]. Consequently; Theorem 12 implies that N has at least
a fixed point which is a solution of the coupled system (1.1).

4 An Example

Let

o0
E=1'= {u: (ul,u2,...,un,...),Z|un| <oo}
n=1
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be the Banach space with the norm

[
lullz = funl.
n=1

We consider the following coupled system of Hadamard fractional differential equations
(u(?), o1(1), 62(1)); T € [—1,1],
((HD un)( )?( D1§ )(t)) - (fn(t7utavtautavt)vgn(t7ut7vtautvvt)); le [176]7
(u(t), v(t)) = (1(t),¢a(t)); t € [e,e + 3],

(4.1)
where ¢1(2) =1 —€®, ¢o(z) = 0; z € [-1,1], P1(x) = -1 +sinz, ¢o(z) =0; z €
le,e+ 3], ¢; € C[—1,1] with ¢;(1) =0, and v; € Cle, e + 3] with ¢;(e) =0,
ct?(e” " 4+ e27h)

fa(t,u,v,w,2) = un(t); t € [1,€],
L+ [Juller—1,1 + Ivllef=1.17 + 1wl ce,eg + 21l ce, e+3]
and
Ct2 —6
gn(t,ug,ve) = s te(l e,
¥ Tellcprn + Toler + Telcpers + Tollopera | o 9
with

4
1
w= (U1, U2, .., Up,...), V= (V1,V2,...,0p,...), and ¢ := ;—411 (2>

Set
f:(fl,fQ,...,fn,...), g:<g1,gg,...,gn,...).

Clearly, the functions f and g are continuous.
For each u,v € C[-1,1], w,z € Cle,e+ 3], and t € [1, ¢], we have

ct?(e” "+ e 27

| £(t, u,v,w,2)||E <
L+ lullei=1,1) + I0ller=1,1) + lullcgeers) + 1vllcpe,ets)”

and
ct2e—6

lg(t,u,v,w, 2)|| 5 <
L+ [lullei-1,1 + lvller-10) + lullcge,ets) + 10llcpeers)”

Hence, the hypothesis (H3) is satisfied with p} = p = ce ™.

We shall show that condition (3.1) holds. Indeed,
2p7 2p; c 1

= IZ"< L
F(l +T1) F(1+T2) e4r(g) 2

A simple computations show that all conditions of Theorem 14 are satisfied. It
follows that the coupled system (4.1) has at least one solution on [—1,3 + €].
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