FIXED POINT RESULTS FOR A CLASS OF ASYMPTOTICALLY REGULAR MAPS IN \(g \)-METRIC SPACE WITH ORDER \(n \)

Mohamed Amine Ighachane and Mohamed Akkouchi

Abstract. In 2005, Lj. B. Ćirić studied fixed points of asymptotically regular mappings [Math. Commun. 10(2005), 111-114]. The results of that study were extended by several authors. The aim of this article is to extend the main results to the context of \(g \)-metric spaces with order \(n \), which was introduced by H. Choi, S. Kim, and S. Y. Yang in 2018.

1 Introduction

Let \(\mathbb{R}^+ \) be the set of nonnegative reals and let \(F_i : \mathbb{R}^+ \to \mathbb{R}^+ \) be a function such that \(F_i(0) = 0 \) and \(F_i \) is continuous at 0, \((i = 1, 2)\). In 2005, Lj. B. Ćirić [3] established the following result.

Theorem 1. ([3]) Let \((X, d)\) be a complete metric space and \(T \) be a self-mapping on \(X \) satisfying the following condition:

\[
d(Tx, Ty) \leq a_1 F_1[\min\{d(x, Tx), d(y, Ty)\}] + a_2 F_2[d(x, Tx) \cdot d(y, Ty)] \\
+ a_3 d(x, y) + a_4 [d(x, Tx) + d(y, Ty)] + a_5 [d(x, Ty) + d(y, Tx)] \tag{1.1}
\]

for all \(x, y \) in \(X \), where \(a_i = a_i(x, y) \) \((i = 1, 2, 3, 4, 5)\) are nonnegative functions for which there exist three constants \(K > 0 \) and \(\lambda_1, \lambda_2 \in (0, 1) \) such that the following inequalities,

\[
a_1(x, y), a_2(x, y) \leq K, \tag{1.2}
\]

\[
a_4(x, y) + a_5(x, y) \leq \lambda_1, \tag{1.3}
\]

\[
a_3(x, y) + 2a_5(x, y) \leq \lambda_2, \tag{1.4}
\]

are satisfied for all \(x, y \) in \(X \).

If \(T \) is asymptotically regular at some \(x_0 \) in \(X \), then the self-mapping \(T \) has a unique fixed point. Moreover, \(T \) is continuous at its unique fixed point.

2020 Mathematics Subject Classification: 54H25; 47H10.

Keywords: asymptotically regular mapping; \(g \)-metric space; fixed point.

http://www.utgjiu.ro/math/sma
2 Preliminaries

In this section, we give some basic definitions and results on g-metric space with order n [4].

For a set X, we denote $X^n := \prod_{i=1}^{n} X$.

Definition 2. Let X be a nonempty set, and let the function $g : X^{n+1} \to [0, +\infty)$ satisfy the following properties:

1. (g_1) $g(x_0, \ldots, x_n) = 0$ if and only if $x_0 = \ldots = x_n = 0$,
2. (g_2) $g(x_0, \ldots, x_n) = g(x_{\sigma(0)}, \ldots, x_{\sigma(n)})$ for any permutation σ on $\{0, 1, \ldots, n\}$,
3. (g_3) $g(x_0, \ldots, x_n) \leq g(y_0, \ldots, y_n)$ for all $(x_0, \ldots, x_n), (y_0, \ldots, y_n) \in X^{n+1}$ with $\{x_i : i = 0, \ldots, n\} \subseteq \{y_i : i = 0, \ldots, n\}$,
4. (g_4) (Triangle inequality) for all $x_0, \ldots, x_s, y_0, \ldots, y_t, w \in X$ with $s + t + 1 = n$

 $$g(x_0, \ldots, x_s, y_0, \ldots, y_t, w) \leq [g(x_0, \ldots, x_s, w, \ldots, w) + g(y_0, \ldots, y_t, w, \ldots, w)].$$

Then the function g is called a generalized metric or more specifically, a g-metric with order n on X, and the pair (X, g) is called a g-metric space with order n.

The following theorem shows us that g-metrics generalize the notion of ordinary metric and G-metric introduced by Z. Mustafa and B. Sims [5].

Theorem 3. Let X be a given nonempty set. The following are true.

(i) d is a g-metric with order 1 on X if and only if d is a metric on X.

(ii) d is a g-metric with order 2 on X if and only if d is a G-metric on X.

(iii) Define on $X \times X$ d_g by

$$d_g(x, y) = g(x, y, \ldots, y) + g(y, x, \ldots, x),$$

then d_g is a metric in X.

Proposition 4. Let (X, g) be a g-metric space with order m. The following are true:

(i) $g(x, y, \ldots, y) \leq g(x, w, \ldots, w) + g(w, y, \ldots, y),$

(ii) $g(x, y, \ldots, y) \leq m \cdot g(y, x, \ldots, x),$

Definition 5. Let (X, g) be a g-metric space. For $x_0 \in X$ and $r > 0$, the g-ball centered at x_0 with radius r is

$$B_g(x_0, r) = \{y \in X : g(x_0, y, \ldots, y) < r\}.$$
Definition 6. Let \((X, g)\) be a \(g\)-metric space with order \(m\), and \((x_n)\) be a sequence of points of \(X\), a point \(x \in X\) is said to be the limit of the sequence \((x_n)\) if for all \(\epsilon > 0\) there exists \(N \in \mathbb{N}\) such that

\[i_1, \ldots, i_m \geq N \Rightarrow g(x, x_{i_1}, \ldots, x_{i_m}) < \epsilon\]

and one can say that the sequence \((x_n)\) is \(g\)-convergent to \(x\).

Proposition 7. Let \((X, g)\) be a \(g\)-metric space with order \(m\), then the following are equivalent,

(i) \((x_n)\) is \(g\)-convergent to \(x\),

(ii) For a given \(\epsilon > 0\), there exists \(N \in \mathbb{N}\) such that \(x_n \in B_g(x, \epsilon)\) for all \(n \geq N\).

(iii) \(g(x_n, x, \ldots, x) \to 0\), as \(n \to +\infty\), that is, for all \(\epsilon > 0\), there exists \(N \in \mathbb{N}\) such that \(n \geq N \Rightarrow g(x_n, x, \ldots, x) < \epsilon\).

Definition 8. Let \((X, g)\) be a \(g\)-metric space with order \(m\), and \((x_n)\) be a sequence of points of \(X\). Then a sequence \((x_n)\) is called \(g\)-Cauchy if for all \(\epsilon > 0\) there exists \(N \in \mathbb{N}\) such that

\[i_0, \ldots, i_m \geq N \Rightarrow g(x_{i_0}, \ldots, x_{i_m}) < \epsilon\]

Proposition 9. Let \((X, g)\) be a \(g\)-metric space. Then the following are equivalent.

(i) \((X, g)\) is \(g\)-Cauchy,

(ii) \(g(x_k, x_l, \ldots, x) \to 0\), as \(k, l \to +\infty\).

Definition 10. A \(g\)-metric space \((X, g)\) with order \(m\), is said to be complete if every \(g\)-Cauchy sequence in \((X, g)\) is \(g\)-convergent in \(X\).

Proposition 11. Let \((X, g)\) be a \(g\)-metric space with order \(m\). Then the following are equivalent.

(i) \((X, g)\) is complete,

(ii) \((X, d_g)\) is complete.

Definition 12. Let \((X, g)\) and \((X', g')\) be \(g\)-metric spaces with orders \(m\) and let \(T : (X, g) \to (X', g')\) be a self-mapping, then \(T\) is said to be \(g\)-continuous at a point \(a \in X\) if and only if, given \(\epsilon > 0\), there exists \(\delta > 0\) such that \(x_1, \ldots, x_n \in X\), and \(g(a, x_1, \ldots, x_n) < \delta\) implies \(g(Ta, Tx_1, \ldots, Tx_n) < \epsilon\). A self-mapping \(T\) is \(g\)-continuous at \(g\) if and only if it is \(g\)-continuous at all \(a \in X\).

Proposition 13. Let \((X, g)\) and \((X', g')\) be \(g\)-metric spaces with orders \(m\) and let \(T : (X, g) \to (X', g')\) be a self-mapping, then the following are equivalent.
(i) \(T \) is \(g \)-continuous,

(ii) For each point \(x \in X \) and for each sequence \((x_n) \) in \(X \) \(g \)-converging to \(x \), \((T(x_n)) \) \(g \)-converges to \(T(x) \).

Definition 14. A self-mapping \(T \) on a \(g \)-metric space \((X, g)\) with order \(m \) is said to be \(g \)-asymptotically regular at a point \(x \) in \(X \), if

\[
\lim_{n \to +\infty} g(T^nx, T^{n+1}x, \ldots, T^{n+1}x) = 0,
\]

where \(T^nx \) denotes the \(n \)-th iterate of \(T \) at \(x \).

Example 15. Let \(\mathbb{R} \) be the set of all real numbers. Define \(g : \mathbb{R}^{m+1} \to \mathbb{R}^+ \) by

\[
g(x_0, \ldots, x_m) = \sum_{0 \leq i,j \leq m} |x_i - x_j|
\]

for all \(x_0, \ldots, x_m \in \mathbb{R} \). Then \((\mathbb{R}, g)\) is a \(g \)-metric space with order \(m \). Let \(T \) be a self-mapping on \(\mathbb{R} \) with \(Tx = ax \) \(|a| < 1 \). Then

\[
g(T^nx, T^{n+1}x, \ldots, T^{n+1}x) = m|a^n x - a^{n+1}x| = m|a|^n |x||a-1|,
\]

implying

\[
\lim_{n \to +\infty} g(T^nx, T^{n+1}x, \ldots, T^{n+1}x) = 0.
\]

Hence \(T \) is \(g \)-asymptotically regular at any point \(x \in \mathbb{R} \).

3 Main Result

The main result of this paper is the following theorem.

Theorem 16. Let \(F : \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+ \) be a function such that \(F(t,0) = F(0,t) = 0 \) and \(F \) is continuous at \((t,0)\) and \((0,t)\) for all \(t \geq 0 \). Let \((X, g)\) a complete \(g \)-metric space with order \(m \), and \(T \) be a self-mapping on \(X \) satisfying the following condition:

\[
g(Tx, Ty, \ldots, Ty) \leq a_0 F \left(g(x, Tx, \ldots, Tx), g(y, Ty, \ldots, Ty) \right) + a_1 g(x, y, \ldots, y)
+ a_2 \left[g(x, Tx, \ldots, Tx) + g(y, Ty, \ldots, Ty) \right]
+ a_3 \left[g(x, Ty, \ldots, Ty) + g(y, Tx, \ldots, Tx) \right]
\]

for all \(x, y \) in \(X \), where \(a_i = a_i(x, y) \) are nonnegative functions such that \(a_i(x, y) = a_i(y, x) \) \((i = 0, 1, 2, 3)\) for which there exist three constants \(K > 0 \) and \(\lambda_1, \lambda_2 \in (0, 1) \) such that the following inequalities,

\[
a_0(x, y) \leq K,
\]

Surveys in Mathematics and its Applications 16 (2021), 137 – 148

http://www.utgjiu.ro/math/sma

Fixed point results for a class of asymptotically regular maps

\[a_2(x, y) + a_3(x, y) \leq \lambda_1, \quad (3.3) \]

\[a_1(x, y) + 2a_3(x, y) \leq \lambda_2, \quad (3.4) \]

are satisfied for all \(x, y \) in \(X \).

If \(T \) is \(g \)-asymptotically regular at some \(x_0 \) in \(X \). Then the self-mapping \(T \) has a unique fixed point. Moreover, \(T \) is continuous at its unique fixed point.

Proof. Let \(x_0 \) be a point of \(X \) at which \(T \) is \(g \)-asymptotically regular. Let \((x_n) \) be a sequence defined by \(x_n = T^n x_0 \) for all \(n \in \mathbb{N} \). Then one can show that \((x_n) \) is a Cauchy sequence, and that \((x_n) \) converges to a fixed point. We prove the uniqueness of fixed point. Suppose that there exist two points \(u \) and \(v \) such that \(Tu = u \) and \(Tv = v \). From (3.1), with \(a_i = a_i(u, v) \),

\[
g(u, v, \ldots, v) = g(Tu, Tv, \ldots, Tv) \\
\leq a_0 F\left(g(u, Tu, \ldots, Tu), g(v, Tv, \ldots, Tv)\right) \\
+ a_1 g(u, v, \ldots, v) \\
+ a_2 \left[g(u, Tu, \ldots, Tu) + g(v, Tv, \ldots, Tv)\right] \\
+ a_3 \left[g(u, Tv, \ldots, Tv) + g(v, Tu, \ldots, Tu)\right] \\
= a_0 F\left(g(u, u, \ldots, u), g(v, v, \ldots, v)\right) \\
+ a_1 g(u, v, \ldots, v) \\
+ a_2 \left[g(u, u, \ldots, u) + \left[g(v, v, \ldots, v)\right]\right] \\
+ a_3 \left[g(u, v, \ldots, v) + g(v, u, \ldots, u)\right] \\
= a_1 g(u, v, \ldots, v) + a_3 \left[g(u, v, \ldots, v) + g(v, u, \ldots, u)\right].
\]

Similarly we have

\[
g(v, u, \ldots, u) \leq a_1 g(v, u, \ldots, u) + a_3 \left[g(v, u, \ldots, u) + g(u, v, \ldots, v)\right].
\]

Then

\[
\left[g(u, v, \ldots, v) + g(v, u, \ldots, u)\right] \\
\leq a_1 \left[g(u, v, \ldots, v) + g(v, u, \ldots, u)\right] \\
+ 2a_3 \left[g(u, v, \ldots, v) + g(v, u, \ldots, u)\right].
\]

**

Surveys in Mathematics and its Applications 16 (2021), 137 – 148

http://www.utgjiu.ro/math/sma
So,
\[(1 - \lambda_2)dg(u, v) = (1 - \lambda_2)[g(u, v, \ldots, v) + g(v, u, \ldots, u)] \leq 0,
\]
which implies \(u = v\).

For every nonnegative integer \(n\), we denote:
\[G_n = g(x_n, Tx_n, \ldots, Tx_n) \quad \text{and} \quad G'_n = g(Tx_n, x_n, \ldots, x_n).
\]

Using the triangle inequality, from (3.1) we have
\[g(x_n, x_m, \ldots, x_m) \leq g(x_n, x_{n+1}, \ldots, x_{n+1}) + g(x_{n+1}, x_{m+1}, \ldots, x_{m+1}) + g(x_{m+1}, x_m, \ldots, x_m) + G_n + g(Tx_n, Tx_m, \ldots, Tx_m) + G'_m,
\]
and
\[g(Tx_n, Tx_m, \ldots, Tx_m) \leq a_0 F\left(g(x_n, Tx_n, \ldots, Tx_n), g(x_m, Tx_m, \ldots, Tx_m)\right) + a_1 g(x_n, x_m, \ldots, x_m) + a_2 G_n + G_m + a_3 [g(x_n, Tx_m, \ldots, Tx_m) + g(x_m, Tx_n, \ldots, Tx_n)].\]

Note that by triangle inequality we have
\[g(x_n, Tx_m, \ldots, Tx_m) \leq g(x_n, x_m, \ldots, x_m) + g(x_m, Tx_m, \ldots, Tx_m)
= g(x_n, x_m, \ldots, x_m) + G_m,
\]
and
\[g(x_m, Tx_n, \ldots, Tx_n) \leq g(x_m, x_n, \ldots, x_n) + g(x_n, Tx_n, \ldots, Tx_n)
= g(x_m, x_n, \ldots, x_n) + G_n.
\]

Then (3.5) implies that
\[g(Tx_n, Tx_m, \ldots, Tx_m) \leq a_0 F\left(G_n, G_m\right) + a_1 g(x_n, x_m, \ldots, x_m) + (a_2 + a_3) [G_n + G_m] + a_3 [g(x_n, x_m, \ldots, x_m) + g(x_m, x_n, \ldots, x_n)].\]
So,
\[g(x_n, x_m, \ldots, x_m) \leq G_n + g(Tx_n, Tx_m, \ldots, Tx_m) + G'_m \]
\[\leq G_n + G'_m + a_0 F(G_m, G_n) + a_1 g(x_m, x_m, \ldots, x_m) \]
\[+ (a_2 + a_3) [G_n + G_m] \]
\[+ a_3 [g(x_n, x_m, \ldots, x_m) + g(x_m, x_m, \ldots, x_m)] . \]

Similarly we prove that
\[g(x_m, x_n, \ldots, x_n) \leq G_m + g(Tx_m, Tx_n, \ldots, Tx_n) + G'_n \]
\[\leq G_m + G'_n + a_0 F(G_m, G_n) + a_1 g(x_m, x_m, \ldots, x_m) \]
\[+ (a_2 + a_3) [G_m + G_n] \]
\[+ a_3 [g(x_m, x_n, \ldots, x_n) + g(x_n, x_m, \ldots, x_m)] . \]

Then
\[\left[g(x_m, x_n, \ldots, x_n) + g(x_n, x_m, \ldots, x_m) \right] \leq \left(G'_m + G'_n \right) \]
\[+ a_0 \left[F(G_m, G_n) + F(G_n, G_m) \right] + (1 + 2a_2 + 2a_3) [G_m + G_n] \]
\[+ (a_1 + 2a_3) [g(x_m, x_n, \ldots, x_n) + g(x_n, x_m, \ldots, x_m)] . \]

Hence, from (3.2), (3.3) and (3.4), we obtain
\[(1 - \lambda_2) d_g(x_n, x_m) \leq (1 - \lambda_2) \left[g(x_n, x_m, \ldots, x_m) + g(x_m, x_m, \ldots, x_m) \right] \]
\[\leq \left(G'_m + G'_n \right) + (1 + 2\lambda_1) [G_m + G_n] \]
\[+ K \left[F(G_m, G_n) + F(G_n, G_m) \right] . \]

Since
\[\lim_{n \to +\infty} g(x_n, Tx_n, \ldots, Tx_n) = 0 \]
and F is continuous at $(0,0)$, then by taking the limit as m tends to infinity we obtain
\[\lim_{n,m \to +\infty} (1 - \lambda_2) d_g(x_n, x_m) = 0, \]

implying
\[\lim_{n,m \to +\infty} d_g(x_n, x_m) = 0. \]
So,

$$\lim_{n,m \to +\infty} g(x_n, x_m, \ldots, x_m) = 0,$$

which implies that \((x_n)\) is a \(g\)-Cauchy sequence. Since \((X, g)\) is complete, then \((x_n)\) is \(g\)-convergent to limit (say) \(u\) in \(X\).

Now we show that \(u\) is equal to the unique fixed point \(z\) of \(T\). We start by proving that \(T u = u\). To get a contradiction, let us suppose that \(g(u, Tu, \ldots, Tu) > 0\). Then, from (3.1) and triangle inequality we have

$$g(u, Tu, \ldots, Tu) \leq g(u, x_n, \ldots, x_n) + g(x_n, Tx_n, \ldots, Tx_n)$$

and

$$g(Tx_n, Tu, \ldots, Tu) \leq a_0 F(G_n, g(u, Tu, \ldots, Tu))$$

$$+ a_1 g(x_n, u, \ldots, u)$$

$$+ a_2 [G_n + g(u, Tu, \ldots, Tu)]$$

$$+ a_3 [g(x_n, Tu, \ldots, Tu) + g(u, Tx_n, \ldots, Tx_n)].$$

And we have

$$g(x_n, Tu, \ldots, Tu) \leq g(x_n, u, \ldots, u) + g(u, Tu, \ldots, Tu)$$

and

$$g(u, Tx_n, \ldots, Tx_n) \leq g(u, x_n, \ldots, x_n) + g(x_n, Tx_n, \ldots, Tx_n)$$

$$= g(u, x_n, \ldots, x_n) + G_n.$$

Then

$$g(Tx_n, Tu, \ldots, Tu) \leq a_0 F(G_n, g(u, Tu, \ldots, Tu))$$

$$+ a_1 g(x_n, u, \ldots, u) + a_2 [G_n + g(u, Tu, \ldots, Tu)]$$

$$+ a_3 [g(x_n, u, \ldots, u) + g(u, x_n, \ldots, x_n)$$

$$+ G_n + g(u, Tu, \ldots, Tu))$$

$$\leq a_0 F(G_n, g(u, Tu, \ldots, Tu)) + (a_2 + a_3) G_n$$

$$+ (a_2 + a_3) g(u, Tu, \ldots, Tu)$$

$$+ (a_1 + a_3) g(x_n, u, \ldots, u) + a_3 g(u, x_n, \ldots, x_n).$$

Surveys in Mathematics and its Applications 16 (2021), 137 – 148

http://www.utgjiu.ro/math/sma
Therefore, from (3.2), (3.3) and (3.4), we have
\[
g(Tx_n, Tu, \ldots, Tu) \leq KF(G_n, g(u, Tu, \ldots, Tu)) + \lambda_1 G_n
\]
\[
+ \lambda_1 g(u, Tu, \ldots, Tu)
\]
\[
+ \lambda_2 g(x_n, u, \ldots, u) + \lambda_2 g(u, x_n, \ldots, x_n),
\]
then
\[
g(u, Tu, \ldots, Tu) \leq g(u, x_n, \ldots, x_n) + G_n + \lambda_1 G_n
\]
\[
+ KF(G_n, g(u, Tu, \ldots, Tu))
\]
\[
+ \lambda_1 g(u, Tu, \ldots, Tu) + \lambda_2 g(x_n, u, \ldots, u) + \lambda_2 g(u, x_n, \ldots, x_n)
\]
\[
= KF(G_n, g(u, Tu, \ldots, Tu)) + (1 + \lambda_1)G_n + \lambda_1 g(u, Tu, \ldots, Tu)
\]
\[
+ \lambda_2 g(x_n, u, \ldots, u) + (1 + \lambda_2)g(u, x_n, \ldots, x_n).
\]
Taking the limit and using the continuity of F at $(0, g(u, Tu, \ldots, Tu))$, we get
\[
g(u, Tu, \ldots, Tu) \leq \lambda_1 g(u, Tu, \ldots, Tu) < g(u, Tu, \ldots, Tu),
\]
which is a contradiction. So, $g(u, Tu, \ldots, Tu) = 0$, that is $Tu = u$. By uniqueness of z, we must have $z = u$. We conclude that the self-mapping T has a unique fixed point in X. To prove that T is continuous at z, let (u_n) be a sequence such that $u_n \to z = Tz$. Then from (3.1)
\[
g(z, Tu_n, \ldots, Tu_n) = g(Tz, Tu_n, \ldots, Tu_n)
\]
\[
\leq a_0 F(0, g(u_n, Tu_n, \ldots, Tu_n))
\]
\[
+ a_1 g(z, u_n, \ldots, u_n)
\]
\[
+ a_2 g(u_n, Tu_n, \ldots, Tu_n)
\]
\[
+ a_3 \left[g(u_n, z, \ldots, z) + g(z, Tu_n, \ldots, Tu_n) \right],
\]
by using the fact that $F(t, 0) = 0$, and the triangle inequality we have
\[
g(u_n, Tu_n, \ldots, Tu_n) \leq g(u_n, z, \ldots, z) + g(z, Tu_n, \ldots, Tu_n),
\]
then
\[
g(z, Tu_n, \ldots, Tu_n) = g(Tz, Tu_n, \ldots, Tu_n)
\]
\[
\leq a_1 g(z, u_n, \ldots, u_n)
\]
\[
+ (a_2 + a_3) g(u_n, z, \ldots, z) + (a_2 + a_3) g(z, Tu_n, \ldots, Tu_n).
\]
Hence, using (3.2), (3.3) and (3.4)
\[(1 - \lambda_1)g(z, T u_n, \ldots, T u_n) \leq \lambda_1 g(u_n, z, \ldots, z) + \lambda_2 g(z, u_n, \ldots, u_n).\]

By letting \(n\) go to infinity we obtain
\[
\limsup_n g(z, T u_n, \ldots, T u_n) = 0,
\]
which implies that \(\lim_{n \to +\infty} T u_n = z\). This completes the proof. \(\square\)

4 Consequences and Applications

We have the following corollaries.

Corollary 17. Let \(F_i : \mathbb{R}^+ \to \mathbb{R}^+\) be a function such that \(F_i(0) = 0\) and \(F_i\) is continuous at 0 for \(i = 1, 2\).

Let \((X, g)\) a complete \(g\)-metric space with order \(m\), and \(T\) be a self-mapping on \(X\) satisfying the following condition:
\[
g(Tx, Ty, \ldots, Ty) \leq b_1 F_1 \left(\min \left[g(x, Tx, \ldots, Tx), g(y, Ty, \ldots, Ty) \right] \right)
+ b_2 F_2 \left[g(x, Tx, \ldots, Tx) g(y, Ty, \ldots, Ty) \right]
+ b_3 g(x, y, \ldots, y)
+ b_4 \left[g(x, Tx, \ldots, Tx) + g(y, Ty, \ldots, Ty) \right]
+ b_5 \left[g(x, Ty, \ldots, Ty) + g(y, Tx, \ldots, Tx) \right]
\]
for all \(x, y\) in \(X\), where \(b_i = b_i(x, y)\) \((i = 1, 2, 3, 4, 5)\) are nonnegative functions such that \(b_i(x, y) = b_i(y, x)\) for all \(x, y \in X\), which there exist three constants \(K > 0\) and \(\lambda_1, \lambda_2 \in (0, 1)\) such that the following inequalities,
\[
\begin{align*}
 b_1(x, y), b_2(x, y) & \leq K, \\
 b_4(x, y) + b_5(x, y) & \leq \lambda_1, \\
 b_3(x, y) + 2b_5(x, y) & \leq \lambda_2,
\end{align*}
\]
are satisfied for all \(x, y\) in \(X\). If \(T\) is \(g\)-asymptotically regular at some \(x_0\) in \(X\). Then the self-mapping \(T\) has a unique fixed point. Moreover, \(T\) is continuous at its unique fixed point.

Proof. The proof follows from Theorem 16 by considering the functions:
\[
F(s, t) := F_1(\min(s, t)) + F_2(st),
a_0(x, y) := \max(b_1(x, y), b_2(x, y)), \text{ and } a_1 := b_3, a_2 := b_4, a_3 := b_5.
\]
\(\square\)
Corollary 18. Let (X, g) be a complete g-metric space with order m, and T be a self-mapping on X satisfying the condition, for all x, y in X,

$$g(Tx, Ty, \ldots, Ty) \leq \alpha [g(x, Tx, \ldots, Tx) + g(y, Ty, \ldots, Ty)]$$

where $\alpha \in (0, 1)$. If T is g-asymptotically regular at some x_0, then the self-mapping T has a unique fixed point. Moreover, T is continuous at its unique fixed point.

Proof. The proof follows from Theorem 16 by considering the function $F(s, t) := 0$ and $a_2(x, y) := \alpha$, and $a_1(x, y) := 0$ and $a_2(x, y) := a_3(x, y) := 0$.

Corollary 19. Let (X, g) be a complete g-metric space with order m, and T a self-mapping on X satisfying the condition, for all x, y in X,

$$g(Tx, Ty, \ldots, Ty) \leq pg(x, y, \ldots, y) + q [g(x, Tx, \ldots, Tx) + g(y, Ty, \ldots, Ty)] + r [g(x, Ty, \ldots, Ty) + g(y, Tx, \ldots, Tx)],$$

where $p, q,$ and r are fixed nonnegative real numbers such that $q + r < 1$ and $p + 2r < 1$. If T is g-asymptotically regular at some x_0. Then the self-mapping T has a unique fixed point. Moreover, T is continuous at its unique fixed point.

Proof. The proof follows from Theorem 16 by considering the function $F(s, t) := 0$ and $a_1(x, y) := p$, and $a_2(x, y) := q$ and $a_3(x, y) := r$ and $\lambda_1 = q + r$ and $\lambda_2 = p + 2r$.

Corollary 20. Let $\alpha \geq 0$, and $\beta \in (0, 1)$. Let (X, G) be a G-complete G-metric space and T a self-mapping on X satisfying the condition,

$$G(Tx, Ty, \ldots, Ty) \leq \beta G(x, y, \ldots, y).$$

$$+ \alpha \min\{G(x, Tx, \ldots, Tx), G(y, Ty, \ldots, Ty)\} + G(x, Tx, \ldots, Tx)G(y, Ty, \ldots, Ty)$$

$$1 + G(x, y, \ldots, y)$$

for all x, y in X. If T is g-asymptotically regular at some x_0 in X, then the self-mapping T has a unique fixed point. Moreover, T is continuous at its unique fixed point.

Proof. The proof follows from Theorem 16 by considering the function $F(s, t) := \alpha [\min\{s, t\} + st]$ and $a_0(x, y) := \frac{1}{1 + G(x, y, \ldots, y)}$, $a_1(x, y) := \beta$, and $a_2(x, y) := 0$ and $a_3(x, y) := 0$.

Acknowledgement. The authors would like to express their deep thanks to the anonymous referees for their comments and suggestions on the initial version of the manuscript which lead to the improvement of this paper.

**

Surveys in Mathematics and its Applications 16 (2021), 137 – 148

http://www.utgjiu.ro/math/sma
References

Mohamed Amine Ighachane
Department of Mathematics, Faculty of Sciences-Semlalia, University Cadi Ayyad,
Av. Prince My. Abdellah, BP: 2390, Marrakesh (40.000-Marrakech), Morocco (Maroc).
email: mohamedamineighachane@gmail.com

Mohamed Akkouchi
Department of Mathematics, Faculty of Sciences-Semlalia, University Cadi Ayyad,
Av. Prince My. Abdellah, BP: 2390, Marrakesh (40.000-Marrakech), Morocco (Maroc).
email: akkm555@yahoo.fr

License

This work is licensed under a Creative Commons Attribution 4.0 International License.