Surveys in Mathematics and its Applications


ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 17 (2022), 29 -- 78

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

RESULTS IN ESTIMATES FOR k-PLANE TRANSFORMS

Shuichi Sato

Abstract. This is an expository paper. We give proofs of some results of M. Christ (1984) and S. W. Drury (1984) related to k-plane transforms. Also, we give proofs for some results on interpolation appearing in estimating k-plane transforms.

2020 Mathematics Subject Classification: 42-02; 14M15.
Keywords: X-ray transforms; Radon transforms; k-plane transforms; Grassmannian manifolds; multilinear interpolation.

Full text

References

  1. J. Bergh and J. Lofstrom, Interpolation Spaces. An Introduction, Grundlehren der Mathematischen Wissenschaften, 223 (1976), Berlin-New York, Springer-Verlag. MR0482275. Zbl 0344.46071.

  2. W. M. Boothby, An Introduction to Differential Manifolds and Riemannian Geometry, Academic Press, second ed., 1986. MR0861409. Zbl 0596.53001.

  3. M. Christ, Estimates for the k-plane transform, Indiana Univ. Math. J. 33 (1984), 891--910. MR0763948. Zbl 0597.44003.

  4. M. Christ, J. Duoandikoetxea and J. L. Rubio de Francia, Maximal operators related to the Radon transform and the Calderón-Zygmund method of rotations, Duke Math. J. 53 (1986), 189--209. MR0835805. Zbl 0656.42010.

  5. S. W. Drury, Generalizations of Riesz potentials and Lp estimates for certain k-plane transforms, Illinois J. Math. 28 (1984), 495--512. MR0748958. Zbl 0552.43005.

  6. S. W. Drury, Lp estimates for certain generalizations of k-plane transforms, Illinois J. Math. 33 (1989), 367--374. MR0996347. Zbl 0683.44006.

  7. S. W. Drury, A survey of k-plane transform estimates, Contemp. Math. 91 (1989), 43--55. MR1002587. Zbl 0679.44004.

  8. R.Hunt, On L(p, q) spaces, Enseign Math. 12 (1966), 249--276. MR0223874. Zbl 0181.40301.

  9. S. G. Krantz and H. R. Parks, Geometric Integration Theory, Birkhäuser, 2008. MR2427002. Zbl 1149.28001.

  10. J. L. Lions and J. Peetre, Sur une classe d'espaces d'interpolation, Inst. Hautes Études Sci. Publ. Math. 19 (1964), 5--68. MR0165343. Zbl 0148.11403.

  11. B. Rubin, A note on the Blaschke-Petkantschin formula, Riesz distributions, and Drury's identity, Fract. Calc. Appl. Anal. 21 (2018), 1641--1650. MR3912447. Zbl 1434.44002.

  12. B. Rubin, Norm estimates for k-plane transforms and geometric inequalities, Advances in Math. 349 (2019), 29--55. MR3937741. Zbl 1414.44002.

  13. L. A. Santaló, Integral Geometry and Geometric Probability , Encyclopedia of Mathematics and its applications, vol. 1, Addison-Wesley Pub. Co., Advanced Book Program, Reading, Massachusetts, 1976. MR0433364. Zbl 0342.53049.

  14. S. Sato, Nonisotropic dilations and the method of rotations with weight, Proc. Amer. Math. Soc. 140 (2012), 2791--2801. MR2910766. Zbl 1280.42009.

  15. S. Sato, Results in estimates for k-plane transforms, the first version. arXiv:2010.03275 [math.CA] arXiv:2010.03275 [math.CA].

  16. D. C. Solmon, A note on k-plane integral transforms, J. Math. Anal. Appl. 71 (1979), 351--358. MR0548770. Zbl 0416.44003.

  17. M. Spivak, A Comprehensive Introduction to Differential Geometry, V, Publish or Perish, 1999. Zbl 1213.53001.

  18. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971. MR0304972. Zbl 0232.42007.

  19. M. Zafran, A multilinear interpolation theorem, Studia Math., 62 (1978), 107--124. MR0499959. Zbl 0389.46025.





Shuichi Sato
Department of Mathematics, Faculty of Education,
Kanazawa University, Kanazawa 920-1192, Japan.
e-mail: shuichi@kenroku.kanazawa-u.ac.jp, shuichipm@gmail.com


http://www.utgjiu.ro/math/sma